Spectroscopy of H dibaryon from Lattice QCD

Parikshit Junnarkar
Tata Institute of Fundamental Research, Mumbai

New Frontiers in QCD 2018
Yukawa Institute of Theoretical Physics, Kyoto University
Dibaryon project at Mainz

People involved in the project:

- Hartmut Wittig
- Andrew Hanlon (current postdoc)
- Former postdocs: A Francis, T.Rae, J. Green, PMJ, C. Miao

Works presented at conferences:

- C. Miao et al., PoS LATTICE2013, 440 [1311.3933]
- J. Green et al., PoS LATTICE2014, 107 [1411.1643]
- PMJ et al., PoS LATTICE2015, 082, PoS CD2015, 079 [1511.01849]
- PMJ et al., Talk at Confinement XII (2016)

Full results: arXiv:1805.03966
Outline

• History of the H dibaryon

• Experimental status

• Review of lattice calculation of H dibaryon

• Calculation with hexaquark and two-baryon operators.

• Calculation with distillation

• Finite volume analysis

• Conclusions and future directions.
The H dibaryon

Predicted by Jaffe in 1977 using MIT bag model as a deeply bound state:

$$J = I = 0, \ S = -2$$

$$m_H < 2m_\Lambda \sim -80 \text{ MeV}$$

A flavor singlet in SU(3),

$$BB^1 = -\sqrt{\frac{1}{8}}(\Lambda\Lambda) + \sqrt{\frac{3}{8}}(\Sigma\Sigma) + \sqrt{\frac{4}{8}}(N\Xi)$$

Decades of theoretical and experimental investigations provide no conclusive evidence on the fate of the H....
Experimental status

- Experiments have explored this state since:
 - 1997 - BNL E836 — No evidence of H dibaryon state.
 - 2000 - kTeV Fermilab E799 — No evidence of H dibaryon state.
Experimental status

- Experiments have explored this state since:
 - 1997 - BNL E836 — No evidence of H dibaryon state.
 - 2000 - kTeV Fermilab E799 — No evidence of H dibaryon state.

Strongest constraint comes from Nagara event E373 at KEK, which studied decays of hypernucleus $\Lambda\Lambda\Lambda\Lambda$.

Absence of strong decay:

$$\Lambda\Lambda\Lambda\Lambda\text{He} \rightarrow ^4\text{He} + \text{H}$$

$$B_{\Lambda\Lambda} = 7.13 \pm 0.87 \text{ MeV}$$

Experimentally a deeply bound state ruled out.
Experimental status

Search for an H-Dibaryon with a Mass near $2m_\Lambda$ in $\Upsilon(1S)$ and $\Upsilon(2S)$ Decays

(Received 16 February 2013; revised manuscript received 3 May 2013; published 31 May 2013)

We report the results of a high-statistics search for H dibaryon production in inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ decays. No indication of an H dibaryon with a mass near the $M_H = 2m_\Lambda$ threshold is seen in either the $H \to \Lambda p \pi^-$ or $\Lambda\Lambda$ decay channels and 90% confidence level branching-fraction upper limits are set that are between one and two orders of magnitude below the measured branching fractions for inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ decays. Since $Y(1S, 2S)$ decays are expected to produce $SU(3)$-symmetric final states, these results put stringent constraints on H dibaryon properties.

Decays of $\Upsilon(1S, 2S)$ produce flavor-$SU(3)$-symmetric final states. KEK Belle Detector: No signature of bound state. Models provide a broad range of answers!

$Lattice QCD can provide some insight.
QCD on a spacetime lattice

GOAL: To compute,

$$
\langle O(t) \rangle = \frac{1}{Z_{QCD}} \int \mathcal{D}[\psi, \bar{\psi}, U] e^{-S_{QCD}(\psi, \bar{\psi}, U)} O[\psi, \bar{\psi}, U]
$$
QCD on a spacetime lattice

GOAL: To compute,

\[
\langle O(t) \rangle = \frac{1}{Z_{QCD}} \int \mathcal{D}[\psi, \overline{\psi}, U] e^{-S_{QCD}(\psi, \overline{\psi}, U)} O[\psi, \overline{\psi}, U]
\]

- Wick rotate to Euclidean space and discretise spacetime.
QCD on a spacetime lattice

GOAL: To compute,

\[
\langle O(t) \rangle = \frac{1}{Z_{QCD}} \int \mathcal{D}[\psi, \bar{\psi}, U] e^{-S_{QCD}(\psi, \bar{\psi}, U)} O[\psi, \bar{\psi}, U]
\]

