Path-integral formula for local thermal equilibrium

Masaru Hongo

RIKEN, iTHEMS program

New Frontiers in QCD 2018, 2018 6/8, YITP

Based on My Ph. D thesis Hayata-Hidaka-MH-Noumi PRD(2015), MH Annals of Physics (2017)

Today's main Question Q. Why $T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu} + \cdots$?

<u>Answer I</u>.

Copyrighted Material

Fluid Mechanics

2nd edition

Landau and Lifshitz Course of Theoretical Physics Volume 6

L.D. Landau and E.M. Lifshitz Institute of Physical Problems, USSR Academy of Sciences, Moscow

<u>Answer2</u>. My talk + <u>Challenge to audience</u>

Outline

🔁 MOTIVATION;

Quantum field theory under local thermal equilibrium?

QFT for Local Gibbs distribution

Derivation of Anomalous hydrodynamics

Motivation

Neutron Star (Magnetar)

Microscopic

$\mathcal{L}_{\mathrm{QCD}}$

QFT

d.o.f. Quark, Gluon

http://www.bnl.gov/rhic/news2/news.asp?a=1403&t=pr

-Question. How to bridge the gap between micro and macro?

Macroscopic

Hydrodynamics

 $T(x), \ \vec{v}(x), \ \mu(x)$

d.o.f.

How to construct hydrodynamics

How to construct hydrodynamics

How to construct hydrodynamics

Nakajima (1957), Mori (1958), McLennan (1960) Zubarev et al. (1979), Becattini et al. (2015) Hayata-Hidaka-MH-Noumi (2015)

Local Thermal equil. + Small deviation

Also applicable to strong coupling

<u>Controllable</u> EOS, Kubo formula, ...

Thermal QFT in a Nutshell

Gibbs dist.:
$$\hat{\rho}_G = \frac{e^{-\beta(\hat{H}-\mu\hat{N})}}{Z} = e^{-\beta(\hat{H}-\mu\hat{N})-\Psi[\beta,\nu]}$$

$$\begin{split} &- \text{Thermodynamic potential with Euclidean action}} \\ &\Psi[\beta,\nu] = \log \operatorname{Tr} e^{-\beta(\hat{H}-\mu\hat{N})} = \log \int d\varphi \langle \pm \varphi | e^{-\beta(\hat{H}-\mu\hat{N})} | \varphi \rangle \\ &= \log \int_{\varphi(\beta)=\pm\varphi(0)} \mathcal{D}\varphi \, e^{+S_E[\varphi]}, \quad S_E[\varphi] = \int_0^\beta d\tau \int d^3x \, \mathcal{L}_E(\varphi,\partial_\mu\varphi) \end{split}$$

QFT for local thermal equilibrium?

Local thermal QFT can describe anomaly-induced transport

S
$$\mu_R \neq \mu_L$$

$$\vec{j} \propto \vec{B}$$
N

Chiral Magnetic Effect

Chiral Vortical Effect

Outline

MOTIVATION:

Quantum field theory under local thermal equilibrium?

APPROACH;

QFT for Local Gibbs distribution

Derivation of Anomalous hydrodynamics

Local thermal equilibrium

Determined only by local temperature, local velocity... at that time

How to describe local thermal equil.

What is Local Gibbs distribution?

Gibbs distribution-

What is the state with maximizing information entropy: $S(\hat{\rho}) = -\text{Tr}\hat{\rho}\log\hat{\rho}$ under constraints: $\langle \hat{H} \rangle = E = \text{const.}, \ \langle \hat{N} \rangle = N = \text{const.}$

Answer:

 $\hat{\rho}_{\rm G} = e^{-\beta \hat{H} - \nu \hat{N} - \Psi[\beta, \nu]}$ Lagrange multipliers: $\Lambda^a = \{\beta, \nu = \beta \mu\}$

