Hadronic Effects on T_{cc} in Relativistic Heavy Ion Collisions

Juhee Hong Yonsei University

New Frontiers in QCD 2018, YITP, Kyoto University

arXiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng Lee

<u>Outline</u>

- Hadronic effects in relativistic heavy ion collisions
- Absorption of T_{cc} by pions
- Time evolution of T_{cc} abundance
- Measurements

Hadronic effects in relativistic heavy ion collisions

Relativistic heavy ion collisions

• Absorption/production in the hadronic phase

Hydrodynamic evolution

- Hydrodynamics: $\partial_{\mu}T^{\mu\nu}=0$, $T^{\mu\nu}=(e+p)u^{\mu}u^{\nu}-pg^{\mu\nu}+\pi^{\mu\nu}$ • Lattice equation of state ideal viscous: $\eta/s=1/4\pi$
- Pb+Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV at LHC Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV at RHIC

Phenomenological model

$$\begin{split} V(\tau) &= \pi \left[R + v(\tau - \tau_{\rm C}) + \frac{a}{2} (\tau - \tau_{\rm C})^2 \right]^2 c\tau \\ T(\tau) &= T_{\rm C} - (T_{\rm H} - T_{\rm F}) \left(\frac{\tau - \tau_{\rm H}}{\tau_{\rm F} - \tau_{\rm H}} \right)^\alpha \quad \text{for } \tau > \tau_{\rm H} \end{split}$$

hadronic phase $\sim 10~\text{fm/c}$

Statistical model

• Particle yields:
$$N_i^{eq}(\tau) = g_i \gamma_i V(\tau) \int \frac{d^3 p}{(2\pi)^3} \exp\left[-\sqrt{p^2 + m_i^2}/T(\tau)\right]$$

= $\gamma_i N_i^0(\tau)$

- Spin-isospin degeneracy: g = (2S+1)(2I+1)
- Charm fugacity: from D, D^{*}, D_s, D_s^{*}

$$\begin{split} \mathsf{N}_{\mathsf{c}} &= \sum_{\mathsf{D}_{i}=\mathsf{D},\mathsf{D}^{*},\mathsf{D}_{\mathsf{S}},\mathsf{D}^{*}_{\mathsf{S}}} \mathsf{N}_{\mathsf{D}_{i}}(\tau) = \gamma_{\mathsf{c}} \big[\mathsf{N}^{0}_{\mathsf{D}}(\tau) + \mathsf{N}^{0}_{\mathsf{D}^{*}}(\tau) + \mathsf{N}^{0}_{\mathsf{D}_{\mathsf{S}}}(\tau) \big] \\ \mathsf{LHC} & 11 & & & \\ \mathsf{HIC} & 11 & & & \\ \mathsf{RHIC} & 4.1 & & & \\ \end{split}$$

ExHIC Collaboration (2017)

Hadronic effects

Resonances with large widths:
 K^{*} suppression

A. Andronic, P. Braun-Munzinger, J. Stachel (2006)

Particle yield ratios:
 K^{*}/K, φ/K depending on system size

from J. Song's dissertation

T_{cc} absorption

Doubly charmed tetraquark T_{cc}(1⁺)

- $T_{cc}(cc\bar{u}\bar{d} = DD^*)$
- The only possible flavor exotic particle
- Consitituent quark model: stronger attraction in the compact configuration than two separate mesons

in
$$c\bar{q}$$
 color states: $T_{cc} = \frac{1}{\sqrt{3}}(D_1D_1^*) - \sqrt{\frac{2}{3}}(D_8D_8^*)$
singlet octet

Quasifree approximation

- J/ ψ dissociation by parton: $g + J/\psi \rightarrow c + \overline{c}$ L. Grandchamp, R. Rapp (2001)
- For a loosely bound charmonium state: break-up by inelastic parton scattering, $g(q,\bar{q}) + J/\psi \rightarrow g(q,\bar{q}) + c + \bar{c}$
- Quasifree approximation using LO QCD: $g(q) + c \rightarrow g(q) + c$