- Wick rotate to Euclidean space and discretise spacetime.
- Compute path integral as a Monte-carlo integration with weight:

\[
W[U^i] = \frac{e^{-S_g} \det(D[U^i])}{Z_{QCD}}
\]

\(U^i\) is a gauge field configuration obtained from Monte-carlo
QCD on a spacetime lattice

GOAL: To compute,

\[
\langle O(t) \rangle = \frac{1}{Z_{QCD}} \int D[\psi, \bar{\psi}, U] e^{-S_{QCD}(\psi, \bar{\psi}, U)} O[\psi, \bar{\psi}, U]
\]

- Wick rotate to Euclidean space and discretise spacetime.

- Compute path integral as a Monte-carlo integration with weight:
 \[
 W[U^i] = \frac{e^{-S_g} \det(D[U^i])}{Z_{QCD}}
 \]
 \(U^i\) is a gauge field configuration obtained from Monte-carlo

- Compute \(\langle O \rangle\) over \(N\) gauge field configurations
 \[
 \langle O \rangle \approx \frac{1}{N} \sum_{U^i, N} e^{-S_{QCD}} O[U^n]
 \]
Methodology of lattice spectroscopy

- Compute quark propagators by inverting Dirac matrix on point sources/smeared point sources.
Methodology of lattice spectroscopy

- Compute quark propagators by inverting Dirac matrix on point sources/smeared point sources.

- Smear the source fields and/or the quark propagators to improve overlap onto the ground state.
Methodology of lattice spectroscopy

* Compute quark propagators by inverting Dirac matrix on point sources/smeared point sources.

* Smear the source fields and/or the quark propagators to improve overlap onto the ground state.

* Construct hadronic states with the interested quantum numbers.

\[\mathcal{O}(\vec{x}, t) = \bar{u} \gamma_5 d \]
Methodology of lattice spectroscopy

* Compute quark propagators by inverting Dirac matrix on point sources/smeared point sources.

* Smear the source fields and/or the quark propagators to improve overlap onto the ground state.

* Construct hadronic states with the interested quantum numbers.

* Compute expectation values of operators and determine the ground state at large t...

$$\langle 0 | \mathcal{O}(\vec{x}, t) \mathcal{O}^\dagger(0) | 0 \rangle \rightarrow_{t \rightarrow \infty} Ae^{-M_\pi t}$$
Challenges in multi-baryon spectroscopy

Lattice techniques offer first principle calculation of QCD observables!

1. Unphysical quarks, finite lattice spacing and volume.
2. Non-trivial contractions.
3. Non-trivial finite volume effects.
Signal / Noise problem

- Baryons suffer from signal / Noise problem.

- Noise grows exponentially.

\[\frac{C_B(t)}{\sigma(t)} \sim \sqrt{N_{MC}} \, e^{-(m_B - \frac{3}{2}m_\pi)t} \]
Signal / Noise problem

- Baryons suffer from signal / Noise problem.
- Noise grows exponentially.
- Impossible to reach asymptotic source-sink separations.
- Construct operators to improve overlap for fast falling excited states and access the “GOLDEN WINDOW”.

$$\frac{C_B(t)}{\sigma(t)} \sim \sqrt{N_{MC}} \ e^{-(m_B - \frac{3}{2}m_\pi)t}$$

$$m_\pi \approx 275 \text{ MeV}$$

[Capitani et al., arXiv:1504.04628]
Review of H dibaryon calculation

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Method</th>
<th>m_π [MeV]</th>
<th>N_f</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALQCD</td>
<td>Baryon-baryon potential; Nambu-Bethe-Salpeter wave function</td>
<td>470–1170 (146*)</td>
<td>3</td>
<td>Phys Rev Lett 106 (2011) 162002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nucl Phys A881 (2012) 28</td>
</tr>
<tr>
<td>NPLQCD</td>
<td>Two-point correlation functions</td>
<td>806</td>
<td>3</td>
<td>Phys Rev D87 (2013) 034506</td>
</tr>
<tr>
<td></td>
<td>Two-point correlation functions</td>
<td>230, 390 (450*)</td>
<td>2+1</td>
<td>Phys Rev Lett 106 (2011) 162001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mod Phys Lett A26 (2011) 2587</td>
</tr>
<tr>
<td>Mainz</td>
<td>Two-point correlation functions</td>
<td>(450–1000)*</td>
<td>2</td>
<td>PoS LATTICE2013 (2014) 440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PoS LATTICE2014 (2015) 107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>arXiv:1511.01849 [hep-lat]</td>
</tr>
</tbody>
</table>