-Local Gibbs distribution –

What is the state with maximizing information entropy: $S(\hat{\rho}) = -\text{Tr}\hat{\rho}\log\hat{\rho}$ under constraints: $\langle \hat{T}^{0}_{\ \mu}(x) \rangle = p_{\mu}(x), \ \langle \hat{J}^{0}(x) \rangle = n(x)$ Answer: $\hat{\rho}_{\text{LG}} = e^{-\int d^{d-1}x(\beta^{\mu}\hat{T}^{0}_{\ \mu} + \nu\hat{J}^{0}) - \Psi[\beta^{\mu},\nu]}$

Lagrange multipliers: $\lambda^{a}(x) = \{\beta^{\mu}(x), \nu(x)\}$

Introducing background metric

 $= \begin{cases} (1) \text{ Formulation becomes manifestly covariant} \\ (2) \text{ Background metric plays a role as external field coupled to } T^{\mu\nu} \end{cases}$

(Local) Thermodynamic Potential

$$\begin{split} & - \text{Masseiu-Planck functional} \\ & \Psi[\bar{t};\lambda] \equiv \log \operatorname{Tr} \exp\left[\int d\Sigma_{\bar{t}\nu} \left(\beta^{\mu}(x)\hat{T}^{\nu}_{\ \mu}(x) + \nu(x)\hat{J}^{\nu}(x)\right)\right] \\ & = \log \operatorname{Tr} \exp\left[-\int d^3\bar{x}\sqrt{-g} \left(\beta^{\bar{\mu}}(\bar{x})\hat{T}^{\bar{0}}_{\ \bar{\mu}}(\bar{x}) + \nu(\bar{x})\hat{J}^{\bar{0}}(\bar{x})\right)\right] \end{split}$$

Variation formula for local equil.

[Banerjee et al.(2012), Jensen et al.(2012) , Haehl et al. (2015), MH(2016)] Variation formula in "hydrostatic gauge"

$\langle \hat{T}^{\mu\nu}(x) \rangle_{\overline{t}}^{\mathrm{LG}} =$	2	δ	$\overline{W}[\overline{t};\lambda],$	$\langle \hat{J}^{\mu}(x) \rangle_{\overline{t}}^{\mathrm{LG}} =$	1	δ	$\overline{W}[\overline{t};\lambda]$
	$\overline{\sqrt{-g}}$	$\delta g_{\mu\nu}(x)$			$=$ $\sqrt{-}$	$\overline{-g} \overline{\delta A_{\mu}(x)}$	

(Local) Thermodynamic Potential

$$\begin{split} & - \text{Masseiu-Planck functional} \\ & \Psi[\bar{t};\lambda] \equiv \log \operatorname{Tr} \exp\left[\int d\Sigma_{\bar{t}\nu} \left(\beta^{\mu}(x)\hat{T}^{\nu}_{\ \mu}(x) + \nu(x)\hat{J}^{\nu}(x)\right)\right] \\ & = \log \operatorname{Tr} \exp\left[-\int d^3\bar{x}\sqrt{-g} \left(\beta^{\bar{\mu}}(\bar{x})\hat{T}^{\bar{0}}_{\ \bar{\mu}}(\bar{x}) + \nu(\bar{x})\hat{J}^{\bar{0}}(\bar{x})\right)\right] \end{split}$$

Hydrostatic gauge fixing

We can choose the time direction vector $t^{\mu}(x) \equiv \partial_{\bar{t}} x^{\mu}$ -Hydrostatic gauge fixing Let us choose $t^{\mu}(x) = \beta^{\mu}(x)/\beta_0, \ A_{\bar{0}}(x) = \nu(x)$

Variation formula for local equil.

