Hadron Interactions from Lattice QCD and Applications to Exotic Hadrons

Yoichi Ikeda (RCNP, Osaka University)

HAL QCD (Hadrons to Atomic nuclei from Lattice QCD)

S. Aoki, T. Aoyama, T. Miyamoto, K. Sasaki (YITP, Kyoto Univ.)T. Doi, T. M. Doi, S. Gongyo, T. Hatsuda, T. Iritani (RIKEN)Y. Ikeda, N. Ishii, K. Murano, H. Nemura (RCNP, Osaka Univ.)T. Inoue (Nihon Univ.)

4th week in NFQCD2018 @ YITP, Kyoto Univ., Jun. 18-22, 2018.

Single hadron spectroscopy from LQCD

★ Low-lying hadrons on physical point (physical m_q)

a few % accuracy already achieved for single hadrons LQCD predictions of undiscovered charm hadrons (Ξ^*_{cc} , Ω_{ccc} , ...)

Next challenge : multi-hadron systems

Multi-hadrons: from quarks to hadrons, nuclei & neutron stars

HAL QCD strategy: from quarks to hadrons, nuclei & neutron stars

hadron resonances lattice **QCD** hadronic interactions nuclei Part I: hadronic interactions **EOS** of • difficulties in multi-hadron systems neutron stars • solution = HAL QCD method Part II: applications to exotic candidates coupled-channel scattering from LQCD

• dibaryon & tetraquark candidates

Hadronic interactions from LQCD

hadronic correlation function

П

$$\left| C_{NN}(ec{r},t) \equiv \langle 0 | N_1(ec{r},t) N_2(ec{0},t) \mathcal{J}^\dagger(t=0) | 0
angle
ight|$$

$$=\sum_{n}A_{n}\psi_{n}(\vec{r})e^{-W_{n}t}$$

Energy eigenvalue W_n & NBS (Nambu-Bethe-Salpeter) wave function $\psi_n(r)$

Finite Volume Method
Mn(L) ----> phase shift
Lüscher's formula

Lüscher's finite volume formula

Lüscher, Nucl. Phys. B354, 531 (1991).

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_n & & \ \hline egin{aligned} eta_n & & \ \hline eta_m^2 & & \ \hline eaam^2 & & \ \hline eba_m^2$$

$$W_n = \sqrt{m_1^2 + k_n^2} + \sqrt{m_2^2 + k_n^2}$$

Hadronic interactions from LQCD

hadronic correlation function

$$\left| C_{NN}(ec{r},t) \equiv \langle 0 | N_1(ec{r},t) N_2(ec{0},t) \mathcal{J}^\dagger(t=0) | 0
angle
ight|$$

$$=\sum_n A_n \psi_n(ec{r}) e^{-W_n t}$$

Energy eigenvalue W_n & NBS (Nambu-Bethe-Salpeter) wave function $\psi_n(r)$

- HAL QCD Method ----

 $\Psi_n(r) \longrightarrow 2PI \text{ kernel } (\Psi = \varphi + G_0 U \Psi)$

--> phase shift, binding energy, ...

Ishii, Aoki, Hatsuda, PRL 99, 022001 (2007). Ishii et al. [HAL QCD], PLB 712, 437 (2012).

Fundamental difficulty in multi-hadron systems

see, Iritani, Doi et al. [HAL QCD], JHEP10 (2016) 101.

$$C_N(t) = a_0 e^{-m_N t} + c_1 e^{-(m_N + m_\pi)t} + \cdots \quad C_{NN}(t) = b_0 e^{-W_0 t} + b_1 e^{-W_1 t} + \cdots$$
$$\longrightarrow a_0 e^{-m_N t} \quad (t > t^*) \qquad \longrightarrow b_0 e^{-W_0 t} \quad (t > t^*)$$

S/N becomes far worse in multi-hadron systems

Demonstration of plateau method by mock-up data

"Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD" Iritani, Doi et al. [HAL QCD], JHEP10 (2016) 101.

• Normalized correlation func. R(t) for two baryons in mock-up data

$$\begin{split} R(t) &= \frac{C_{BB}(t)}{C_B(t)^2} = b_1 e^{-\Delta E t} + b_2 e^{-\delta E_{el} t} + c_1 e^{-\delta E_{inel} t} \\ \Delta E^{\text{eff}}(t) &= \log \left[\frac{R(t)}{R(t+1)} \right] \xrightarrow[t > t^*]{\Delta E} \end{split}$$

• Ground state energy $\Delta E = W_{BB} - 2m_B$

~1 MeV precision necessary (nuclear physics scale)

Elastic scattering states δE_{el}

 $\delta E_{el} = 50 \text{MeV}, \ b_2/b_1 = \pm 0.1, 0 \ (10\% \text{ contamination})$

• Inelastic threshold δE_{inel}

 $\delta E_{inel} = 500 MeV$, $c_1/b_1 = 0.01$ (1% contamination)

Demonstration of plateau method by mock-up data

"Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD"

Iritani, Doi et al. [HAL QCD], JHEP10 (2016) 101.

