AXIAL U(1) SYMMETRY IN LATTICE QCD AT HIGH TEMPERATURE

$$\left<\partial_{\mu}J_{5}^{\mu}\right> = \frac{1}{32\pi^{2}}\epsilon_{\mu\nu\rho\sigma}\left< F^{\mu\nu}F^{\rho\sigma}\right> \to 0?$$

HIDENORI FUKAYA (OSAKA UNIV.) FOR JLQCD COLLABORATION PRD96, NO.3, 034509 (2017),

PRD93, NO.3, 034507 (2016), AND SOME UPDATES

DO YOU THINK AXIAL U(1) ANOMALY CAN DISAPPEAR (AT FINITE T) ?

Typical answer is

No, kidding!

And he/she tries to teach me

- 1. "Anomaly is **EXPLICIT** breaking of the theory,"
- 2. "Anomalous Ward-Takahashi identity HOLDS AT ANY ENERGY (or temperature),"
 2. "You don't understand OFT "
- 3. "You don't understand QFT..."

BUT THE SAME PERSON OFTEN TALKS ABOUT

Disappearance of conformal anomaly at IR fixed point:

ANY DIFFERENCE?

For conformal anomaly, they examine

$$\beta(g) = \frac{g^3}{16\pi^2} \left(-\frac{11}{3}N_c + \frac{2}{3}N_f \right)$$

after gluon & quark integrals. O.K, it can be zero. But for axial U(1) anomaly, we talk about

$$\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \rangle_{fermion} - \langle \delta_{A} O(x) \rangle_{fermion} \delta(x - x')$$

= $\frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \langle O(x') \rangle_{fermion}$

with fermion integral only (w/ classical gluon field), which LOOKS always non-zero.

BUT THE REAL QUESTION IS

$$\left\langle \left\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \right\rangle_{fermion} - \left\langle \delta_{A} O(x) \right\rangle_{fermion} \delta(x - x') \right\rangle_{gluons}$$
$$= \left\langle \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \left\langle O(x') \right\rangle_{fermion} \right\rangle_{gluons} = 0???$$

MAIN MESSAGE OF THIS TALK

In high T QCD, whether

 $\langle \langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \rangle_{fermion} - \langle \delta_{A} O(x) \rangle_{fermion} \delta(x - x') \rangle_{gluons}$

$$= \left\langle \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \langle O(x') \rangle_{fermion} \right\rangle_{gluons} = 0???$$

or not is a non-trivial question, which can only be answered by carefully integrating over gluons (by lattice QCD).

In particular, good control of chiral symmetry (or continuum limit) is essential.

CAN U(1)ANOMALY DISAPPEAR AT FINITE T? \rightarrow MANY ANSWERS.

Before 2012
Cohen 1996, 1998 (theory)Aoki-F-Taniguchi 2012 (theory)
Ishikawa et al2013, 2014,201Bernard et al. 1996 (staggered)JLQCD 2013, 2016 (overlap)Chandrasekharan et al. 1998
(staggered)TWQCD 2013 (optimal DW)
LLNL/RBC 2013 (Domain-wal
Pelisseto and Vicari 2013(the
BNakayama-Ohtsuki 2015, 20
Sato-Yamada 2015(theory),
Kanazawa & Yamamoto 2015

Red: YES Blue: NO Green: Not (directly) answered but related HotQCD 2012 (Domain-wall) After 2012 Aoki-F-Taniguchi 2012 (theory) Ishikawa et al2013, 2014, 2017. (Wilson) TWQCD 2013 (optimal DW) LLNL/RBC 2013 (Domain-wall) [may be at higher T] Pelisseto and Vicari 2013(theory) BNakayama-Ohtsuki 2015, 2016(CFT) Sato-Yamada 2015(theory), Kanazawa & Yamamoto 2015, 2016 (theory) Dick et al. 2015 (OV in HISQ sea) Sharma et al. 2015, 2016 (OV in DW sea) Glozman 2015, 2016 (theory) Borasnyi et al. 2015 (staggered & OV) Brandt et al. 2016 (Wilson) Ejiri et al. 2016 (Wilson) Azcoiti 2016,2017(theory) Gomez-Nicola & Ruiz de Elvira 2017 (theory) Rorhofer et al. 2017