[Banerjee et al.(2012), Jensen et al.(2012) , Haehl et al. (2015), MH(2016)] — Variation formula in "hydrostatic gauge"

 $\langle \hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[\bar{t};\lambda], \ \langle \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{1}{\sqrt{-g}} \frac{\delta}{\delta A_{\mu}(x)} \Psi[\bar{t};\lambda]$

- **Proof.** Consider time derivative of
$$\Psi[\lambda]$$

 $\partial_{\bar{t}}\Psi[\bar{t};\lambda] = \int d^{d-1}\bar{x}\sqrt{-g} \left(\nabla_{\mu}\beta_{\nu}\langle\hat{T}^{\mu\nu}\rangle_{\bar{t}}^{\mathrm{LG}} + (\nabla_{\mu}\nu + F_{\nu\mu}\beta^{\nu})\langle\hat{J}^{\mu}\rangle_{\bar{t}} \right)$
 $= \int d^{d-1}\bar{x}\sqrt{-g} \left(\frac{1}{2} (\nabla_{\mu}\beta_{\nu} + \nabla_{\nu}\beta_{\mu})\langle\hat{T}^{\mu\nu}\rangle_{\bar{t}}^{\mathrm{LG}} + (\beta^{\nu}\nabla_{\nu}A_{\mu} + A_{\nu}\nabla_{\mu}\beta^{\nu})\langle\hat{J}^{\mu}\rangle_{\bar{t}} \right)$
 $= \int d^{d-1}\bar{x}\sqrt{-g} \left(\frac{1}{2} \pounds_{\beta}g_{\mu\nu}\langle\hat{T}^{\mu\nu}\rangle_{\bar{t}}^{\mathrm{LG}} + \pounds_{\beta}A_{\mu}\langle\hat{J}^{\mu}\rangle_{\bar{t}} \right)$
On the other hand, since $t^{\mu} = \beta^{\mu}$, we can express the LHS as
 $\partial_{\bar{t}}\Psi[\bar{t};\lambda] = \int d^{d-1}\bar{x} \left(\pounds_{\beta}g_{\mu\nu}\frac{\delta\Psi}{\delta g_{\mu\nu}} + \pounds_{\beta}A_{\mu}\frac{\delta\Psi}{\delta A_{\mu}} \right)$

Matching them gives the above variation formula!

Q. How can we calculate $\Psi \equiv \log Z$?

Case study I: Scalar field

 $\mathcal{L} = -\frac{g^{\mu\nu}}{2} \partial_{\bar{\mu}} \phi \partial_{\bar{\nu}} \phi - V(\phi)$ $\hat{T}^{\mu\nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta q_{\mu\nu}} = \partial^{\mu} \hat{\phi} \partial^{\nu} \hat{\phi} + g^{\mu\nu} \mathcal{L}(\hat{\phi}, \partial_{\rho} \hat{\phi})$ $\Psi[\bar{t};\lambda] = \log \operatorname{Tr} \exp \left[-\int d^{d-1}\bar{x}\sqrt{-g}\beta^{\mu}(x)\hat{T}^{\bar{0}}_{\ \mu}(x)\right]$ $= \log \int \mathcal{D}\phi \exp\left(S_E[\phi, \beta^{\mu}]\right) = \log \int \mathcal{D}\phi \exp\left(S_E[\phi, \tilde{g}]\right)$

$$\begin{split} S[\phi,\beta^{\mu}] &= \int_{0}^{\beta_{0}} d\tau \int d^{3}\bar{x}\sqrt{-g}e^{\sigma}u^{\bar{0}} \left[-\frac{e^{-2\sigma}}{2u^{\bar{0}}u_{\bar{0}}}(i\dot{\phi})^{2} - \frac{-e^{-\sigma}u^{\bar{i}}}{u^{\bar{0}}u_{\bar{0}}}(i\dot{\phi})\partial_{\bar{i}}\phi - \frac{1}{2}\left(\gamma^{\bar{i}\bar{j}} + \frac{u^{\bar{i}}u^{\bar{j}}}{u^{\bar{0}}u_{\bar{0}}}\right)\partial_{\bar{i}}\phi\partial_{\bar{j}}\phi - V(\phi) \right] \\ &= \int_{0}^{\beta_{0}} d\tau \int d^{3}\bar{x}\sqrt{-\tilde{g}} \left[-\frac{\tilde{g}^{\bar{\mu}\bar{\nu}}}{2}\partial_{\bar{\mu}}\phi\partial_{\bar{\nu}}\phi - V(\phi) \right] \qquad (e^{\sigma(\bar{x})} \equiv \beta(\bar{x})/\beta_{0}) \end{split}$$

