YKIS2018b Symposium Recent Developments in Quark Hadron Sciences June 11-15, 2018, YITP, Kyoto

Dynamical modeling of high-energy nuclear collisions From small to large colliding systems

Tetsufumi Hirano (Sophia Univ.) 🏹

Contents Introduction Energy Frontier Anisotropic flow • Precision QGP physics Hydrodynamic fluctuations Small Colliding Systems Collectivity • Strangeness enhancement Summary and Outlook

Physics of the QGP

Fukushima and Sasaki (2013)

Investigation of properties of matter under extreme conditions

- Order of phase transition
- Location of critical point and 1st order phase transition line
- Equation of state
- Transport coefficients
- Structure of "vacuum"

High-energy nuclear collisions: Unique approach to create matter under extreme conditions on the Earth

Contacts: Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174

RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted — raising many new questions

Monday, April 18, 2005

TAMPA, FL — The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) — a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory — say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In <u>peer-reviewed papers</u> summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the

Other RHIC News

Using Supercomputers to Delve Ever Deeper into the Building Blocks of Matter

Summer Intern Jaime Avilés Acosta Studies Materials for Ultra-Fast Particle Detector

Successful Test of Small-Scale Accelerator with Big Potential Impacts for Science and Medicine

dense matter

Bottom-up approach

Cosmic Microwave Background Fluctuations of temperature (Planck)

3-D event display(STAR)

Y.Zhou, talk at QM2018

Cosmological parameters

- Energy budget
- Hubble constant (life time)

Physics properties of the QGP

- Equation of state
- Transport coefficients
- Stopping power
-) • •

Standard picture of dynamics in highenergy nuclear collisions

collision axis

Color glass condensate

Classical Yang-Mills

*Or put your favorite model here!

pQCD

The 27th International Conference
on Ultrarelativistic
Nucleus-Nucleus Collisions14-19 MayPalazzo del CinemaLido di Venezia, Italy

Many results shown in this talk ← Taken from presentation in QM2018

https://qm2018.infn.it/

https://indico.cern.ch/event/656452/

Energy frontier Anisotropic flow Precision QGP physics Hydrodynamic fluctuations

Response to initial fluctuations of geometry

Flow generated by anisotropic pressure gradient

Entropy density distribution

n = 2 (quadrupole) Elliptic flow Ollitrault (1993) n = 3 (hexapole) Triangular flow Alver, Roland (2010) n = 4 (octapole) Quadrangular flow Kolb (2003)

Fine structure of profile \rightarrow Higher mode

Geometric anisotropy

Entropy density distribution

s(x,y)

Transport property through responses

En Response of the system Un Geometric anisotropy Momentum anisotropy

Competition between anisotropic pressure gradient and damping of shear flow

Small →Large shear viscosity

Response

Large →Small shear viscosity

Latest elliptic flow data at LHC

Fluctuation dominance

Geometry dominance

Systematic behavior of elliptic flow in p+p, p+Pb, Xe+Xe and Pb+Pb collisions

Challenges to theoretical modeling of high-energy nuclear collisions, in particular, in small colliding systems (See later slides)

See also talk by Nonaka

Recent hydrodynamic analysis

IP-Glasma Trento +3D hydro (shear+bulk) +2D hydro (shear) +lattice EoS +afterburner

H.Niemi, talk at QM2018

EKRT saturation +2D hydro (T-dep. shear) +Lattice EoS

Energy frontier Anisotropic flow Precision QGP physics Hydrodynamic fluctuations

Precision QGP physics using Bayesian parameter estimation

Sound velocity vs. Temperature

(Shear viscosity)/(Entropy density) &(Bulk viscosity)/(Entropy density)

Paquet, poster at QM2018

Pratt *et al*.(2015)

Experimental data → Posterior probability of parameter Bayesian analysis

Energy frontier Anisotropic flow Precision QGP physics Hydrodynamic fluctuations PeraltaRamos, Calzetta(2011), Kapusta, Muller, Stephanov(2011), Moore, Kovtun, Romatschke(2011), Hirano, Murase(2013), Young(2014), Akamatsu, Mazeliauskas, Teaney (2017)…