Note: (*) indicates results in proceedings, unpublished results
HALQCD results

GOAL: Compute non-local NN potential from Lattice QCD

- Solve a Schrödinger type equation:
 \[
 -\frac{\nabla^2}{2\mu} \phi_k(\vec{r}) + \int d^3\vec{r}' U(\vec{r}, \vec{r}') \phi_k(\vec{r}') = E_k + \phi_k(\vec{r})
 \]

- \(\phi_k(\vec{r})\) is computed in a lattice calculation:
 \[
 G(\vec{r}, t - t_0) = \langle 0 | (BB)^{\alpha}(\vec{r}, t)(\overline{BB})^{\alpha}(t_0) | 0 \rangle = \phi(\vec{r}, t)e^{-E(t-t_0)B_{AA}[\text{MeV}]}
 \]

- \(N_f = 3\), degenerate u,d,s
 5 pion masses
 \(m_\pi = 461 - 1171\) MeV
NPLQCD results

- Compute dibaryon energy levels from multi-baryon correlation functions.

\[
O_{HH}^{BB} = \epsilon_{ijk}(r^i C \gamma_5 P + s^j) t^k(\vec{x}, t) \epsilon_{lmn}(u^l C \gamma_5 P + v^m) w^n(\vec{y}, t)
\]

\[
\langle 0| \sum_{\vec{x}, \vec{y}} O_{HH}^{BB}(\vec{x}, \vec{y}, t)O_{HH}^{BB}(\vec{0}, \vec{0}, t)|0\rangle = A_{BB} e^{-E_{BB} t} + \ldots \quad \rightarrow \quad B_H = 2m_\Lambda - E_{\Lambda\Lambda}
\]

- Compute \(B_H\) in several volumes and establish infinite volume result.

- \(N_f = 3\), degenerate u,d,s

\(m_\pi = 807\) MeV \(L = 3.4, 4.5, 6.7\) fm
\(\mathcal{O}(10^5)\) measurements/ensemble.
Mainz H dibaryon set-up

- Employ Lattice QCD ensembles generated by CLS (Coordinates Lattice Simulations) collaboration.
- $N_f = 2$, O(a) improved Wilson fermions. Quenched strange quarks.

<table>
<thead>
<tr>
<th>Run</th>
<th>a [fm]</th>
<th>L/a</th>
<th>L [fm]</th>
<th>m_π [MeV]</th>
<th>$m_\pi L$</th>
<th>N_{cfg}</th>
<th>N_{src}</th>
<th>N_{meas}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>0.066</td>
<td>32</td>
<td>2.11</td>
<td>1000</td>
<td>10.2</td>
<td>168</td>
<td>128</td>
<td>43 008</td>
</tr>
<tr>
<td>N1</td>
<td>0.049</td>
<td>48</td>
<td>2.33</td>
<td>858</td>
<td>10.1</td>
<td>100</td>
<td>128</td>
<td>25 600</td>
</tr>
<tr>
<td>A1</td>
<td>0.076</td>
<td>32</td>
<td>2.42</td>
<td>744</td>
<td>9.9</td>
<td>286</td>
<td>128</td>
<td>73 216</td>
</tr>
<tr>
<td>E5</td>
<td>0.066</td>
<td>32</td>
<td>2.11</td>
<td>440</td>
<td>4.6</td>
<td>1990</td>
<td>32</td>
<td>127 360</td>
</tr>
</tbody>
</table>

On E1, N1, A1 $m_u = m_d = m_s$, On E5 $m_u = m_d \neq m_s$
H-dibaryon interpolating operators

- Local hexaquark operators:

\[\mathcal{O}_H(t, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p} \cdot \vec{x}} (qqqqqq)(t, \vec{x}) \]

- Bag-model like local operator

- Under broken SU(3), \(1, 27 \) -plet are mixed.
H-dibaryon interpolating operators

* Local hexaquark operators:

\[\mathcal{O}_H(t, \vec{p}) = \sum \limits_{\vec{x}} e^{-i\vec{p} \cdot \vec{x}} (qqqqqq)(t, \vec{x}) \]

 * Bag-model like local operator
 * Under broken SU(3), \(1, 27 \) — plet are mixed.