Zoom + typical stat. error

True ground state for t > 8 fm with 10% contamination

Fake plateaux or "Mirage" appear at t ~ 1 fm

Actual data for $\Xi\Xi$ (¹S₀) @m_{π}=0.51GeV, L=4.3fm, a=0.09fm

Source-operator dependence in plateau method

$$R(t)=\sum_{ec{x},ec{y}}\langle 0|B_1(ec{x},t)B_2(ec{y},t)\mathcal{J}^\dagger(t=0)|0
angle/C_B(t)^2$$

At least one of "plateaux" is fake! (Data at t~1fm is too early to identify plateau.)

Naive plateau method does NOT work --> variational method (next talk)

A solution: HAL QCD method -- potential as a representation of S-matrix --

• The scattering states do exist, and we should tame the scattering states

→ HAL QCD method Ad

Aoki, Hatsuda, Ishii, PTP123, 89 (2010). Ishii et al. [HAL QCD], PLB 712, 437 (2012).

 \checkmark define energy-independent potential U(r,r')

 $egin{aligned} dec{r}' m{U}(ec{r},ec{r}')\psi_n(ec{r}') &= (E_n-H_0)\,\psi_n(ec{r}) \ U(ec{r},ec{r}') &\equiv \sum_{n=0}^{n_{ ext{th}}} (E_n-H_0)\,\psi_n(ec{r})ar{\psi}_n(ec{r}') \end{aligned}$

→ All elastic states share the same potential U(r,r')

$$U \psi_{0} = (E_{0}-H_{0}) \psi_{0}$$
$$U \psi_{1} = (E_{1}-H_{0}) \psi_{1}$$

Inelastic Inelastic NNπ Elastic Elastic NN

✓ derive U(r,r') from time-dependent Schrödinger-type eq.

•

$$egin{aligned} \int dec{r}' oldsymbol{U}(ec{r},ec{r}') R(ec{r}',t) &= \left(-rac{\partial}{\partial t} + rac{1}{4m_B}rac{\partial^2}{\partial t^2} - H_0
ight) R(ec{r},t) \ \end{pmatrix} R(ec{r},t) \ &= R(ec{r},t) = e^{2m_Bt} C_{BB}(ec{r},t) \end{aligned}$$

Elastic scat. states are no more contamination than signal (t*~1fm)

$\Xi\Xi$ (¹S₀) in HAL QCD method @m_{π}=0.51GeV, L=4.3fm, a=0.09fm

Multi-hadron spectroscopy from LQCD

HAL QCD method

lattice **QCD**

• Resonances are embedded into coupled-channel scattering states

reaction plane

Coupled-channel scatterings

resonance

2nd shee

analytic continuation onto 2nd sheet

- pole position --> resonance energy
- residue --> coupling to scat. state, partial decay

Coupled-channel scatterings from lattice QCD

Coupled-channel HAL QCD method

measure relevant NBS wave function --> channel is defined

$$\langle 0|\phi_1^a(ec{x}+ec{r},t)\phi_2^a(ec{0},t)\mathcal{J}^\dagger(0)|0
angle = \sqrt{Z_1^aZ_2^a}\sum_n A_n \psi_n^a(ec{r})e^{-oldsymbol{W}_n t} igg|$$

Ishii, Aoki, Hatsuda, PRL99, 02201 (2007). Aoki, Hatsuda, Ishii, PTP123, 89 (2010). Ishii et al. (HAL QCD), PLB712, 437(2012).

SIN-ch3

ch3

ch2

Nambu-Bethe-Salpeter (NBS) wave function in each channel

derive 2PI kernel (potential) as a representation of S-matrix

$$igg(iggle
abla^2 + (ec k_n^a)^2 iggr) \psi^a_n(ec r) = 2 \mu^a \sum_b \int dec r' U^{ab}(ec r, ec r') \psi^b_n(ec r')$$

U_(2x2)

coupled-channel potential U^{ab}(r,r'):

- U^{ab}(r,r') is faithful to **coupled-channel S-matrix**
- U^{ab}(r,r') is energy independent (until new threshold opens)
- Non-relativistic approximation is not necessary
- U^{ab}(r,r') contains all 2PI contributions

Full details, Aoki et al. (HAL QCD), PRD87, 034512 (2013); Proc. Jpn. Acad., Ser. B, 87 (2011).