$$\begin{split} \sigma_{\rm diss} &= \frac{1}{2 {\rm E}_{\rm q} 2 {\rm E}_{\rm k_1} {\rm v}_{\rm qk_1} {\rm g}_{\rm q} {\rm g}_{\rm k_1}} \int \frac{{\rm d}^3 {\rm p}_2}{(2\pi)^3 2 {\rm E}_{\rm p_2}} \frac{{\rm d}^3 {\rm p}_1}{(2\pi)^3 2 {\rm E}_{\rm p_1}} \frac{{\rm d}^3 {\rm k}_2}{(2\pi)^3 2 {\rm E}_{\rm k_2}} \\ &\times (2\pi)^4 \delta^4 ({\rm p}_1 + {\rm p}_2 + {\rm k}_2 - {\rm q} - {\rm k}_1) |{\rm M}|^2 \\ &\approx \frac{1}{2 {\rm E}_{\rm k} 2 {\rm E}_{\rm k_1} {\rm v}_{\rm kk_1} {\rm g}_{\rm k} {\rm g}_{\rm k_1}} \int \frac{{\rm d}^3 {\rm p}_1}{(2\pi)^3 2 {\rm E}_{\rm p_1}} \frac{{\rm d}^3 {\rm k}_2}{(2\pi)^3 2 {\rm E}_{\rm k_2}} \\ &\times (2\pi)^4 \delta^4 ({\rm p}_1 + {\rm k}_2 - {\rm k} - {\rm k}_1) \big| {\rm M}_{\rm QF} \big|^2 \\ &= \sigma_{\rm QF} \end{split}$$

• NLO calculations seem to agree on the order of magnitude

T. Song, S. H. Lee (2005), T. Song, W. Park, S. H. Lee (2010)

<u>T_{cc}+ π classical elastic scattering</u>

- T_{cc} absorption/production by pions: $T_{cc} + \pi \leftrightarrow D + D^* + \pi$
- Quasifree approximation: $\sigma_{T^{cc}\pi}^{tot} = \sigma_{D\pi}^{tot} + \sigma_{D^*\pi}^{tot}$ (no interference)

• Decay width:
$$\Gamma_{D^* \to D\pi} = \frac{g_{\pi DD}^2 p_{cm}^3}{2\pi m_{D^*}^2} = 83.4 \text{ keV}$$
 Z. Lin, C. M. Ko (2000)
Particle Data Group (2016)

T_{cc} absorption cross section

Evolution of T_{cc} multiplicity

Rate equation

• Absorption:
$$T_{cc}+\pi \rightarrow D+D^*+\pi$$

$$\frac{dN_{T_{cc}}}{Vd\tau} = -\left(\int \frac{d^3p_D}{(2\pi)^3 2E_D} \frac{d^3p_{D^*}}{(2\pi)^3 2E_D^*} \frac{d^3p_{\pi^f}}{(2\pi)^3 2E_{\pi^f}} \frac{d^3p_{T_{cc}}}{(2\pi)^3 2E_{T_{cc}}} \frac{d^3p_{\pi^i}}{(2\pi)^3 2E_{\pi^i}}\right) \times f(p_{T_{cc}})f(p_{\pi^i}) (2\pi)^4 \delta^4(p_D + p_{D^*} + p_{\pi^f} - p_{T_{cc}} - p_{\pi^i})|M_{T_{cc}\pi \rightarrow DD^*\pi}|^2$$

$$\frac{dN_{T_{cc}}}{Vd\tau} = -\langle \sigma_{T_{cc}\pi \rightarrow DD^*\pi} v_{T_{cc}\pi} \rangle n_{\pi} n_{T_{cc}}$$

$$absorption rate$$
• Production: $D+D^*+\pi \rightarrow T_{cc}+\pi$, $f(p_D)f(p_{D^*})f(p_{\pi^f}) = f(p_{T_{cc}})f(p_{\pi^i})$

$$\frac{dN_{T_{cc}}}{Vd\tau} = \langle \sigma_{T_{cc}\pi \rightarrow DD^*\pi} v_{T_{cc}\pi} \rangle n_{\pi} n_{T_{cc}}^{eq} \frac{n_D n_D^*}{n_D^e n_D^{eq}}$$