ψ in terms of thermal metric

$$\Psi[\bar{t};\lambda] = \log \int \mathcal{D}\phi \exp\left(S_E[\phi,;\tilde{g}]\right)$$

 $\begin{array}{c|c} \hline & \text{Thermal metric} \\ \tilde{g}_{\bar{\mu}\bar{\nu}} = \begin{pmatrix} -e^{2\sigma} & e^{\sigma}u_{\bar{j}} \\ e^{\sigma}u_{\bar{i}} & \gamma_{\bar{i}\bar{j}} \end{pmatrix} \\ (e^{\sigma(\bar{x})} \equiv \beta(\bar{x})/\beta_0) \\ \end{array} \begin{array}{c} \tilde{g}^{\bar{\mu}\bar{\nu}} = \begin{pmatrix} \frac{e^{-2\sigma}}{u^{\bar{0}}u_{\bar{0}}} & -\frac{e^{-\sigma}u^{\bar{j}}}{u^{\bar{0}}u_{\bar{0}}} \\ -\frac{e^{-\sigma}u^{\bar{i}}}{u^{\bar{0}}u_{\bar{0}}} & \gamma^{\bar{i}\bar{j}} + \frac{u^{\bar{i}}u^{\bar{j}}}{u^{\bar{0}}u_{\bar{0}}} \end{pmatrix} \end{array}$

• Interpretation of above result $\Psi[\bar{t};\lambda] \text{ is described by QFT in "curved spacetime" s. t.}$ $d\tilde{s}^{2} = -e^{2\sigma}(d\tilde{t} + a_{\bar{i}}dx^{\bar{i}})^{2} + \gamma'_{\bar{i}\bar{j}}dx^{\bar{i}}dx^{\bar{j}}$ $(a_{\bar{i}} \equiv e^{-\sigma}u_{\bar{i}}, \quad \gamma'_{\bar{i}\bar{j}} \equiv \gamma_{\bar{i}\bar{j}} + u_{\bar{i}}u_{\bar{j}}, \quad d\tilde{t} = -id\tau)$

Case study 2: Dirac field

$$\mathcal{L} = -\frac{1}{2}\bar{\psi}\left(\gamma^{a}e_{a}^{\ \bar{\mu}}\overline{D}_{\bar{\mu}} - \overleftarrow{D}_{\bar{\mu}}\gamma^{a}e_{a}^{\ \bar{\mu}}\right)\psi - m\bar{\psi}\psi$$

Symmetric energy-momentum tensor

$$T^{\bar{\mu}}_{\ \bar{\nu}} = -\delta^{\bar{\mu}}_{\bar{\nu}}\mathcal{L} - \frac{1}{4}\bar{\psi}(\gamma^{\bar{\mu}}\overrightarrow{D}_{\bar{\nu}} + \gamma_{\bar{\nu}}\overrightarrow{D}^{\bar{\mu}} - \overleftarrow{D}_{\bar{\nu}}\gamma^{\bar{\mu}} - \overleftarrow{D}^{\bar{\mu}}\gamma_{\bar{\nu}})\psi$$

