Hadron Interactions from Lattice QCD and Applications to Exotic Hadrons

Yoichi Ikeda (RCNP, Osaka University)

HAL QCD (Hadrons to Atomic nuclei from Lattice QCD)

S. Aoki, T. Aoyama, T. Miyamoto, K. Sasaki (YITP, Kyoto Univ.)
T. Doi, T. M. Doi, S. Gongyo, T. Hatsuda, T. Iritani (RIKEN)
Y. Ikeda, N. Ishii, K. Murano, H. Nemura (RCNP, Osaka Univ.)
T. Inoue (Nihon Univ.)

4th week in NFQCD2018 @ YITP, Kyoto Univ., Jun. 18-22, 2018.
Single hadron spectroscopy from LQCD

★ Low-lying hadrons on physical point (physical m_ϕ)

light-quark sector

- $N_f=2+1$ full QCD, $L\sim 3\text{fm}$

charm baryons

- $N_f=2+1$ full QCD, $L\sim 3\text{fm}$
- RHQ for charm quark

a few % accuracy already achieved for single hadrons

LQCD predictions of undiscovered charm hadrons ($\Xi^{*}_{cc}, \Omega_{ccc}, \ldots$)

⇒ Next challenge: multi-hadron systems

Aoki et al. (PACS-CS), PRD81 (2010).

Namekawa et al. (PACS-CS), PRD84 (2011); PRD87 (2013).
Multi-hadrons: from quarks to hadrons, nuclei & neutron stars

- **lattice QCD**
- **hadron resonances**
- **nuclei**
- **EOS of neutron stars**

- Hadron scattering: many thresholds
- Nuclei from LQCD: bad \(S/N \sim e^{-A} \)
- QCD phase diagram: Sign problem

- Temperature vs. density
- Mass number \((A) \) vs. bad \(S/N \)
HAL QCD strategy: from quarks to hadrons, nuclei & neutron stars

Part I: hadronic interactions
- difficulties in multi-hadron systems
- solution = HAL QCD method

Part II: applications to exotic candidates
- coupled-channel scattering from LQCD
- dibaryon & tetraquark candidates
Hadron interactions from LQCD

hadronic correlation function

\[C_{NN}(\vec{r}, t) \equiv \langle 0| N_1(\vec{r}, t) N_2(\vec{0}, t) \mathcal{J}^\dagger(t = 0)|0 \rangle \]

\[= \sum_n A_n \psi_n(\vec{r}) e^{-W_n t} \]

Energy eigenvalue \(W_n \) & NBS (Nambu-Bethe-Salpeter) wave function \(\psi_n(\vec{r}) \)

Finite Volume Method

- \(W_n(L) \) \(\longrightarrow \) phase shift

Lüscher’s formula

\[\kappa_n \cot \delta(k_n) = \frac{4\pi}{L^3} \sum_{m \in \mathbb{Z}^3} \frac{1}{p_m^2 - k_n^2} \]

\[W_n = \sqrt{m_1^2 + k_n^2} + \sqrt{m_2^2 + k_n^2} \]

Hadronic interactions from LQCD

hadronic correlation function

\[C_{NN}(\vec{r}, t) \equiv \langle 0|N_1(\vec{r}, t)N_2(\vec{0}, t)\mathcal{J}^\dagger(t = 0)|0\rangle = \sum_n A_n \psi_n(\vec{r}) e^{-W_n t} \]

Energy eigenvalue \(W_n \) & NBS (Nambu-Bethe-Salpeter) wave function \(\psi_n(r) \)

Finite Volume Method

- \(W_n(L) \) \(\xrightarrow{\text{---}} \) phase shift
- Lüscher’s formula

- Serious difficulty to measure \(W_n(L) \) in multi-hadron systems

HAL QCD Method

- \(\psi_n(r) \) \(\xrightarrow{\text{---}} \) 2PI kernel (\(\psi = \varphi + G_0 U \psi \))
 \(\xrightarrow{\text{---}} \) phase shift, binding energy, ...

