Phenomenological QCD equations of state for Neutron Stars

Toru Kojo (CCNU)

 Review) Baym-Hatsuda-TK-Powell-Song-Takatsuka Rept. Prog. Phys. 81 (2018) no.5, 056902 (arXiv: 1707.04966 [astro-ph])

including EoS: Quark-Hadron-Crossover (QHC18)

1/31

Neutron Star equations of state for QCD perspectives

Toru Kojo (CCNU)

 Review) Baym-Hatsuda-TK-Powell-Song-Takatsuka Rept. Prog. Phys. 81 (2018) no.5, 056902 (arXiv: 1707.04966 [astro-ph])

including EoS: Quark-Hadron-Crossover (QHC18)

Contents

- I, Theoretical orientation: high & low density limits
- 2, NS constraints on EoS : hints for **soft-stiff** EoS
- 3, 3-window modeling & the properties of matter

4, Summary & To do list

Cold, dense EoS : High density

3-loop pQCD : Freedman-McLerran 78; Baluni 78; Kurkela-Romatschke-Vuorinen 09

[some **4-loop** contributions: E. Sappi, a talk given in the 2nd week]

check of convergence

check of renorm. scale dep.

- Interactions crucial for $\mu_q < \sim |GeV \text{ or } n_B < \sim 50 n_0$
- Hints for effective repulsion (more μ needed to reach n_{ideal})

calculations based on microscopic interactions

NN + 3N forces + ...

a) Fit to data

- to E \sim 350 MeV for NN $\,$ (well constrained)

(uncertain)

fit to nuclei for NNN

b) ChEFT (N³LO)

systematicssymmetry of QCD

c) Lattice QCD

• NN & YN, YY pot.

HAL collaboration....

Epelbaum, Heberer, Kaiser, Schwenk, ...

Illinois, Argonne, Bonn,

Many-body calculations (non-perturbative for soft nucleons)

- Hartree-Fock, BHF, ...
- Quantum Monte-Carlo
 Carlson. Gandolfi, ...
- Variational

Pandharipande, Takano, Togashi, ...

5/3 I

microscopic calculations at $n_B = 1-2 n_0$: consistent with empirical facts

For NS applications (n_B=1-10n₀), the fundamental question is: convergence of many-body forces

e.g. I) parameterized pure neutron matter EoS [Gandolfi+, 2009]

 $\sim kin. + 2\text{-body} \sim 3\text{-body}$ $\varepsilon = n_0 \left[(12 \pm 1 \,\text{MeV}) \left(\frac{n_B}{n_0} \right)^{1.45 \pm 0.05} + (4 \pm 2 \,\text{MeV}) \left(\frac{n_B}{n_0} \right)^{3.3 \pm 0.3} \right]$

e.g.2) Akmal-Pandharipande-Ravenhall EoS (APR 98) [Table V of APR paper]

pure	n	<mark>2</mark> –body int.		3 –body int.			
matter	n _B	$\langle v_{ij}^{\pi} \rangle$	$\langle v_{ij}^R \rangle$	$\langle V_{ijk}^{2\pi} \rangle$	$\langle V^R_{ijk} \rangle$	4-, 5- or more-body forces	
	n ₀	-4.1	-29.9	1.2	4.5	grow rapidly!	beyond ~ $2n_0$ $\langle V_{N-body} \rangle \sim (n_B/n_0)^N$
	2 n ₀	-25.1	-36.4	-17.4	30.6		
	<mark>3</mark> n ₀	- 35.7	-44.7	- 34.1	78.0		
4	4 n ₀	- 52.2	-41.1	- 76.9	160.3		

Akmal-Pandharipande-Ravenhall EoS (APR 98)

- I, Theoretical orientation: high & low density limits
- 2, NS constraints on EoS : hints for soft-stiff EoS
- 3, 3-window modeling & the properties of matter

4, Summary & Outlook

GWs from NS-NS mergers

|4/3|

Tidal deformation \rightarrow accelerated phase evolution

I) grav. fields from star $B\,\,\rightarrow\,$ the deformation of star A

2) deformed energy density \rightarrow quadrupole grav. fields

Tidal deformation \rightarrow accelerated phase evolution

16/3Dimensionless tidal deformability $\rightarrow R_{NS}$ more common to use $\overline{\Lambda(M)} = 32 \frac{\lambda G}{R^5}$ What GW analyses measure: combination of Λ for star | & 2 : $\widetilde{\Lambda} = \frac{16}{13} \frac{(M_1 + 12M_2)M_1^4 \Lambda_1 + (M_2 + 12M_1)M_2^4 \Lambda_2}{(M_1 + M_2)^5}$ (measured) 2-parameters: $M_1 \& M_2$

17/31

18/31

 \rightarrow we consider a **soft-stiff** EoS with **crossover** (or weak 1st order)

- I, Theoretical orientation: high & low density limits
- 2, NS constraints on EoS : hints for soft-stiff EoS
- 3, 3-window modeling & the properties of matter