• Result of path integral $\Psi[\bar{t};\lambda] \equiv \log \operatorname{Tr} \exp\left[\int d\Sigma_{\bar{t}\nu} \left(\beta^{\mu}(x)\hat{T}^{\nu}_{\ \mu}(x) + \nu(x)\hat{J}^{\nu}(x)\right)\right]$ $= \log \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(S_{E}[\psi,\bar{\psi};\hat{e}]\right)$

$$\psi \text{ in terms of thermal vielbein}$$

$$\Psi[\bar{t};\lambda] = \log \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(S_E[\psi,\bar{\psi};\tilde{e}]\right)$$
• Euclidean action with thermal vielbein
$$S_E[\psi,\bar{\psi};\tilde{e}] = \int_0^{\beta_0} d\tau \int d^3\bar{x}\tilde{e} \left[-\frac{1}{2}\bar{\psi}\left(\gamma^a \tilde{e}_a^{\ \bar{\mu}} \overrightarrow{D}_{\bar{\mu}} - \overleftarrow{D}_{\bar{\mu}}\gamma^a \tilde{e}_a^{\ \bar{\mu}}\right)\psi - m\bar{\psi}\psi\right]$$
Thermal vielbein : $\tilde{e}_{\bar{0}}^{\ a} = e^{\sigma}u^a, \ \tilde{e}_{\bar{i}}^{\ a} = e_{\bar{i}}^{\ a} \quad (e^{\sigma} \equiv \beta(x)/\beta_0)$

• Interpretation of above result $\Psi[\bar{t};\lambda] \text{ is described by QFT in "curved spacetime" s. t.}$ $d\tilde{s}^{2} = \tilde{e}_{\bar{\mu}}^{\ a} \tilde{e}_{\bar{\nu}}^{\ b} \eta_{ab} dx^{\bar{\mu}} dx^{\bar{\nu}} = -e^{2\sigma} (d\tilde{t} + a_{\bar{i}} dx^{\bar{i}})^{2} + \gamma'_{i\bar{j}} dx^{\bar{i}} dx^{\bar{j}}$ $(a_{\bar{i}} \equiv e^{-\sigma} u_{\bar{i}}, \quad \gamma'_{i\bar{j}} \equiv \gamma_{\bar{i}\bar{j}} + u_{\bar{i}} u_{\bar{j}}, \quad d\tilde{t} = -id\tau)$

Local Thermal QFT

Two ways to construct $\Psi \equiv \log Z$ -<u>**i**. Use diffeo & gauge invariance!</u> $\left\{ \begin{array}{c} \cdot \Psi \text{ is expressed by } \{\tilde{g}_{\mu\nu}, \tilde{A}_{\mu}\} \\ \cdot \Psi \text{ is diffeo & gauge invariant!} \end{array} \right.$ $\Psi \text{ is expressed in terms of } \beta = \oint d\tilde{s}, \ \beta\mu = \oint \tilde{A}, \ \tilde{R}, \ \tilde{F}_{\mu\nu}$

<u>–2. Use symmetry from imaginary-time nature!</u>–

- Ψ is spatial diffeomorphism invariant
 - Ψ is Kaluza-Klein gauge invariant!

 $\Psi \equiv \log Z$ should respect these two symmetries!!

[cf. Hydrostatic partition function method Banerjee et al.(2012), Jensen et al.(2012)]

-2. Use symmetry from imaginary-time nature!

- Ψ is spatial diffeomorphism invariant
 - Ψ is Kaluza-Klein gauge invariant!

 $\Psi \equiv \log Z$ should respect these two symmetries!!

[cf. Hydrostatic partition function method Banerjee et al.(2012), Jensen et al.(2012)]

Kaluza-Klein gauge symmetry $d\tilde{s}^2 = -e^{2\sigma}(d\tilde{t} + a_{\bar{i}}dx^{\bar{i}})^2 + \gamma'_{\bar{i}\bar{i}}dx^{\bar{i}}dx^{\bar{j}} \ (d\tilde{t} = -id\tau)$ Parameters λ don't depend on $\tilde{e}_{\bar{\mu}}^{\ \mu}(\beta^{\mu})$ imaginary time T. $\beta(x)$ "Kaluza-Klein" gauge tr. $\begin{cases} \tilde{t} \to \tilde{t} + \chi(\bar{x}) \\ \bar{x} \to \bar{x} \end{cases}$