Hydrodynamic fluctuations

Fluctuation-Dissipation relations

State

Fluctuating around maximum entropy state

QGP fluid simulations in a box

relativistic fluctuating hydrodynamics T^00 [GeV/fm3] (t = 0.0 fm) $\frac{16}{140}$ $\frac{16}{140}$ \frac

Dissipative hydro (2nd Generation)

Fluctuating hydro (3rd Generation)

Courtesy of K.Murase

Correlation of initial conditions along collision axis

Heavy ion collision as a chromoelectric capacitor
→ Approximately boost-invariant formation of color flux tubes
→ Correlation of initial conditions in rapidity space

 η_{s}

X

Event plane decorrelation from hydrodynamic fluctuations

rapidity

Aligned event plane angle

"Random walk" of event plane angle

New opportunity to constrain transport coefficients Genuine event-by-event hydrodynamic simulations

Small colliding systems Collectivity

Strangeness enhancement

2003~2010: Control experiment
→ Understanding of initial state effects
2010: Discovery of "ridge" structure
2010~today: Discussion of possibility to create QGP

HEP vs HIC physicists' view High multiplicity pp event

-05

2017

shd

nttps:

bage.htm

news, y-gart

olasticsno

High Energy Physicist → Garbage dump for Beyond Standard Model particle? (Find a needle in a haystack?)

Heavy Ion Physicist → Treasure trove "To be (QGP) or not to be?"

HEP vs HIC physicists' view (contd.) p+p physics High multiplicity

p+p physics as

interdisciplinary

research

HEP (Generic purpose MC)

- Jet universality
 - Fragmentation from e⁺ + e[−]
 → Applied to p+p collisions
 - No multiplicity dependence of particle ratios
- Need non-perturbative, new mechanisms to interpret data

HIC (Dynamical modeling)

- Successful modeling in A+A collisions
 - → Paradigm of QGP fluidity
- Testing understanding of the QGP in p+p collisions
- QGP-based modeling applicable in small colliding systems???

Everything starts from CMS findings

CMS Collabortion (2010)

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

What is "Ridge"? Correlation of two particle emission with the same azimuthal angle but large rapidity gap $(\Delta \eta \sim 2-4) \leftarrow$ Need some correlation in the very early stage

Ridge in heavy ion collisions
← Correlated emission pattern along rapidity
← Interpreted as collective flow

First ridge observation in high-multiplicity pp collisions at $\sqrt{s} = 7$ TeV !

Mass Ordering in p+Pb at LHC

Mass ordering behavior among pi, K, p, and Lambda ← One of the typical results from hydrodynamic collectivity

(Selected) alternative interpretation:

- Hadronic cascade Y.Zhou, X.Zhu, P.Li, H.Song (2015)
- Parton transport P.Bozek, A. Bzdak, G.-L.Ma (2015)
- Parton escape mechanism
- L.He, T.Edmonds, Z.W.Lin, F.Liu, D.Molnar (2015)
- Free streaming + hadronization P.Romaschke (2015)
- Classical Yang-Mills + Lund fragmentaion B.Schenke, S.Schlichting, P.Tribedy, R.Venugopalan (2016)

Unified description from pp to AA?

Hydrodynamic analysis of elliptic flow in p,d,He+Au collisions at RHIC

Large elliptic flow measured at RHIC • Mass ordering • Consistent with hydrodynamic calculations $\frac{\eta}{-} = 0.08$

Reproduction of experimental results in both large and small systems at RHIC in a single hydro.

Small colliding systems Collectivity Strangeness enhancement

Strangeness enhancement

Ratios of yields to pions in p+p, p+Pb, Xe+Xe and Pb+Pb collisions
→ All results for each hadron lie in a single curve
→ Scale with multiplicity, not N_{part} (geometry, system size) or collision energies

Violation of "jet universality"

- Multi-strange hadrons increase more rapidly than charged pions
- Unable to reproduce from Lund string fragmentation
 - ← Particle ratios controlled by a string tension
- Additional final state dynamics needed?