4, Summary & Outlook

20/3 I Quark-Hadron continuity (some history)

- I, Percolation picture Baym-Chin 1978; Satz-Karsch 1979,...
- 2, In the context of color-superconductivity (CSC) Schafer-Wilczek 1998 symmetry: hadron super fluidity ~ color-flavor-locked (CFL) phases same order parameters : $\langle BB \rangle \sim \langle (qqq)^2 \rangle$ color singlet, but break $U(I)_B$; chiral sym. is also broken confinement-Higgs complementarity Fradkin-Shenkar 1979 dynamics: the interplay between chiral & diquark proposal of double CEP Kitazawa+ 2002; Hatsuda+2006; Zhang+ 2009, ...
- 3, Inferred from the NS constraints (for $2n_0 5n_0$) Masuda+2012, Kojo+2014, soft-stiff EoS & causality \rightarrow **crossover** or **weak** 1st order

Traditional hybrid construction

21/31

- Key (implicit) **assumptions** :
 - I) Hadronic & quark phases are distinct (e.g. by order parameters)
 - 2) Both P_H and P_O are reliable in the overlap region
- → by construction, Q-EoS must be much softer than H-EoS (unless fine tuning worked out)

+ **important** constraints (charge neutrality & β - equilibrium & color-neutrality)

Goal:

Delineate the properties of matter through $(G_s, H, g_V)_{@5-10n0}$

minimal

minimal

24/3I

minimal + vector int.

25/3I

minimal + vector int.

25/3 I

+ attractive color-magnetic int.

+ confinement in dilute matter

M-R curves for QHCI8

28/3I

 $G_s \sim G_v \sim H$ (i) $n_B = 5 - 10 n_0 \rightarrow O(G_s^{vac})$

EoS from aLIGO vs QHC18

aLIGO & Virgo new analyses for GW170817 arXiv: 1805.11581 [gr-qc]

EoS constraints with

tidal deformability

causality

29/3 I

Finite T vs low T crossover

Summary

I, Neutron star M-R relations \rightarrow Direct Info of QCD EoS

2, Hints for **Soft-Stiff** EoS \rightarrow crossover or weak Ist order P.T. for 2-5n₀

3, Quark matter EoS can be stiff; the impression of soft quark EoS was largely biased by traditional hybrid construction...

4, $(Gs, G, H)_{@5-10n0} \sim Gs^{vac} \rightarrow Hints for non-pert. gluons$

To Do (work in progress...)

Then the matter should be heated up \rightarrow predictions for HMNS

excitation modes

the phase structure

31/31

Chiral sym. breaking & restoration

Ist order chiral transition (typical quark models)

Braking density evolution: $I^{st} \rightarrow crossover$

Now add density-density repulsion

 $\Delta H \sim g_V (n_B)^2$

braking the evolution of n_B

 \rightarrow milder changes in M

Details of int. are crucial

Small R_{1.4} & soft EoS @ 1-2 n₀?

• Thermal X-rays analyses for NS radii :

- Suleimanov et al (2011) : > 13.9 km
- •Ozel & Freire (2015) : 10.6 ± 0.6 km
- •Guillot et al. (2011) : $9.1^{+1.3}_{-1.5}$ km
- •Steiner et al (2015) : 12.0 ± 1.0 km

systematic uncertainties : distance to NS, atmosphere of NS, uniform T distributions,...

8/22

3/28

 $R_{14} = 11-13 \text{ km}$

Di-fermion pairing

- Fermi surface effects larger phase space for low E excitations
- Can happen in the presence of chiral condensate

(coexistence)

24/36

Chiral sym. can remain broken from hadron to CSC phases

 $M_{diff} \sim 1.5 M_{TOV}$

3) differentially rotating NS : Numerical GR

(short-live; dissipation and magnetic braking \rightarrow collapse)

2, soft-stiff EoS

soft at low $n_B (< 2n_0)$ & stiff at high $n_B (> 5n_0)$

Design sensitivity

To detect rare events

1pc = 3.26 lyr

- our galaxy (milky-way) ~ 31-55 kpc
- to the edge of universe ~ 14 Gpc
- detector horizon
 - aLIGO
 - Livingston ~ 218 Mpc
 - Hanford ~ 107 Mpc
 - Virgo ~ 58 Mpc
- expected detection rate
 0.1 100 events/year

• GW170817 happened at 40^{+8}_{-14} Mpc

14/28

Fig. from PRL 119, 161101 (2017)

 aLIGO: signal-to-noise = 32.4 ! (largest GW signal ever)

15/28

- Virgo did not find it
 GWs from the blind spot of Virgo
 → strongly constrain the location
 → trigger follow-up EM studies
- clear signal 20 Hz 1kHz
 inspiral tidal deformed phases
 BH ring-down not measured
 (larger noise at higher frequency)
- EM signals from objects just after merger

So we need dynamical arguments

- Troubles of purely hadronic EoS at $n_B > \sim 2n_0$
 - Convergence: 2-body forces ~ 3-body forces
 - Hyperon problems (softening)

Most typical attempts

Put by hand

Exclusion volume effect for baryons or repulsive forces universal for all flavors

Hard core is not universal

consistent with 6q calculations in constituent quark models;

Pauli-blocking x color magnetic interactions (Oka-Yazaki)

21/28

Can we block the appearance of the strangeness to $n_B \sim 5n_0$??