CONTENTS

- 1. Is $U(1)_A$ anomaly theoretically possible to disappear?
- 2. Lattice QCD at high T with chiral fermions
- 3. Result 1: $U(1)_A$ anomaly
- 4. Result 2: topological susceptibility
- 5. Summary

SU(2) SSB AND U(1) ANOMALY LINKED BY DIRAC ZERO MODES

U(1)_A breaking/restoration

Atiyah-Singer index theorem 1963

(near) zero mode spectrum of Dirac operator

Banks-Casher relation 1980

$SU(2)_L xSU(2)_R$ breaking/restoration

* In the following, we consider Nf=2.

ATIYAH-SINGER INDEX THEOREM [1963]

(integral of) U(1) anomaly \$ Dirac zero-modes

$$n_{+} - n_{-} = \frac{1}{32\pi^2} \int d^4x \operatorname{Tr} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

 $(n_{\pm}: \# \text{ of chirality } \pm \text{ zero modes})$

(Note : RHS vanishes in T→∞ limit, since the topology is trivial in 3D theory.

BANKS-CASHER RELATION [1980]

SU(2) SSB \$ zero-modes of D

$$\pi \rho(\lambda = 0) = \langle \bar{q}q \rangle \equiv \Sigma.$$

$$\left(\rho(\lambda) \equiv \lim_{V \to \infty} \sum_{\lambda_i \ge 0} \left\langle \frac{\delta(\lambda_i - \lambda)}{V} \right\rangle \right) \qquad \lambda : \text{Dirac eigenvalue}$$

For finite λ ,

$$ho(\lambda) = rac{\operatorname{Re} \langle ar{q}q
angle (m_v = i\lambda)}{\pi}$$

BANKS-CASHER RELATION [DETAILS]

$$\begin{split} \rho(\lambda) &= \int_0^\infty d\lambda' \delta(\lambda - \lambda') \rho(\lambda') \\ &= \lim_{\epsilon \to 0} \frac{1}{\pi} \int_0^\infty d\lambda' \frac{2\epsilon}{(\lambda - \lambda')^2 + \epsilon^2} \rho(\lambda') \\ &= \lim_{\epsilon \to 0} \frac{1}{\pi} \int_0^\infty d\lambda' \left[\frac{1}{i(\lambda - \lambda') + \epsilon} - \frac{1}{i(\lambda - \lambda') - \epsilon} \right] \rho(\lambda') \\ &= \lim_{\epsilon \to 0} \frac{1}{\pi} \int_0^\infty d\lambda' \left[\frac{1}{i(\lambda - \lambda') + \epsilon} - \frac{1}{i(\lambda - \lambda') - \epsilon} \right] \left\langle \sum_{\lambda_i} \frac{\delta(\lambda' - \lambda_i)}{V} \right\rangle \\ &= \lim_{\epsilon \to 0} \frac{1}{\pi V} \left\langle \operatorname{Tr} \frac{1}{D + i\lambda + \epsilon} - \operatorname{Tr} \frac{1}{D + i\lambda - \epsilon} \right\rangle \\ &= \frac{1}{\pi} \lim_{\epsilon \to 0} \left(\langle \bar{q}q \rangle_{m_v = i\lambda + \epsilon} - \langle \bar{q}q \rangle_{m_v = i\lambda - \epsilon} \right) \\ &= \frac{1}{\pi} \operatorname{Re} \langle \bar{q}q \rangle_{m_v = i\lambda}, \end{split}$$

BANKS-CASHER RELATION [1980]

Why SU(2) chiral symmetry broken at T=0 ?

$$i \not p = \not p + g \not A$$

when $g = 0$, $\lambda = \pm p$
 $Area(S^3) = 2\pi^2 R^3$
 $\rho(\lambda) = \frac{2\pi^2 \lambda^3}{V} \times \left(\frac{L}{2\pi}\right)^4 \times 3 \times 4 \times \frac{1}{2}$
 $= \frac{3}{4\pi^2} \lambda^3$