* Two-baryon operators:

\[\mathcal{O}_{BB}(t, \vec{p}) = \sum \limits_{\vec{x}, \vec{y}} e^{-i\vec{p}_1 \cdot \vec{x}} e^{-i\vec{p}_2 \cdot \vec{y}} (qqq)(t, \vec{x})(qqq)(t, \vec{y}) \]

 * Overlaps onto two-hadron state
 * Three SU(3) irreps contribute, \(1, 8, 27 \)
 * Cannot construct at source.
Operators choices at SU(3) point

- Singlet and 27-plet states decouple due to SU(3) symmetry.

- Source operator choices: Hexaquark operators \(H_{1,N} \) and \(H_{1,M} \) (\(N, M \) smearing choices).

- Sink operator choices:
 - Choice of smearings narrow (N) and medium (M)
 - Choice of Hexaquark and Two-baryon operators.

- Construct various 2 X 2 correlator matrices to explore the approach to ground state.
Variational method

Variational method provides reliable determination of ground state

Compute a correlator matrix of two point functions as,

\[C_{ij} = \sum_{\vec{x}} \langle \mathcal{O}_i(t_0 + t, \vec{x}) \mathcal{O}_j^\dagger(t_0, \vec{x}_0) \rangle, \]

and solve the generalised eigenvalue problem as,

\[C_{ij}(t + \Delta t)v_j(t) = \lambda(t)C_{ij}(t)v_j(t) \quad \text{and} \quad \text{m}_{\text{eff}} = \frac{-\log \lambda(t)}{\Delta t} \]

Cannot construct a hermitian correlator matrix with two-baryon operators.
Results - SU(3) singlet, Ensemble E1

Ensemble E1 SU(3) singlet

\[M_{\text{eff}} \]

\[H^1(N)H^1(M) \]
Results - SU(3) singlet, Ensemble E1

Ensemble E1 SU(3) singlet

![Graph showing M_{eff} as a function of t (fm) with markers for $H^1(N)H^1(M)$ and $H^1(N)BB_0^0(N)$]
Results - SU(3) singlet, Ensemble E1

Ensemble E1 SU(3) singlet

![Graph showing M_{eff} versus t (fm) for different configurations](image-url)
Results - SU(3) singlet, Ensemble E1

Ensemble E1 SU(3) singlet

Graph showing M_{eff} vs $t (f_m)$ with various labels for different configurations.
Results - SU(3) singlet, Ensemble E1

Choose $[H_{1,N} BB_{1,N,0}]$ GEVP results for fitting.
Results - SU(3) 27-plet, Ensemble E1

27-plet corresponds to NN scattering in the SU(3) limit.
Operators choices with broken SU(3)

- Singlet and 27-plet states are mixed due to SU(3) breaking.

- Source operator choices: *Hexaquark operators*

 \[H_{1,N}, \ H_{1,M} \ H_{27,N}, \ H_{27,M} \]

- Sink operator choices:
 - Choice of *Hexaquark* and *Two-baryon* operators.
 - *No octet operator available at the source.*

- Construct various 4 X 4 correlator matrices to explore the approach to ground state.
Results with broken SU(3)

Contributions from octet operator

Presence of two states below threshold
Results with broken SU(3)

Ensemble E5 SU(3) singlet

$H^1(N)H^1(M)H^{27}(N)H^{27}(M)$
$H^1(N)H^{27}(N)BB_0^1(N)BB_0^{27}(N)$
$BB_0^1(N)BB_0^{27}(N)BB_1^1(N)BB_1^{27}(N)$
$BB_0^1(N)BB_0^{27}(N)$
Results with broken SU(3)

Ensemble E5 SU(3) 27-plet

$H^1(N)H^1(M)H^{27}(N)H^{27}(M)$

$H^1(N)H^{27}(N)BB_0^1(N)BB_0^{27}(N)$

$BB_0^1(N)BB_0^{27}(N)BB_1^1(N)BB_1^{27}(N)$

$BB_0^1(N)BB_0^{27}(N)$
Overview with point sources

- Hexaquark operators provide a poor overlap onto the ground state.

- Two-baryon operators provide an improved overlap at the cost of analysing non-hermitian correlator matrices.

- Non-hermitian correlator matrices may provide different approaches to the ground state. (agreeing asymptotically)

- Octet contributions cannot be accounted for.

- A possible reliable method: Distillation.
Distillation

Distillation is a smearing scheme enabling timeslice-to-all propagator computation.