Ishii et al. [HAL QCD], PLB 712, 437 (2012).
Fundamental difficulty in multi-hadron systems

see, Iritani, Doi et al. [HAL QCD], JHEP10 (2016) 101.

\[C_N(t) = a_0 e^{-m_N t} + c_1 e^{-(m_N + m_\pi) t} + \cdots \rightarrow a_0 e^{-m_N t} \quad (t > t^*) \]

\[C_{NN}(t) = b_0 e^{-W_0 t} + b_1 e^{-W_1 t} + \cdots \rightarrow b_0 e^{-W_0 t} \quad (t > t^*) \]

\[S/N \sim \sqrt{N_{\text{conf.}}} \times 10^{-2} \]

\[S/N \sim \sqrt{N_{\text{conf.}}} \times 10^{-30} \]

\[t^* \sim \delta E^{-1} \sim m_N (L/2\pi)^2 \sim 10 \text{ fm} \]
Demonstration of plateau method by mock-up data

“Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD”
Iritani, Doi et al. [HAL QCD], JHEP10 (2016) 101.

• **Normalized correlation func.** \(R(t)\) for two baryons in mock-up data

\[
R(t) = \frac{C_{BB}(t)}{C_B(t)^2} = b_1 e^{-\Delta E t} + b_2 e^{-\delta E_{el} t} + c_1 e^{-\delta E_{inel} t}
\]

\[\Delta E^{eff}(t) = \log \left[\frac{R(t)}{R(t+1)} \right] \rightarrow \Delta E \quad t > t^*\]

• Ground state energy \(\Delta E = W_{BB} - 2m_B\)
 ~1 MeV precision necessary (nuclear physics scale)

• Elastic scattering states \(\delta E_{el}\)
 \(\delta E_{el} = 50\text{MeV},\ b_2/b_1 = \pm 0.1, 0\) (10% contamination)

• Inelastic threshold \(\delta E_{inel}\)
 \(\delta E_{inel} = 500\text{MeV},\ c_1/b_1 = 0.01\) (1% contamination)
Demonstration of plateau method by mock-up data

“Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD”

Iritani, Doi et al. [HAL QCD], JHEP10 (2016) 101.
Actual data for $\Xi\Xi\ (^1S_0) \quad @ m_\pi=0.51\text{GeV}, \quad L=4.3\text{fm}, \quad a=0.09\text{fm}$

Source-operator dependence in plateau method

$$R(t) = \sum_{\vec{x},\vec{y}} \langle 0| B_1(\vec{x}, t) B_2(\vec{y}, t) \mathcal{J}^\dagger(t = 0)|0\rangle / C_B(t)^2$$

$$\Delta E_{\text{eff}}(t) = \log \left[\frac{R(t)}{R(t + 1)} \right] \quad \rightarrow \quad \Delta E$$

- **At least one of “plateaux” is fake!** (Data at $t\sim1\text{fm}$ is too early to identify plateau.)
- **Naive plateau method does NOT work --> variational method (next talk)**

$\delta E_{\text{inel}} \sim 500\text{MeV}$

$\delta E_{\text{el}} \sim 50\text{MeV}$

\Rightarrow **True ground state is to appear at $t > t^\ast$ \ (t*~8 fm)**
A solution: HAL QCD method -- potential as a representation of S-matrix --

- The scattering states do exist, and we should tame the scattering states

HAL QCD method

- define energy-independent potential $U(r,r')$

\[
\int d\vec{r}' U(\vec{r}, \vec{r}') \psi_n(\vec{r}') = (E_n - H_0) \psi_n(\vec{r})
\]

$U(\vec{r}, \vec{r}') \equiv \sum_{n=0}^{n_{th}} (E_n - H_0) \psi_n(\vec{r}) \overline{\psi}_n(\vec{r}')$

- All elastic states share the same potential $U(r,r')$

\[
U \psi_0 = (E_0 - H_0) \psi_0
\]

\[
U \psi_1 = (E_1 - H_0) \psi_1
\]

\[
\vdots
\]

- derive $U(r,r')$ from time-dependent Schrödinger-type eq.

\[
\int d\vec{r}' U(\vec{r}, \vec{r}') R(\vec{r}', t) = \left(-\frac{\partial}{\partial t} + \frac{1}{4m_B} \frac{\partial^2}{\partial t^2} - H_0 \right) R(\vec{r}, t)
\]

\[
R(\vec{r}, t) = e^{2m_B t} C_{BB}(\vec{r}, t)
\]

Elastic scat. states are no more contamination than signal ($t^* \sim 1 fm$)
$\Xi(^{1}S_{0})$ in HAL QCD method $@m_{\pi}=0.51\text{GeV}, L=4.3\text{fm}, a=0.09\text{fm}$

source dependence of $R(r,t)$

$Iritani et al. [HAL QCD], arXiv:1805.02365 [hep-lat]$.

$U(\vec{r}, \vec{r}') = \left[V_{0}(\vec{r}) + V_{2}(\vec{r}) \nabla^{2} \cdots \right] \delta(\vec{r} - \vec{r}')$

finite V calc. ➞ Fate of fake plateaux

infinite V calc.