27/28 **Summary** \rightarrow hot EoS, etc. **Early inspiral Tidally deformed** Gamma-ray bursts, kilonova **Hyper Massive NS** ~ 1000 km (HMNS) BH $\rightarrow M_{max}$ of spinning NSs $\rightarrow R_1 \& R_2$ $\rightarrow M_1 \& M_2$ spins quark-gluon plasma Nuclear -> Interpolated EoS < -Quark models (non-confining) (pQCD) ~150 MeV hadrons \rightarrow quarks n_R hadron nuclear color superconductivity resonance gas ~ 2n₀ ~ (4-7)n₀ ~ 100 n_o

 μ_B

 M_N

• GW detectors :

aLIGO (O3) VIRGO KAGRA LIGO India, ...

Template 1: post-Newtonian for f < ~1kHz

Cutler et al., PRL70, 2984 (1993)

$$\frac{d\mathcal{N}_{cyc}}{d\ln f} = \frac{5}{96\pi} \frac{1}{\mu M^{2/3} (\pi f)^{5/3}} \left\{ 1 + \left(\frac{743}{336} + \frac{11}{4} \frac{\mu}{M}\right) x \right\}$$
Advanced LIGO DESIGN SENSITIVITY S.] $x^2 + O(x^{2.5}) \right\}.$

$$\sum_{i=1}^{N} \frac{10^{-21}}{10^{-22}} \frac{5}{10^{-24}} \frac{10^2}{10^2} \frac{10^2}{10^2} \frac{10^3}{10^3}$$

APR~11.1km, H4~13.6km, MS1~14.5km

Table 1: Key Properties of GW170817		
Property	Value	Reference
Chirp mass, \mathcal{M} (rest frame)	$1.188^{+0.004}_{-0.002} M_{\odot}$	1
First NS mass, M_1	$1.36 - 1.60 M_{\odot} ~(90\%, { m low ~spin ~prior})$	1
Second NS mass, M_2	$1.17 - 1.36 M_{\odot} ~(90\%, { m low ~spin ~prior})$	1
Total binary mass, $M_{\text{tot}} = M_1 + M_2$	$pprox 2.74^{0.04}_{-0.01} M_{\odot}$	1
Observer angle relative to binary axis, $\theta_{\rm obs}$	$11-33^\circ~(68.3\%)$	2
Blue KN ejecta $(A_{\rm max} \lesssim 140)$	$pprox 0.01 - 0.02 M_{\odot}$	e.g., 3,4,5
Red KN ejecta $(A_{\text{max}} \gtrsim 140)$	$pprox 0.04 M_{\odot}$	e.g., 3,5,6
Light <i>r</i> -process yield $(A \lesssim 140)$	$pprox 0.05 - 0.06 M_{\odot}$	
Heavy <i>r</i> -process yield $(A \gtrsim 140)$	$pprox 0.01 M_{\odot}$	
Gold yield	$\sim 100-200 M_\oplus$	8
Uranium yield	$\sim 30-60 M_\oplus$	8
Kinetic energy of off-axis GRB jet	$10^{49} - 10^{50} { m erg}$	e.g., 9, 10, 11, 12
ISM density	$10^{-4} - 10^{-2} \ { m cm}^{-3}$	e.g., 9, 10, 11, 12

(1) LIGO Scientific Collaboration et al. 2017c; (2) depends on Hubble Constant, LIGO Scientific Collaboration et al. 2017d; (3) Cowperthwaite et al. 2017; (4) Nicholl et al. 2017; (5) Kasen et al. 2017; (6) Chornock et al. 2017; (8) assuming heavy r-process (A > 140) yields distributed as solar abundances (Arnould et al., 2007); (9)Margutti et al. 2017; (10) Troja et al. 2017; (11) Fong et al. 2017; (12) Hallinan et al. 2017

Delineating QCD matter from HOT EoS^{3/28}

(Ding-Karsch-Makherjee, review 2015)

derivatives of EoS

 \rightarrow T_c: universal for different flavors

6/36 Dimensionless tidal deformability $\rightarrow R_{NS}$ more common to use $\Lambda(M) = 32 \frac{\lambda G}{R^5} = \frac{2}{3} k_2 \left(\frac{R}{GM}\right)^5 \qquad (k_2: \text{Love number})$ What GW analyses measure: combination of Λ for star I & 2 : (measured)

$$\Lambda(M) = 32 \frac{\lambda G}{R^5}$$