: 7

Strong coupling

WHAT BANKS-CAHSER RELATION TELLS US

$$\langle \bar{q}q \rangle = \lim_{m \to 0} \int d\lambda \ \rho(\lambda) \frac{2m}{\lambda^2 + m^2} = \pi \rho(0)$$

[Banks-Casher 1980]

 $\begin{array}{ll} \mbox{If} & \rho(0) \neq 0, & {\rm SU(2)_L x S U(2)_R \ broken,} \\ & {\rm U(1)_A \ broken.} \\ \mbox{If} & \rho(0) = 0, & {\rm SU(2)_L x S U(2)_R \ symmetric,} \\ & {\rm U(1)_A \ symmetric.} \end{array}$

for quark bi-linears.

$U(1)_A$ AND $SU(2)_L$ XSU(2)_R SHARE DIM<=3 ORDER PARAMETER(S).

Among quark bi-linears $\langle \bar{q}\Gamma q(x) \rangle$ only $\langle \bar{q}q(x) \rangle$ can have a VEV : No dim.<=3 operator breaks U(1)_A without breaking SU(2)_LxSU(2)_R.

How about higher dim. operators ? -> our work [Aoki, F, Taniguchi 2012]

$$\begin{array}{l} \textbf{DIRAC SPECTRUM AND} \\ \textbf{SYMMETRIES} \\ \langle \bar{q}q \rangle = \lim_{m \to 0} \int d\lambda \; \rho(\lambda) \frac{2m}{\lambda^2 + m^2} = \pi \rho(0) \\ \textbf{[Banks-Casher 1980]} \end{array}$$

Our idea = generalization of BC relation

to higher dim operators (dim=6 operators were done by T.Cohen 1996) :

[Aoki-F-Taniguchi 2012] OUR RESULT 1 : MANY ORDER PARAMETERS ARE SHARED.

(under some "reasonable" assumptions)

Constraint we find

 $\lim_{m \to 0} \langle \rho(\lambda) \rangle = c |\lambda|^{\gamma} (1 + O(\lambda)), \ \gamma > 2$

is strong enough to show

$$\delta_{U(1)_A} \left\langle \frac{1}{V^{N'}} \prod_i^N \left(\int dV \bar{q} \Gamma_i q \right) \right\rangle = 0 \text{ for } \Gamma_i = \tau^a \text{ and } \gamma_5 \tau^a$$

for any N (up to 1/V corrections):

these order parameters are shared by $SU(2)_L xSU(2)_R$ and $U(1)_A$.

OUR RESULT 2 : [Aoki-F-Taniguchi 2012] STRONG SUPPRESSION OF TOPOLOGICAL SUSCEPTIBILITY

We also find (in the thermodynamical limit)

$$\begin{pmatrix} \frac{\partial}{\partial m} \end{pmatrix}^{N} \frac{\langle Q^{2} \rangle}{V} = 0 \quad \text{for any } N, \\ Q = \frac{1}{32\pi^{2}} \int d^{4}x \epsilon_{\mu\nu\rho\sigma} \text{tr}[F^{\mu\nu}F^{\rho\sigma}] \\ \frac{\langle Q^{2} \rangle}{V} = 0 \quad \text{for } m <^{\exists} m_{cr}$$

Suggests 1st order chiral transition ?

(There's no symmetry enhancement at finite quark mass.)

NOT A "SYMMETRY RESTORATION"

We allow

$$\langle \text{any } U(1)_A \text{ breaking} \rangle = \frac{1}{V^{\alpha}}, \quad \alpha > 0$$

Cf. conformal "symmetry" at the IR fixed point.

CONTENTS

Is U(1)_A anomaly theoretically possible to disappear?

Our answer = YES. $SU(2)_L xSU(2)_R$ and $U(1)_A$ are connected through Dirac spectrum.