$\Xi(1S_{0})$ bound state

mirage $\sim 1\text{fm}$

true plateau $\sim 10\text{fm}$

No $\Xi(1S_{0})$ bound state
Multi-hadron spectroscopy from LQCD

lattice QCD

HAL QCD method

hadron scattering

many thresholds

• Resonances are embedded into coupled-channel scattering states
How can we find resonances?

Coupled-channel scatterings

\[S^{(\ell)} (W) \]

Partial wave analysis of expt. data

- Cross sections \((d\sigma/d\Omega) \)
- Spin polarization observables
- Etc.

Analyticity of S-matrix is \textit{uniquely} determined

Identical theorem + dispersion theory

Bound state (1st sheet)
- Pole position \(\rightarrow \) binding energy
- Residue \(\rightarrow \) coupling to scattering state

Resonance (2nd sheet)
- Analytic continuation onto 2nd sheet
- Pole position \(\rightarrow \) resonance energy
- Residue \(\rightarrow \) coupling to scat. state, partial decay

Reaction plane
Strategy to search for complex poles on the lattice

Coupled-channel scatterings from lattice QCD

\[S^{(\ell)}(W) = \langle 0 | \phi_1(\vec{r}, t) \phi_2(\vec{0}, t) \mathcal{J}^\dagger(t = 0) | 0 \rangle = \sum_n A_n \psi_n(\vec{r}) e^{-W_n t} \]

- coupled-channel Lüscher’s method
 \[W_n(L) \rightarrow \delta^1(W_n), \delta^2(W_n), \eta(W_n) \]

- (coupled-channel scattering difficult)
 \[\delta^1(W_n), \delta^2(W_n), \eta(W_n) \leftarrow W_n(L_1) = W_n(L_2) = W_n(L_3) \]
Coupled-channel HAL QCD method

- **measure relevant NBS wave function** --> channel is defined

\[
\langle 0 | \phi^a_1(\vec{x} + \vec{r}, t) \phi^a_2(\vec{0}, t) J^\dagger(0) | 0 \rangle = \sqrt{Z^a_1 Z^a_2} \sum_n A_n \psi^a_n(\vec{r}) e^{-W_n t}
\]

- **Nambu-Bethe-Salpeter (NBS) wave function in each channel**
 - derive 2PI kernel (potential) as a representation of S-matrix

\[
\left(\nabla^2 + \left(k^a_n \right)^2 \right) \psi^a_n(\vec{r}) = 2 \mu^a \sum_b \int d\vec{r}' \ U^{ab}(\vec{r}, \vec{r}') \psi^b_n(\vec{r}')
\]

- **coupled-channel potential** \(U^{ab}(r, r') \):
 - \(U^{ab}(r, r') \) is faithful to coupled-channel S-matrix
 - \(U^{ab}(r, r') \) is energy independent (until new threshold opens)
 - Non-relativistic approximation is not necessary
 - \(U^{ab}(r, r') \) contains all 2PI contributions

Full details, Aoki et al. (HAL QCD), PRD87, 034512 (2013); Proc. Jpn. Acad., Ser. B, 87 (2011).
Octet BB forces & H-dibaryon

\[n(udd) \quad p(uud) \]
\[\Sigma^0(uds) \quad \Lambda(uds) \quad \Sigma^+(uus) \]
\[\Xi^-(dss) \quad \Xi^0(uss) \]

\[n(udd) \quad p(uud) \]
\[\Sigma^0(uds) \quad \Lambda(uds) \quad \Sigma^+(uus) \]
\[\Xi^-(dss) \quad \Xi^0(uss) \]

\[= \left(27 \oplus 8 \oplus 1 \right)_{\text{sym.}} \oplus \left(10^* \oplus 10 \oplus 8 \right)_{\text{anti-sym.}} \]

NN \((^1S_0) \)

H-dibaryon \((\Lambda\Lambda-\Xi N-\Sigma \Sigma) \)?