 \mathcal{X}

$$f^{\overline{ij}}f_{\overline{ij}},\cdots$$

$$a_{\overline{i}}, a_{\overline{i}}a^{\overline{i}},\cdots$$

 $a_{\overline{i}}(\overline{\boldsymbol{x}}) \to a_{\overline{i}}(\overline{\boldsymbol{x}}) - \partial_{\overline{i}}\chi(\overline{\boldsymbol{x}})$

Short Summary: Local Thermal QFT

$$\Psi[\bar{t};\lambda] \equiv \log \operatorname{Tr} \exp\left[\int d\Sigma_{\bar{t}\nu} \left(\beta^{\mu}(x)\hat{T}^{\nu}_{\ \mu}(x) + \nu(x)\hat{J}^{\nu}(x)\right)\right]$$

(1) $\Psi[\lambda]$ plays a role as the generating functional: $\langle \hat{T}^{\mu\nu}(x) \rangle^{\text{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[$ (2) $\Psi[\lambda]$ is written in terms of QFT in curved spacetime $d\tilde{s}^2 = -e^{2\sigma} (d\tilde{t} + a_{\bar{i}} dx^{\bar{i}})^2 + \gamma'_{\bar{i}\bar{j}} dx^{\bar{i}} dx^{\bar{j}}$ Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

Outline

Quantum field theory under local thermal equilibrium?

APPROACH: QFT for Local Gibbs distribution (1) Variation formula: $\langle \hat{T}^{\mu\nu}(x) \rangle^{\text{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[\lambda]$ (2) $\Psi[\lambda]$ is written in terms of QFT in "curved spacetime" $ds^2 = -e^{2\sigma} (d\tilde{t} + a_{\bar{i}}) dx^{\bar{i}} + \gamma'_{i\bar{j}} dx^{\bar{i}} dx^{\bar{j}}$

Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

APPLICATION:

Derivation of Anomalous hydrodynamics

Parity-even case

Derivative expansion of Ψ

Derivative expansion of \psi

$$\Psi[\beta^{\mu},\nu] = \Psi^{(0)}[\beta^{\mu},\nu] + \Psi^{(1)}[\beta^{\mu},\nu,\partial] + \mathcal{O}(\partial^{2}) + \cdots$$

$$\simeq \beta p = 0$$
 Parity-even system

Symmetry property

Non-dissipative constitutive relation

$$\langle \hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[\bar{t};\lambda] = T^{\mu\nu}_{(0)}[\lambda(x)] + T^{\mu\nu}_{(1)}[\lambda(x),\nabla\lambda(x)] + \cdots$$

$$\langle \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta A_{\mu}(x)} \Psi[\bar{t};\lambda] = J^{\mu}_{(0)}[\lambda(x)] + J^{\mu}_{(1)}[\lambda(x),\nabla\lambda(x)] + \cdots$$

$$= 0$$

Recipe for Masseiu-Planck fcn.

[Banerjee et al.(2012), Jensen et al.(2012)]

Masseiu-Planck functional

$$\Psi[\lambda] = \log \int \mathcal{D}\phi e^{S[\phi, \tilde{g}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda, \partial] + \mathcal{O}(\partial^2)$$
$$\mathcal{O}(p^0) \qquad \mathcal{O}(p^1)$$

- Building blocks : $\lambda = \{e^{\sigma}, a_{\overline{i}}, \mu, A_{\overline{i}}\}$
- Symmetry : Spatial diffeo, Kaluza-Klein, Gauge
 - $A_{\overline{i}}$: not Kaluza-Klein inv. $\overline{A}_{\overline{i}} \equiv A_{\overline{i}} \mu a_{\overline{i}}$
- Power counting scheme : $\lambda = \mathcal{O}(p^0)$