Evolution of T_{cc} abundance

• Rate equation:
$$\frac{\mathrm{dN}_{\mathrm{T}_{cc}}(\tau)}{\mathrm{V}\mathrm{d}\tau} = \langle \sigma_{\mathrm{T}_{cc}\pi \to \mathrm{DD}^*\pi} \mathrm{v}_{\mathrm{T}_{cc}\pi} \rangle(\tau) \mathrm{n}_{\pi}(\tau) \left[-\mathrm{N}_{\mathrm{T}_{cc}}(\tau) + \mathrm{N}_{\mathrm{T}_{cc}}^{\mathrm{eq}}(\tau) \frac{\mathrm{N}_{\mathrm{D}}(\tau) \mathrm{N}_{\mathrm{D}^*}(\tau)}{\mathrm{N}_{\mathrm{D}}^{\mathrm{eq}}(\tau) \mathrm{N}_{\mathrm{D}^*}^{\mathrm{eq}}(\tau)} \right]$$

$$\langle \sigma_{\mathrm{T}_{\mathrm{cc}}\pi \to \mathrm{DD}^{*}\pi} \mathrm{v}_{\mathrm{T}_{\mathrm{cc}}\pi} \rangle(\tau) = c_{1} \langle \sigma_{\mathrm{D}\pi \to \mathrm{D}\pi} \mathrm{v}_{\mathrm{T}_{\mathrm{cc}}\pi} \rangle(\tau) + c_{1} \langle \sigma_{\mathrm{D}^{*}\pi \to \mathrm{D}^{*}\pi} \mathrm{v}_{\mathrm{T}_{\mathrm{cc}}\pi} \rangle(\tau)$$

- Absorption rate: $\langle \sigma v \rangle n_{\pi} \sim (6mb)(0.1 \text{fm}^{-3}) \sim 0.06 \text{ c/fm}$ Lifetime of hadronic phase $\sim 10 \text{ fm/c}$ Hadronic effects on T_{cc} : Exp[- $\langle \sigma v \rangle n_{\pi} \tau$] $\sim 45\%$ reduction
- Time evolution of T_{cc} multiplicity with τ dependence of V(τ), T(τ)

- Initial $N_{Tcc}(\tau_{H})$ depends on its structure
- (1) Molecular configuration (c₁=1): $N_{Tcc} \sim 10^{-3}$ (2) Compact multiquark (c₁=1/3): $N_{Tcc} \sim 10^{-4}$ $T_{cc} = \frac{1}{\sqrt{3}} (D_1 D_1^*) - \sqrt{\frac{2}{3}} (D_8 D_8^*)$

 $\langle \sigma_{\mathrm{T}_{\mathrm{cc}}\pi \to \mathrm{DD}^*\pi} \mathrm{v}_{\mathrm{T}_{\mathrm{cc}}\pi} \rangle(\tau) = c_1 \langle \sigma_{\mathrm{D}\pi \to \mathrm{D}\pi} \mathrm{v}_{\mathrm{T}_{\mathrm{cc}}\pi} \rangle(\tau) + c_1 \langle \sigma_{\mathrm{D}^*\pi \to \mathrm{D}^*\pi} \mathrm{v}_{\mathrm{T}_{\mathrm{cc}}\pi} \rangle(\tau)$

- Hadronic effects $\sim 42\%$
- \bullet N_{Tcc} depends on its initial number at QGP

• D, D* in non-equilibrium: larger N_{Tcc} (1) D, D* = const (2) time dependent fugacity

$$\sum_{D_{i}=D,D^{*},D_{s},D^{*}_{s}} N_{D_{i}}(\tau) = \gamma_{c}(\tau) \left[N_{D}^{0}(\tau) + N_{D^{*}}^{0}(\tau) + N_{D_{s}}^{0}(\tau) + N_{D_{s}^{*}}^{0}(\tau) \right]$$

• $N_{Tcc}(mol) \ge 5 N_{Tcc}(comp)$

Measurements

Possible final states

• T_{cc} can be reconstructed by measuring possible final states

Summary

- Time evolution of T_{cc} abundance by solving the rate equation
- Absorption by pions: hadronic effects $\sim 42\%$
- T_{cc} multiplicity depends strongly on initial yields of QGP phase
- $N_{Tcc}(mol) \sim 10^{\text{-3}} ~\gg~ N_{Tcc}(comp) \sim 10^{\text{-4}}$
- \bullet $N_{\mbox{\tiny Tcc}}$ measurement is useful to obtain its structure information
- D⁺+D⁺+ π^- and D⁰+D⁰+ π^+ seem to be the most probable cases to reconstruct T_{cc}

Thank you for your attention!