Jaffe (1977)
Generalized BB forces in flavor SU(3) limit

- Full QCD in SU(3)$_F$ limit: $m_\pi \approx 0.47$ GeV, $L = 3.9$ fm

- Potentials in flavor symmetric channels $\rightarrow 27 + 8_s + 1$

 - NN 1S_0 channels (partially Pauli blocked)
 - 8_s channel (Pauli forbidden)
 - H-dibaryon channel (Pauli allowed)

- Origin of repulsive core \leftrightarrow Pauli principle
 (+ magnetic gluon coupling)

 see, Oka & Yazaki, NPA464 (1987)
Structure of H-dibaryon in flavor SU(3) limit

★ Flavor singlet potential $V^{(1)}$ (H-dibaryon channel)

✓ Fate of H-dibaryon

- $m_{\pi} \sim 0.47\text{-}1.17\text{GeV}$, $L=3.9\text{ fm}$
- $N_f=3$ full QCD:
- $m_{\Sigma \Sigma} = 2380\text{ MeV}$
- $m_{\Xi N} = 2260\text{ MeV}$
- $m_{\Lambda \Lambda} = 2230\text{ MeV}$

Coupled-channel analysis on physical point

Fate of H-dibaryon @ almost physical point

- \(N_f=2+1 \) full QCD, \(m_\pi \approx 0.146 \text{GeV} \) (almost physical), \(L \approx 8.1 \text{fm} \) (large volume)

\[
\begin{pmatrix}
|\Sigma\Sigma\rangle \\
|N\Xi\rangle \\
|\Lambda\Lambda\rangle
\end{pmatrix}
= \frac{1}{\sqrt{40}}
\begin{pmatrix}
-1 & -\sqrt{24} & \sqrt{15} \\
\sqrt{12} & \sqrt{8} & \sqrt{20} \\
\sqrt{27} & -\sqrt{8} & -\sqrt{5}
\end{pmatrix}
\begin{pmatrix}
|27\rangle \\
|8s\rangle \\
|1\rangle
\end{pmatrix}
\]

\(N\Xi - N\Xi \) - repulsive \((8s)\)

\(N\Xi - \Lambda\Lambda \) - attractive \((1)\)

\(\Lambda\Lambda - \Lambda\Lambda \) - attractive \((27)\)

Sasaki et al. [HAL QCD], in preparation.
Fate of H-dibaryon @ almost physical point

★ ΛΛ and ΞN phase shifts

\[S(k) = \begin{pmatrix} \eta e^{2i\delta_1} & i\sqrt{1 - \eta^2} e^{i(\delta_1 + \delta_2)} \\ i\sqrt{1 - \eta^2} e^{i(\delta_1 + \delta_2)} & \eta e^{2i\delta_2} \end{pmatrix} \]

Original prediction of H-dibaryon

Jaffe (1977) based on quark model, “Perhaps a Stable Dihyperon”

Answer from QCD for H-dibaryon

“Perhaps near threshold Dihyperon”
Decuplet BB forces & $\Omega\Omega$-dibaryon

$\Delta^- \Delta^0 \Delta^+ \Delta^{++}$

$\Sigma^{*-} \Sigma^{*0} \Sigma^{*+}$

$\Xi^{-} \Xi^{*0}$

Ω^{-}

\times

$\Delta^- \Delta^0 \Delta^+ \Delta^{++}$

$\Sigma^{*-} \Sigma^{*0} \Sigma^{*+}$

$\Xi^{-} \Xi^{*0}$

Ω^{-}

$= (28 \bigoplus 27)_{\text{sym.}} \bigoplus (35 \bigoplus 10^*)_{\text{anti-sym.}}$

$\Omega\Omega (J=0): the\ most\ strange\ dibaryon?$

Dyson & Young, PRL14 (1965).

Most strange dibaryon @ almost physical point

★ ΩΩ system in 1S_0

Gongyo, Sasaki et al. [HAL QCD], PRL 120, 212001 (2018).

• repulsive core + attractive pocket

\[\mathcal{H}_{\text{int.}} = V_{\Omega\Omega}^{\text{LQCD}}(r) + \alpha/r \]

• ΩΩ is bound against strong interaction
• ΩΩ is close to unitary region together with Coulomb force
 ➞ 2-particle correlation func. in future HIC

see talks by Hatsuda & Morita

See also, Yamada [HAL QCD], PTEP2015 (2015)., for $m_\pi=700$ MeV, $L\sim3$ fm
Charmed tetra-quark candidate $Z_c(3900)$

★ $Z_c(3900)$ in experiments

e^+

e^-

$Y(4260)$

$Z_c(3900)$

π

π

$M_{\pi J/\psi}$

J/ψ

$Z_c(3900)$ found in $\pi^{+/−} J/\psi$ (cc$^\text{bar}$ud$^\text{bar}$)

BESIII (2013).

Belle (2013).