 $\Psi^{(o)}$: Order $\mathcal{O}(p^0)$

Masseiu-Planck functional

$$\Psi[\lambda] = \log \int \mathcal{D}\phi e^{S[\phi, \tilde{g}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda, \partial] + \mathcal{O}(\partial^2)$$
$$\mathcal{O}(p^0) \qquad \mathcal{O}(p^1)$$

- Building blocks : $\lambda = \{e^{\sigma}, \alpha_{\bar{i}}, \mu, \bar{\mathcal{A}}_{\bar{i}}\}$ $\Psi^{(0)}[\lambda] = \int_{0}^{\beta_{0}} d\tau \int d^{3}\bar{x}\sqrt{\gamma'}e^{\sigma}p(\beta,\mu)$ Perfect fluid $\langle \hat{T}^{\mu\nu}(x)\rangle_{\bar{t}}^{\mathrm{LG}} = (e+p)u^{\mu}u^{\nu} + p\eta^{\mu\nu}$ $\langle \hat{J}^{\mu}(x)\rangle_{\bar{t}}^{\mathrm{LG}} = nu^{\mu}$

Parity-odd case

Anomaly-induced transport

Derivative expansion of Ψ

Derivative expansion of \psi

$$\Psi[\beta^{\mu},\nu] = \Psi^{(0)}[\beta^{\mu},\nu] + \Psi^{(1)}[\beta^{\mu},\nu,\partial] + \mathcal{O}(\partial^{2}) + \cdots$$

$$\simeq \beta p = 0 \quad \text{Parity-even system}$$
Symmetry property $\neq 0 \quad \text{Parity-odd system}$

+

Parity-odd system

Non-dissipative constitutive relation

$$\langle \hat{T}^{\mu\nu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu\nu}(x)} \Psi[\bar{t};\lambda] = T^{\mu\nu}_{(0)}[\lambda(x)] + T^{\mu\nu}_{(1)}[\lambda(x), \nabla\lambda(x)] + \cdots$$

$$\langle \hat{J}^{\mu}(x) \rangle_{\bar{t}}^{\mathrm{LG}} = \frac{2}{\sqrt{-g}} \frac{\delta}{\delta A_{\mu}(x)} \Psi[\bar{t};\lambda] = J^{\mu}_{(0)}[\lambda(x)] + J^{\mu}_{(1)}[\lambda(x), \nabla\lambda(x)] + \cdots$$

$$= 0 \quad \neq 0$$

 $\begin{array}{l} \textbf{Recipe for Masseiu-Planck fcn.} \\ \hline \textbf{Weyl fermion} : \mathcal{L} = \frac{i}{2}\xi^{\dagger} \left(e_m^{\ \mu}\sigma^m \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu}\sigma^m e_m^{\ \mu} \right)\xi \\ \hline \Psi[\lambda] = \log \int \mathcal{D}\xi^{\dagger} \mathcal{D}\xi e^{S[\xi,\xi^{\dagger},A,\widetilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^2) \\ \mathcal{O}(p^0) \qquad \mathcal{O}(p^1) \end{array}$

- Building blocks : $\lambda = \{e^{\sigma}, a_{\overline{i}}, \mu_R, \overline{A}_{\overline{i}}\}$
- Symmetry : Spatial diffeo, Kaluza-Klein, Gauge
 - $A_{\overline{i}}$: not Kaluza-Klein inv. $\overline{A}_{\overline{i}} \equiv A_{\overline{i}} \mu_R a_{\overline{i}}$
- **Power counting scheme** : $\lambda = \mathcal{O}(p^0)$

$$\Psi(\mathbf{o}) : \mathbf{Order} \ \mathcal{O}(p^{0})$$

$$- \text{ Weyl fermion} : \mathcal{L} = \frac{i}{2} \xi^{\dagger} \left(e_{m}^{\mu} \sigma^{m} \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu} \sigma^{m} e_{m}^{\mu} \right) \xi - \frac{i}{2} \xi^{\dagger} \left(e_{m}^{\mu} \sigma^{m} \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu} \sigma^{m} e_{m}^{\mu} \right) \xi - \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) - \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) - \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^{2}) + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \Psi^{(0)}[\lambda] + \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\tilde{e}]} = \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^$$