- 2. Lattice QCD at high T with chiral fermions
- 3. Result 1: $U(1)_A$ anomaly
- 4. Result 2: topological susceptibility
- 5. Summary

JLQCD COLLABORATION

Machines at KEK

HITACHI SR16000

Simulation codes :

and U. of Tsukuba Oakforest-PACS

Irolro++ (<u>https://github.com/coppolachan/Irolro</u>) Grid (<u>https://github.com/paboyle/Grid</u>)

JLQCD FINITE T PROJECT

Members:

S. Aoki (YITP), Y. Aoki (KEK, RBRC), G. Cossu (Edinburgh), HF(Osaka), S. Hashimoto (KEK), T. Kaneko(KEK), K. Suzuki(KEK), A.Tomiya(CCNU)

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

- We simulate **2-flavor** QCD.
 - 1. good chirality :

Mobius domain-wall & overlap fermion w/ OV/DW reweighting (frequent topology tunnelings)

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

- We simulate **2-flavor** QCD.
 - 1. good chirality :

Mobius domain-wall & overlap fermion w/ OV/DW reweighting (frequent topology tunnelings)

2. different volumes : L=16,32,48 (2 fm-4 fm).

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

- We simulate **2-flavor** QCD.
 - 1. good chirality :

Mobius domain-wall & overlap fermion w/ OV/DW reweighting (frequent topology tunnelings)

- 2. different volumes : L=16,32,48 (2 fm-4 fm).
- 3. different lattice spacings : 0.07-0.1 fm.

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

- We simulate **2-flavor** QCD.
 - 1. good chirality :

Mobius domain-wall & overlap fermion w/ OV/DW reweighting (frequent topology tunnelings)

- 2. different volumes : L=16,32,48 (2 fm-4 fm).
- **3. different lattice spacings : 0.07-0.1 fm.** Other comments
 - T= 190-330MeV (Tc~180MeV) with Lt=8,10,12.
 - 3-10 different quark masses (w/ reweighting).

long MD time 20000-30000 for reweighting.

OVERLAP VS DOMAIN-WALL

Measure for how

much chiral sym.

is violated

 $m_{\rm res} = 0.$

Overlap Dirac operator has exact chiral symmetry

$$D_{\rm ov}(m) = \left[\frac{1+m}{2} + \frac{1-m}{2}\gamma_5\,{\rm sgn}(H_M)\right]$$

(Monius) domain-wall operator is an approximation of overlap.

$$D_{DW}^{4D}(m) = \frac{1+m}{2} + \frac{1-m}{2} \gamma_5 \frac{1-(T(H_M))^{L_s}}{1+(T(H_M))^{L_s}} \quad m_{res} \sim 1 \text{MeV}$$
$$H_M = \gamma_5 \frac{2D_W}{2+D_W}$$
We thought domain-wall fermion was good enough. But...

VIOLATION OF CHIRAL SYMMETRY ENHANCED AT FINITE TEMPERATURE

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

Chiral symmetry for each eigen-mode of Mobius domain-wall Dirac operator:

$$g_i = \left(v_i^{\dagger}, \frac{D\gamma_5 + \gamma_5 D - aRD\gamma_5 D}{\lambda_i}v_i\right)$$

 \rightarrow very bad modes appear above Tc (~180MeV).

Domain-wall, $L^3xL_t=32^3x8$, T= 217MeV (β =4.10)

Cf.) residual mass 1 is (weighted) average of them.

For T=0, gi are consistent with residual mass.

U(1)_A ANOMALY IS SENSITIVE TO THE BAD MODES.

At a>0.08fm, Mobius domain-wall fermion is not good enough! 08 **GW** violation effect 0.6 $\Delta^{\rm GW}/\Delta$ is 20%-100%. 0.4 (10 times of m_{res}) 0.2

GW violation part in U(1)A susceptibility (definition will be given later.)

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

OVERLAP/DOMAIN-WALL REWEIGHTING

(fermion action can be changed AFTER simulations)

"EFFICIENCY" OF OV/DW REWEIGHTING

$$\frac{N_{eff}}{N} = \frac{\langle R \rangle}{Nmax(R)}$$

On our 2-4 fm lattices at T=1.1-1.8Tc (Tc~180MeV) a ~ 0.1 fm : O.K. for L=2 fm, $N_{eff}/N \sim 1/20$ but does not work for 4 fm. $N_{eff}/N < 1/1000$. (\rightarrow we approximate it by O(10) low-modes.) a ~ 0.08 fm : works well (3 fm). $N_{eff}/N \sim 1/10$ a ~ 0.07 fm : domain-wall & overlap are consistent (2.4, 3.6 fm). $N_{eff}/N > 1/10$