PYTHIA8: Lund string fragmentation EPOS LHC: Core-corona QGP formation DIPSY: Rope hadronization

Core-Corona Picture

Aichelin, Werner(2009), Becattini, Manninen (2009) Pierog *et al.* (2015), Akamatsu *et al.*(2018)

equilibrated \rightarrow QGP fluids

Chemically

matter

<u>Core</u>

Low

Multiplicity

Figure: Courtesy of Y.Kanakubo

See also, K.Werner, talk at ISCHECRI2018

Core-corona effects on strangeness production

 $dN_{\rm ch}/d\eta$ $|\eta| \leq 0.5$ Hydro limit:

hadron production only from fluids (Chemically equilibrated matter)

> Continuous changes with multiplicity ← Dynamical initialization with core-corona picture

Y.Kanakubo, poster at QM2018

String fragmentation limit: hadron production only from string fragmentation

Summary and Outlook

- Construct robust models against precision data
 - "From soup to nuts"
 - Single framework from pp, pA to AA collisions
 - Not only single particle distribution but also twoparticle correlations
- Need much more studies even in the "simplest" pp collisions!
 - How to model collectivity?
 - Initial or Initial + final?
 - Sensitive to thermalization process(?)
 Final question: Everything flows?

$\pi\alpha\nu\tau\alpha\,\rho\epsilon\iota!$ Everything flows! 万物流転!

Spontaneous rotation

Even cats flow!

The 2017 Ig Nobel Prize in Physics: M.A. Fardin for using fluid dynamics to probe the question "Can a Cat Be Both a Solid and a Liquid?" (https://www.improbable.com/ig)

Figures taken from M.A.Fardin, On the rheology of cats, Rheology Bulletin, 83(2) July 2014

No jet quenching in small colliding systems <u> →Compatible with peripheral AA results?</u>

Peripheral $R_{AA} < 1 \leftarrow$ Artifact of geometrical bias(?)

Why this happens?

Average of NN impact parameter vs N_{part}

Number of hard scattering does NOT scale with N_{coll} .

100

The smaller b_{NN} , the more MPI.

ALICE, PRC91(2015)064905

"Evidence for a dense liquid"

EVIDENCE FOR A DENSE LIQUID

Two phenomena in particular point to the quark-gluon medium being a dense liquid state of matter: jet quenching and elliptic flow. Jet quenching implies the quarks and gluons are closely packed, and elliptic flow would not occur if the medium were a gas.

Two milestones in high-energy nuclear collisions at RHIC

Michael Riordan and William A. Zajc Scientific American 294, 34 - 41 (2006)

Collectivity in pp and pPb collisions at LHC

Classical Yang-Mills + Lund fragmentation

PYTHIA strings stretch in the rapidity direction

Group gluons close in (k_x-k_y) into strings stretching mainly in the rapidity direction Need to add a quark and an anti-quark at string ends for color neutrality

Classical Yang-Mills simulations of Sampling gluons to form a string Lund fragmentation Grouping scheme: Gluons close in momentum space ←Seed of collectivity? \leftarrow How to justify?

11

Rope + shove model

Bierlich et al.(2014, 2016)

Strings overlapping in transverse plane \rightarrow "Rope" formation (with larger string tension)

Schwinger mechanism

$$P \propto \exp\left(-\frac{\pi m_q^2}{\kappa}\right)$$

 $\kappa \rightarrow \kappa' (> \kappa)$ expected to enhance yields of strange hadrons

 $\Delta \phi$

0.05

0.00

-0.05

Short summary of small colliding systems

Experimental data in p+p and p+A: Collectivity (ridge, finite v_2 , mass ordering of v_2 , • • • Strangeness enhancement ←How small could the QGP be? ←Collectivity or fluidity? Interpretation not settled: Final state effects: QGP fluid, CYM+fragmentation, rope + shove,... Initial state effects: Color glass condensate

Various collision energies RHIC-Beam Energy Scan program and beyond

Scanning phase diagram

STAR Collaboration (2017)

Chemical freezeout parameters from particle yields in Au+Au collisions at various energies Centrality dependence of μ_B at low energies \leftarrow Baryon stopping

Control baryon density and initial energy density Scan broad regions of phase diagram

Collision energy evolution of third harmonics

Response of the system \rightarrow Minimum at $\sqrt{s_{NN}} \sim 20$ GeV (mostly seen in semi-central collisions) \rightarrow Indication of softest point (minimum sound velocity) in equation of state?