- Building blocks : $\lambda = \{e^{\sigma}, \alpha_{i}, \mu_{R}, \overline{A_{i}}\}$ $\Psi^{(0)}[\lambda] = \int_{0}^{\beta_{0}} d\tau \int d^{3}\overline{x}\sqrt{\gamma'}e^{\sigma}p(\beta,\mu_{R})$ Perfect fluid $\langle \hat{T}^{\mu\nu}(x)\rangle_{\overline{t}}^{\mathrm{LG}} = (e+p)u^{\mu}u^{\nu} + p\eta^{\mu\nu}$ $\langle \hat{J}^{\mu}_{R}(x)\rangle_{\overline{t}}^{\mathrm{LG}} = n_{R}u^{\mu}$

$$\Psi^{(\mathbf{I})} : \mathbf{Order} \ \mathcal{O}(p)$$

$$- \text{ Weyl fermion} : \mathcal{L} = \frac{i}{2} \xi^{\dagger} \left(e_m^{\ \mu} \sigma^m \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu} \sigma^m e_m^{\ \mu} \right) \xi - \frac{i}{2} \xi^{\dagger} \left(e_m^{\ \mu} \sigma^m \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu} \sigma^m e_m^{\ \mu} \right) \xi - \frac{i}{2} \xi^{\dagger} \mathcal{D} \xi e^{S[\xi,\xi^{\dagger},A,\vec{e}]} = \Psi^{(0)}[\lambda] + \Psi^{(1)}[\lambda,\partial] + \mathcal{O}(\partial^2)$$

$$\mathcal{O}(p^0) \qquad \mathcal{O}(p^1)$$

- Building blocks : $\lambda = \{e^{\sigma}, a_{\overline{i}}, \mu_R, \overline{A}_{\overline{i}}\}$

 $d^{3}\bar{x}\sqrt{\gamma'}C_{1}(\beta,\mu_{R})\epsilon^{\bar{i}\bar{j}\bar{k}}\bar{\mathcal{A}}_{\bar{i}}\partial_{\bar{j}}\bar{\mathcal{A}}_{\bar{k}} \Longrightarrow$

 $\mu_R \neq \mu_L$

 $ec{i} \propto ec{B}$

Ν

S

Derivation of CME/CVE

$$\Psi^{(1)}[\lambda] = \int d^3x \varepsilon^{0ijk} \left[\frac{\nu_R}{8\pi^2} A_i \partial_j A_k + \left(\frac{\nu_R \mu_R}{8\pi^2} + \frac{T}{24} \right) A_i \partial_j \tilde{g}_{0k} \right]$$
$$\checkmark \langle \hat{J}_R^i(x) \rangle_{(0,1)}^{\text{LG}} = \frac{1}{\sqrt{-g}} \frac{\delta \Psi^{(1)}}{\delta A_i(x)} = \frac{\mu_R}{4\pi^2} B^i + \left(\frac{\mu_R^2}{8\pi^2} + \frac{T^2}{24} \right) \omega^i$$
$$\langle \hat{J}_V^i(x) \rangle_{(0,1)}^{\text{LG}} = \frac{\mu_5}{2\pi^2} B^i + \frac{\mu\mu_5}{2\pi^2} \omega^i$$
$$\langle \hat{J}_A^i(x) \rangle_{(0,1)}^{\text{LG}} = \frac{\mu}{2\pi^2} B^i + \left(\frac{\mu^2 + \mu_5^2}{4\pi^2} + \frac{T^2}{12} \right) \omega^i$$

Summary

Outlook: Challenge for audience

CHALLENGE FOR NON-LATTICIAN;

Q1. (Non-)Perturbative calculation with strong inhomogeneity Q2. Find some New physics captured by local thermal equilibrium!!

Backup