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CGC: Color glass condensate,  a QCD matter  dominated by saturated  gluons, 

which can be treated as a classical field in a good approximation.  
(L. McLerran and R. Venugopalan)

Glasma: the QCD matter just after the collision, the soft part of which is created by

CGC as the source, and may be treated  in the semiclassical aprox.
(C. Lappi and L. McLerran)

Basic facts:  chaoticity of classical Yang-Mills field, 

fluctuation-induced instabilities of Glasma , like Weibel, Nielsen-Olesen ,  

parametric instabilities .

The success of  the analyses based on the fluid dynamics suggests that considerable amount 

of entropy should have been produced before the QGP formation 

Thermalization time ~ (1.0) fm/c 



So far, the isotropization of the pressure has been (almost exclusively)

used as a measure of the thermalization or the rate of relaxation to 

the fluid dynamical stage.

The purpose of the present work
We try to directly calculate the entropy production and  its time-evolution

as well as 

the isotropization of the pressure of the YM system, 

using a quantum distribution function in the semi-classical approximation.
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Chaotic behavior of Classical Yang-Mills Field

Yang-Mills action

CYM Hamiltonian in temporal gauge (A
0
=0)

T.K., B.Mueller, A. Ohnishi, A. Schaefer, T.T. Takahashi, A.Yamamoto,

PRD82 (2010)
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Time evolution of the distance btw two points in phase space

T.K., B.Mueller, A. Ohnishi, A. Schaefer, T.T. Takahashi, A.Yamamoto,

PRD82 (2010)

Distance between the adjacent fields: 

One can see an exponential growth of the distance, reminiscent of chaos.
However, initial instability seems to play some role in the initial stage.

Lyapunov exponents:



7

Numerical evaluation of Lyapunov exponents: local vs. intermediate ones

B.Muller and A. Trayanov, PRL 68(1992); TK, B.Muller, A. Ohnishi, A. Schafer,

TT. Takahashi,A.yamamoto, PRD82(2010) 

b) When 



is infinitesimal,

a) For a finite  , is diagonalized 

to give the intermediate Lyapunov coefficients;

the Lyapunov coefficients 

characterize the initial dynamics

which may depend on the initial 

condition.

Lyapunov exponents:

How many are there 

positive

Lyapunov exp.’s  λ 
i
>0?  



Typical Lyapunov spectrum

Sum of all Lyapunov exponent = 0 (Liouville 

theorem)

1/3 Positive, 1/3 negative, and 1/3 zero (or 

pure imag.)

1/3 of DOF = gauge DOF

Iida, Kunihiro, B.Müller, A.Ohnishi, Schäfer, Takahashi ('13)

total DOF=83x3x3x2

=9216
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Time

Index

Time evolution of the distribution of 

the Lyapunov exponents

Const. B background

Chaoticity of CYM

Kunihiro, Müller, AO, Schäfer, Takahashi, Yamamoto ('10)
Iida, Kunihiro, B.Müller, AOhnishi, Schäfer, Takahashi ('13)

Instability

spread

exp. growth

(λ)

t=0

t=50

t=40
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Coarse graining → Entropy

exp. growth
complexity 

of phase space dist.

Chaoticity and Entropy

Kolmogorov-Sinai entropy rate 
(Krylov, 1950, Kolmogorov, 1959, Sinai,1962)

Sensitivity to initial conditions:

( ) (0)it

i iX t e X
 = λ 

i
>0: positive Lyapunov exponent

Mixing and Information loss:

= a partition of the phase space
1T −
: backward time-evolution operator

Pesin theorem:
0i

KS ih





=

Q

Y. Pesin ,

Russ. Math. Surv. 32 (1977),55



What entropy?
V. Latora and M.Baranger, PRL (’99);

M. Baranger, V. Latora and  A.Rapisarda, 

Chaos, Soliton, Fractals (2002)
A generalized Cat map:

The slope of the linear rise coincides with the KS entropy, 

hKS=2.48,1.57.0.96, 0.69, calculated from the positive Lyapunov exponent .

:cell

( ) ( ) log ( )i i

i

S t p t p t= −
Coarse-grained Boltzmann-Gibbs entropy:

pi(t): The prob. that the state of the system falls incide

the cell ci of the phase space at t.

2.48
0.69

Lyapunov exp.:

＝ｈKS



Chaos Entropy production,

How about in Quantum Mechanics?