Octet BB forces & H-dibaryon

Generalized BB forces in flavor SU(3) limit

♦ Full QCD in SU(3)_F limit : m_{π} ~0.47GeV, L=3.9 fm

Inoue et al. (HAL QCD), PRL106 (2011), NPA881 (2012).

 \star potentials in flavor symmetric channels --> 27 + 8_s + 1

bound H-dibaryon?

origin of repulsive core <--> Pauli principle

(+ magnetic gluon coupling)

see, Oka & Yazaki, NPA464 (1987)

Structure of H-dibaryon in flavor SU(3) limit

Fate of H-dibaryon @ almost physical point

N_f=2+1 full QCD, m_π~0.146GeV (almost physical), L~8.1fm (large volume)

Fate of H-dibaryon @ almost physical point

Original prediction of H-dibaryon

Jaffe (1977) based on quark model, <u>"Perhaps a Stable Dihyperon"</u>

Answer from QCD for H-dibaryon

"Perhaps near threshold Dihyperon"

Decuplet BB forces & ΩΩ-dibaryon

 $= (28 \oplus 27)_{\text{sym.}} \oplus (35 \oplus 10^*)_{\text{anti-sym.}}$ \uparrow $\Omega \Omega \text{ (J=0) : the most strange dibaryon?}$ Dyson & Xoung, PRL14 (1965).

Zhang (1992), Wang(1992)

Most strange dibaryon @ almost physical point

\star ΩΩ system in ¹S₀

Gongyo, Sasaki et al. [HAL QCD], PRL 120, 212001 (2018).

- $\Omega\Omega$ is bound against strong interaction
- $\Omega\Omega$ is close to unitary region together with Coulomb force
- 2-particle correlation func. in future HIC

see talks by Hatsuda & Morita

Charmed tetra-quark candidate Z_c(3900)

$\star Z_{c}(3900)$ in experiments

▶Z_c(3900) found in π^{+/-}J/ψ (cc^{bar}ud^{bar})

\star Z_c(3900) from lattice QCD

coupled-channel HAL QCD approach

- coupled-channel $\pi J/\psi$ - $\rho\eta_c$ - $D^{bar}D^*$ potentials
- understand the nature of Z_c(3900)

Y. Ikeda, et al. [HAL QCD], PRL117, 242001 (2016). Reviewed in J. Phys. G45, 024002 (2018).

3x3 potential matrix ($\pi J/\psi$ - $\rho \eta_c$ - $D^{bar}D^*$)

3x3 potential matrix ($\pi J/\psi$ - $\rho\eta_c$ - $D^{bar}D^*$)

3x3 potential matrix ($\pi J/\psi - \rho \eta_c - D^{bar}D^*$)

Mass spectra of $\pi J/\psi$ (2-body scattering)

 \star 2-body scattering (the most ideal to understand Z_c(3900))

Enhancement just above D^{bar}D* threshold

= effect of strong $V^{\pi J/\psi}$, DbarD* (black --> $V^{\pi J/\psi}$, DbarD*=0)

Ine shape not Breit-Wigner

✓ Is Z_c(3900) a conventional resonance? --> pole of S-matrix

Pole of S-matrix ($\pi J/\psi$:2nd, $\rho\eta_c$:2nd, $D^{bar}D^*$:2nd)

- Pole corresponding to "virtual state"
- Pole contribution to scat. observables is small (far from scat. axis)
- Z_c(3900) is not a resonance but "threshold cusp" induced by strong V^{πJ/ψ,DbarD*}

Summary

HAL QCD method

- NBS wave function $\psi(\mathbf{r}) \rightarrow 2\mathbf{PI}$ kernel ($\psi = \phi + G_0 \mathbf{U} \psi$)
- Crucial for multi-hadron & coupled-channel scatterings

Aoki, Hatsuda, Ishii, PTP123, 89 (2010). Ishii et al. [HAL QCD], PLB 712, 437 (2012). Aoki et al. (HAL QCD), PRD87, 034512 (2013).

Exotic candidates, H, $\Omega\Omega$, Z_c(3900)

• H particle is very close to NE threshold --> J-PARC?

Sasaki et al [HAL QCD], in preparation.

• $\Omega\Omega$ is very close to unitary region --> HIC?

Gongyo, Sasaki et al [HAL QCD], PRL120, 212001 (2018).

• $Z_c(3900)$ is threshold cusp induced by strong V^{DbarD*, $\pi J/\psi$}

Ikeda et al. [HAL QCD], PRL117, 242001 (2016). Ikeda [HAL QCD], J. Phys. G45, 024002 (2018).

Future: many hadron resonances & nuclear structures at physical point

Thank you for your attention!