★ $Z_c(3900)$ from lattice QCD

\Rightarrow coupled-channel HAL QCD approach

- coupled-channel $\pi J/\psi$-$\rho \eta_c$-$D^\text{bar}D^*$ potentials
- understand the nature of $Z_c(3900)$

Y. Ikeda, et al. [HAL QCD], PRL117, 242001 (2016).
3x3 potential matrix (\(\pi J/\psi - \rho \eta_c - D^{\text{bar}}D^*\))

\(V_{\text{c}}(r)\) (MeV)

- \(m_\pi=410\text{MeV}\)
- \(m_\pi=570\text{MeV}\)
- \(m_\pi=700\text{MeV}\)

\(V_D^{\text{bar}}D^* - D^{\text{bar}}D^*\)
\(V_\rho \eta_c - D^{\text{bar}}D^*\)
\(V_\pi J/\psi - D^{\text{bar}}D^*\)
\(V_\pi J/\psi - \rho \eta_c\)
\(V_\pi J/\psi - \pi J/\psi\)

Diagram showing different potential interactions and their corresponding energy levels.
3x3 potential matrix \((\pi J/\psi - \rho \eta_c - D^{\text{bar}D^*})\)

- \(V_{\text{DbarD}^*-\text{DbarD}^*}(r)\)
- \(V_{\pi J/\psi-\rho \eta_c}(r)\)
- \(V_{\rho \eta_c-\rho \eta_c}(r)\)
- \(V_{\rho \eta_c-D^{\text{bar}D^*}}(r)\)
- \(V_{\pi J/\psi-D^{\text{bar}D^*}}(r)\)
- \(V_{\pi J/\psi-\pi J/\psi}(r)\)

- \(m_\pi=410\text{MeV}\)
- \(m_\pi=570\text{MeV}\)
- \(m_\pi=700\text{MeV}\)

heavy quark spin symmetry
3x3 potential matrix ($\pi J/\psi - \rho \eta_c - D^{\ast}\bar{D}$)

- $m_\pi = 410$ MeV
- $m_\pi = 570$ MeV
- $m_\pi = 700$ MeV

Strong $V_{\pi J/\psi}, D^{\ast}\bar{D}$ and $V_{\rho \eta_c}, D^{\ast}\bar{D}$

Charm quark exchange process
Mass spectra of $\pi J/\psi$ (2-body scattering)

★ 2-body scattering (the most ideal to understand $Z_c(3900)$)

π π π

J/ψ J/ψ

$\pi J/\psi - \rho \eta_c - D_{bar}D^*$

$Z_c(3900)$ in expt.

$Y(4260)$ π

$Z_c(3900)$ J/ψ

$M_{\pi J/\psi}$

✓ Enhancement just above $D_{bar}D^*$ threshold

⇒ effect of strong $V^{\pi J/\psi, D_{bar}D^*}$ (black $\rightarrow V^{\pi J/\psi, D_{bar}D^*}=0$)

• line shape not Breit-Wigner

✓ Is $Z_c(3900)$ a conventional resonance? \rightarrow pole of S-matrix
Pole of S-matrix \((\pi J/\psi : 2\text{nd}, \rho \eta_c : 2\text{nd}, D^{\text{bar}}D^*: 2\text{nd}) \)

- Pole corresponding to "virtual state"
- Pole contribution to scat. observables is small (far from scat. axis)
- \(Z_c(3900) \) is not a resonance but "threshold cusp" induced by strong \(V_{\pi J/\psi, D^{\text{bar}}D^*} \)
Summary

HAL QCD method

- NBS wave function $\psi(r)$ --> 2PI kernel ($\psi = \phi + G_0 U \psi$)
- Crucial for multi-hadron & coupled-channel scatterings

 Aoki, Hatsuda, Ishii, PTP123, 89 (2010).
 Ishii et al. [HAL QCD], PLB 712, 437 (2012).
 Aoki et al. (HAL QCD), PRD87, 034512 (2013).

Exotic candidates, H, ΩΩ, Zc(3900)

- H particle is very close to $N\Xi$ threshold --> J-PARC?
 Sasaki et al [HAL QCD], in preparation.

- $ΩΩ$ is very close to unitary region --> HIC?
 Gongyo, Sasaki et al [HAL QCD], PRL120, 212001 (2018).

- $Z_c(3900)$ is threshold cusp induced by strong $V^{D\bar{D}^*}, \pi J/\psi$
 Ikeda et al. [HAL QCD], PRL117, 242001 (2016).

Future: many hadron resonances & nuclear structures at physical point
Thank you for your attention!