Small ← Initial energy density → Large

Collision energy evolution of jet quenching

Ratio of central to peripheral

Yield at high p_T is suppressed at the top RHIC energy as an evidence for QGP formation \leftarrow Monotonic change with $\sqrt{s_{NN}}$ \rightarrow Null results on <u>onset of QGP</u> <u>formation</u>? Hard to disentangle jet quenching

from Cronin effect (random transverse kicks in the initial collision)

STAR Collaboration (2017)

Higher order fluctuations of conserved quantity Asakawa, Ejiri, Kitazawa (2009), Stephanov (2009, 2011), ...

Non-monotonic behavior expected around critical point

$$\kappa \sigma^{2} = \frac{\chi_{4}}{\chi_{2}}$$

$$\chi_{n} = \frac{\partial^{n} \hat{p}}{\partial \hat{\mu}^{n}} \qquad \hat{p} = \frac{p}{T^{4}}, \hat{\mu} = \frac{\mu}{T}$$

$$\int_{0}^{\kappa \sigma^{2}} \frac{\delta^{n} \hat{\sigma}^{2}}{\sqrt{s}}$$
Critical Signature

Collision energy dependence of $\kappa\sigma^2$

$$\kappa\sigma^{2} = \frac{\langle (\delta N_{B})^{4} \rangle}{\langle (\delta N_{B})^{2} \rangle} = \frac{\chi_{4}}{\chi_{2}}$$

*In actual experimental data, not net baryon, but net proton

Expected non-monotonic behavior seen in experimental data →Signature of critical point!?

Future study of Super-dense nuclear/quark matter

http://j-parc.jp/researcher/Hadron/ en/pac_1607/pdf/Lol_2016-16.pdf

Binary neutron star merger

M. Shibata, talk at QM2015

Correlation of elliptic flow parameter between different rapidity

Same quadrupole emission pattern across rapidity?

QGP as the most vortical fluid

Z.T.Liang, X.N.Wang (2005), Voloshin (2004, unpublished), Betz, Gyulassy, Torrieri (2007)

$$\omega \sim \frac{1}{2} \nabla \times v$$

$$|v_z^+ - v_z^-| \sim 0.1c$$

$$\omega |\omega| \sim 10^{22} \text{ s}^{-1}$$

$$d \sim 10 \text{ fm}$$

Protons from Λ carry information about polarization $P_{\Lambda} + P_{\overline{\Lambda}} = \frac{\hbar\omega}{k_B T} \longrightarrow \begin{array}{l} \omega = \\ (9 \pm 1) \times 10^{21} s^{-1} \end{array}$ Beccatini *et al.* (2017) STAR Collaboration (2017)

Discovery of top quarks in p+Pb collisions

CMS Collaboration (2017)

e.g.) $gg \rightarrow t\bar{t} \rightarrow W^+ bW^-\bar{b}$

- Constraint on nPDFs $5 \cdot 10^{-3} < x < 0.05$ $Q^2 \sim 3 \cdot 10^4 \text{ GeV}^2$
- b-quark energy loss in heavy ion collision case
 cτ of top quarks~0.15 fm
 << Dimension of the medium ~
 several fm
 → New channel to probe the QGP

d'Enterria *et al*. (2015)

Di-jet asymmetric event

CMS Collaboration (Quark Matter 2011) d'Enterria (2009) $E \sim 200 \text{ GeV}$ jet dragged by medium with $T \sim 300 \text{ MeV}$ in a few femtometer \rightarrow Where the lost energy goes? \rightarrow Change of jet structure as a function of r?

Large angle emission of soft particles

Mach-cone like medium response at large angle from jet axis

Y.Tachibana *et al.* (2017)

Jet structure at large *r*: A new channel to constrain transport properties of QGP?

Z⁰-jet correlations as a new probe

 $qg \rightarrow qZ$ and $\overline{q}g \rightarrow \overline{q}Z$ less background than $qg \rightarrow q\gamma$ or $\overline{q}g \rightarrow \overline{q}\gamma$ CMS Collaboration (2017)

 x_{jZ} ~1 → Balance btw. jet and Z Peak shifted to lower x_{jZ} → New probe for jet tomography

Initial or Initial + Final?

Schlichting, Tribedy (2016)

- Initial state correlations (Glasma graphs)
- Initial state correlations (Minijets)
- Response to initial geometry

Large system: Final state effect Small system: Initial or Initial + Final state effect \rightarrow Necessity for sophisticated modeling in small systems \rightarrow Thermalization, hydrodynamization, …