"EFFICIENCY" OF OV/DW REWEIGHTING $\frac{N_{eff}}{N} = \frac{\langle R \rangle}{Nmax(R)}$

On our 2-4m lattices at T=1.1-1.8Tc (Tc~180MeV), a ~ 0.1 fm : O.K. for L=2 fm : $N_{eff}/N \sim 1/20$ but does not work for 4 fm. $N_{eff}/N < 1/1000$. (\rightarrow we approximate it by O(10) low-modes.) a ~ 0.08 fm a ~ 0.08 fm works well (3 fm). $N_{eff}/N \sim 1/10$ domain-wall & overlap are consistent (2.4, 3.6 fm). $N_{eff}/N > 1/10$

Our focus in this talk

VALENCE OVERLAP IN DOMAIN-WALL SEA IS MORE DANGEROUS

OVERLAP/DOMAIN-WALL REWEIGHTING ALLOWS TOPOLOGY TUNNELINGS

Q (L=48)

Auto-correlation time of topology is O(100), small enough compared to our long trajectory length, 20000-30000 MD time.

CONTENTS

\sim 1. Is U(1)_A symmetry theoretically possible ?

Our answer = YES. $SU(2)_L xSU(2)_R$ and $U(1)_A$ are connected through Dirac spectrum.

2. Lattice QCD at high T with chiral fermions

 $U(1)_A$ at high T is sensitive to lattice artifact. We need good chiral sym (or careful cont. limit.).

- 3. Result 1: $U(1)_A$ anomaly
- 4. Result 2: topological susceptibility

5. Summary

WHAT WE OBSERVE

Axial U(1) susceptibility

$$\Delta_{\pi-\delta} = \int d^4x \left[\langle \pi^a(x)\pi^a(0) \rangle - \langle \delta^a(x)\delta^a(0) \rangle \right],$$
$$\left(= \int_0^\infty d\lambda \,\rho(\lambda) \frac{2m^2}{(\lambda^2 + m^2)^2} \right)_{2510^8}$$

We compute $- rac{2N_0}{Vm^2} \ (\sim 1/\sqrt{V})$ $\bar{\Delta}_{\pi-\delta}^{\rm ov} \equiv \Delta_{\pi-\delta}^{\rm ov} -$

 N_0 : # of zero modes

U(1)_A ANOMALY VANISHES IN THE CHIRAL LIMIT

Coarse (a>0.08fm) lattice [JLQCD(Tomiya et al.) 2016]

U(1) ANOMALY VANISHING ON FINE LATTICE (a~0.07fm) [JLQCD, preliminary] 10^{0} *T*=220MeV, *L*=1.8fm T=220MeV, L=2.4fm \vdash $\overline{\Delta}^{\text{ov}}(\text{GeV}^2)$ w/ UV subtraction 1 10 $_{-2}$ T=220 MeV, L=3.6 fm \mapsto 10^{-2} 10⁻³ 10^{-4} **Physical point** 10^{-6} 2 10 12 14 8 4 6 0 m (MeV)

After subtraction of m² term (1/a divergence), the suppression looks exponential.

MESON CORRELATOR ITSELF SHOWS U(1) ANOMALY VANISHING

[C. Rohrhofer et al. 2017]

SU(2)xSU(2)[blue] and $U(1)_A$ $C(n_z) / C(n_z=1)$ (red) partners are degenerate. 10^{-6} [similar results reported by Brandt et al. 10^{0} 2016] $C(n_{z}) / C(n_{z}=1)$ PS **Further** enhancement to SU(4)? [Glozman 2015,

Lang 2018]

218 MeV 256 MeV 330 MeV 380 MeV 5 10 15 0 5 10 15 n, n_z

CONTENTS

✓ 1. Is U(1)_A symmetry theoretically possible ?

Our answer = YES. $SU(2)_L xSU(2)_R$ and $U(1)_A$ are connected through Dirac spectrum.

 \checkmark 2. Lattice QCD at high T with chiral fermions

 $U(1)_A$ at high T is sensitive to lattice artifact. We need good chiral sym (or careful cont. limit.).