Compute N low eigenvectors of spatial lattice laplacian,

\[\Delta(t) \, V(t) = \lambda(t) \, V(t) \]

Employ a smeared diluted source and invert the Dirac matrix on it,

\[\tilde{\rho}(t_0) = V(t_0)P(t_0)\rho(t_0) \quad \text{Dilution projector} \]
\[\tau(t) = V^\dagger(t)D^{-1}(t', t_0)\tilde{\rho}(t_0) \quad \text{Perambulator} \]

A stochastic estimate of the Quark propagator is then given by,

\[\phi(t) = V(t)\tau(t) \quad \text{Quark sink field} \]
\[D^{-1}(t', t_0) \sim E\left(\phi(t) \, \tilde{\rho}^\dagger(t_0)\right) \quad \text{Noise expectation value} \]
Baryons in Distillation

Compute color singlets in distillation space. Use 1 overall source vector.

\[(C_{\gamma_5}P_+)^{\beta\gamma}m_{\gamma}\]
Baryons in Distillation

Compute color singlets in distillation space. Use 1 overall source vector.

Use colour triplets in distillation space
Baryons in Distillation

Compute color singlets in distillation space. Use 1 overall source vector.

\[(C_{\gamma_5}P_+)_{\beta\gamma} m_{\gamma} \]

\[X_{k\beta}^{d_3} = \sum_{kim} d(t, \bar{p}) \epsilon_{kmn} \rho_{m\beta}^{d_3} \]

\[Y_{d_2 d_3}^{k} = \rho_{l\beta}^{d_2} X_{kl\beta}^{d_3} \]

Construct diquark with second line.
Baryons in Distillation

Compute color singlets in distillation space. Use 1 overall source vector.
Baryons in Distillation

Compute color singlets in distillation space. Use 1 overall source vector.
Results on single Lambda

Distillation results compatible with point sources for single baryons
Dibaryon contractions

Use baryons objects to construct dibaryons.

Construct N^2 baryon blocks and contract them.

Two classes of contractions:

- **Straight type**

- **Cross type**
Dibaryon results

Three clearly separated levels.
Dibaryon results

Dominant SU(3) breaking effects.
Dibaryon results

Effective binding energies

Ensemble E1 $m_\pi = 960$ MeV

$\Delta E = 37.6 \pm 3.7$ MeV

Ensemble E5 $m_\pi = 440$ MeV

$\Delta E = 20.7 \pm 4.9$ MeV

Cancellation of dibaryon excited states from single baryons.
Comparison with point sources

\[(E_{\text{eff}} - 2m_{\Delta,\text{eff}}) \text{ [MeV]}\] vs. \(t \text{ [fm]}\)

- Distillation
- Point-to-all
Scattering phase shift from energy levels

The two-particle scattering/binding momenta is given by:
\[p^2 = \frac{1}{4}(E^2 - \vec{P} \cdot \vec{P}) - M^2_\Lambda \]

is related to scattering phases in the continuum via,
\[p \cot \delta_0(p) = \frac{2}{\gamma L \sqrt{\pi}} Z_{0,0}^d(1, q^2) \quad q = \frac{pL}{2\pi} \quad \text{[Lüscher (1991)]} \]

Use scattering information to locate the pole in the scattering amplitude,
\[A \propto \frac{1}{p \cot \delta_0(p) - ip} \quad \text{\(p \cot \delta_0(p) = -\frac{1}{a} + \frac{1}{2}r_0p^2 + \ldots \)} \]

Constraints: slope of \(p \cot \delta_0(p) \) < slope of \(-\sqrt{-p^2}|_{p=p^*} \)

[HALQCD (1703.07210)]
Phase shift on E1 - SU(3) singlet

Bound state curve

$-\sqrt{-p^2}$

Fit to data

$a = 1.3(5) \text{ fm}, \quad r_0 = 0.4(3) \text{ fm}$
Phase shift on E1 - 27-plet
Summary of results

- Point sources
- Distillation
- Finite-volume analysis
Comparison of different calculations

![Comparison of calculations graph]

-HALQCD
-NPLQCD
-This work, distillation
-This work, FV-analysis
Conclusions

- Hexaquark operators are not relevant for H dibaryon spectroscopy.

- Two-baryon operators while providing an improved overlap introduce non-hermitian correlator matrices.

- Distillation provides a precise determination of energy levels at comparable cost with hermitian correlator matrices.

- Finite volume analysis on E1 indicates non-trivial corrections to naive binding energies.

- Currently studying extensions to NN.