 \checkmark 3. Result 1: U(1)_A anomaly

 $U(1)_A$ anomaly at T~1.1-1.4Tc (Tc~180MeV) in the chiral limit is consistent with zero.

4. Result 2: topological susceptibility

5. Summary

TOPOLOGICAL SUSCEPTIBILITY

$$\chi_t = rac{\langle Q^2
angle}{V}$$
 $Q = n_+ - n_- = rac{1}{32\pi^2} \int d^4 x \mathrm{Tr} \epsilon_{\mu
u\rho\sigma} F^{\mu
u} F^{
ho\sigma}$
Overlap
Dirac index
Gluonic
definition

another direct probe for $U(1)_A$ anomaly.

TOPOLOGICAL SUSCEPTIBILITY

Above Tc, it is sensitive to lattice artifact. We need (reweighted) overlap fermion for a>0.08fm.

index of overlap Dirac operator is stable against lattice cut-off.

TOPOLOGICAL SUSCEPTIBILITY VANISHES BEFORE THE CHIRAL LIMIT

•

FINITE VOLUME DEPENDENCE

[JLQCD preliminary]

FINITE LATTICE SPACING DEPENDENCE [JLQCD preliminary]

STRONG SUPPRESSION OF TOPOLOGICAL SUSCEPTIBILITY

If our data indicates

$$\frac{\langle Q^2 \rangle}{V} = 0 \quad \text{for } m <^{\exists} m_{cr}$$

Chiral phase transition is likely to be 1st order.

(There's no symmetry enhancement at finite quark mass.)

If $m_u, m_d < m_{cr}$, there may be gravitational waves from QCD bubble collision in the early universe.

CAN AXION BE A DARK MATTER?

If our result really indicates $\chi_t = 0$

and 1st order phase transition,

Axion cannot be a dark matter since too much DM created (to expand our universe).

TEMPERATURE DEPENDENCE

Shows a sharp drop!

THE DROP IS STILL IMPRESSIVE.

CONTENTS

✓ 1. Is U(1)_A symmetry theoretically possible ?

Our answer = YES. $SU(2)_L xSU(2)_R$ and $U(1)_A$ are connected through Dirac spectrum.

2. Lattice QCD at high T with chiral fermions

 $U(1)_A$ at high T is sensitive to lattice artifact. We need good chiral sym (or careful cont. limit.).

 \sim 3. Result 1: U(1)_A anomaly

 $U(1)_A$ anomaly at T~1.1-1.4Tc (Tc~180MeV) in the chiral limit is consistent with zero.

✓ 4. Result 2: topological susceptibility

Topological susceptibility drops before the chiral limit.

5. Summary

SUMMARY

- 1. $U(1)_A$ anomaly at high T is a non-trivial problem.
- 2. $U(1)_A$ and $SU(2)_L xSU(2)_R$ order prms. connected.
- U(1)_A is sensitive to lattice artifact at high T
 -> We need good chiral symmetry (or careful continuum limit).
- In our simulation with chiral fermions at 3 volumes and 3-10 quark masses at T=1.1-1.8Tc (Tc~180MeV), U(1)_A anomaly disappears [before the chiral limit] (suggesting 1st order transition ?).

MAIN MESSAGE OF THIS TALK

In high T QCD, whether

 $\left\langle \left\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \right\rangle_{fermion} - \left\langle \delta_{A} O(x) \right\rangle_{fermion} \delta(x - x') \right\rangle_{gluons}$ $= \left\langle \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \left\langle O(x') \right\rangle_{fermion} \right\rangle_{gluons} = 0???$

or not is a non-trivial question, which can only be answered by carefully integrating over gluons (by lattice QCD).

In particular, good control of chiral symmetry (or continuum limit) is essential.

WE ARE SEEKING FOR NEW POSDOC CANDITATES AT OSAKA

Starting from October 2018 (or later)

Maximum 2 years

Funded by Grant-in-Aid for Scientific Research (B)

"Reserch on QCD topology using domain-wall fermions," (Representative: Hidenori Fukaya)

but applicants need not be a lattice expert.

Application deadline: July 31 2018

Please visit our web-page

http://www-het.phys.sci.osaka-u.ac.jp/

For the details.