An essential role of the coarse graining (averaging of orbits)Notice:

How implement  a coarse graining in Quantum Mechanics?

We have seen for a map that

Which is true for other (continuous) classical systems.
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Entropy production in quantum systems

Entropy in quantum mech.

Time evolution is unitary, then the von Neumann entropy is const.

Two ways of entropy production at the quantum level

Entanglement entropy

Partial trace over environment → Loss of info. → entropy production

Coarse grained entropy

Coarse graining → entropy production

Yes, we can define it even in isolated systems such as HIC and early univ.!



Distribution function in Quantum Mechanics

The Wigner function

Caution ! 
It is a mere (Weyl) transformation of the density matrix,   a pure QM object, and can be 

negative, hence no ability of describing entropy production. 

The need of incorporation of coarse graining which inevitably enters through the 

observation process.  

1

2Inverse tr.

Weyl-Wigner tr. of op.

Ex.

a product of op.’s: Moyal prod.

Exp. val. of any observable including

pressure can be evaluated.

http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}
/langle /hat{A}/rangle %3D/int /frac{d /vec{p} d/vec{q}}{(2 /pi /hbar)^n}f_W(/vec{p},/vec{q};t)A_W(/vec{p},/vec{q};t)
/end{align*}
http://texclip.marutank.net/texclip.php?s=/begin{align*}
f_W(/vec{p},/vec{q};t)%3D/int d/vec{/eta}/exp(-i /vec{p}/cdot /vec{/eta}//hbar)/langle/vec{q}%2B/vec{/eta}/2|/rho|/vec{q}-/vec{/eta}/2/rangle
/end{align*}


Husimi function

We consider Gaussian smeared Wigner function, which leads to Husimi function.

Husimi function
[Husimi(1940)]

More generally, it is written in terms of a coherent state

Husimi function is semi-positive definite and is considered as a 

quantum distribution function.

For the pure state

Coarse-grained but within the amount consistent with the  uncertainty 

principle of QM. The Wigner function can be obtained uniquely from the

Husimi function with

http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}
/rho%3D|/phi/rangle/langle /phi|
/end{align*}
http://maru.bonyari.jp/texclip/}d /vec{q'}}{(/pi /hbar)^n}/exp(-/frac{1}{/Delta /hbar}(/vec{p}-/vec{p'})^2-/frac{/Delta}{/hbar}(/vec{q}-/vec{q'})^2)f_W(/vec{p'},/vec{q
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}
f_H(/vec{p},/vec{q};t)%3D/langle /vec{/alpha}|/hat{/rho}|/vec{/alpha}/rangle
/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}
|/vec{/alpha}/rangle
/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}
%3D|/langle/vec{/alpha}|/phi/rangle|^2/geq0
/end{align*}
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Husimi Function

A simple example with instability

Inverted Harmonic Oscillator

exponential growth / shrink

Wigner function

Husimi function

Husimi

Wigner

t=0 t=2/λ 

growth

shrink

growth

finite

~ exp( λt )

B. Muller, A. Schaefer, A. Ohnishi and 

T.K., PTP 121(2008),555

I.C.:Quantum dist
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Husimi-Wehrl Entropy (1)

Husimi-Wehrl entropy = Wehrl entropy using Husimi function
Wehrl ('78), Husimi ('40), Anderson, Halliwell ('93), Kunihiro, Muller, Ohnishi, Schafer ('09).

Coarse grained entropy by minimum wave packet

Harmonic oscillator in equilibrium

Min. value S
HW

=1 (1 dim.) from smearing
Lieb ('78), Wehrl ('79)

Husimi-Wehrl = von Neumann

at high T (T/ ℏω >> 1)
Anderson, Halliwell ('93), 

Kunihiro, Muller, AO, Schafer ('09).

Husimi-Wehrl

von Neumann
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Husimi-Wehrl Entropy (2)

Inverted Harmonic Oscillator

Many Harmonic & Inverted Harmonic Oscillators

~ exp( λt ), λ=Lyapunov exp.

independent of Δ

Classical unstable modes plays an essential role

in entropy production at quantum level.

• The growth rate of the H-W entropy is given by the sum of the 

positive Lyapunov exponents  (KS entropy) in the classical system.

• Conversely, KS entropy even gives the growth rate of the quantum entropy

as given by H-W entropy.



Time evolution

Semi-classical approximation

With canonical EOM,

Vanishes for HO.

Gauss smearing

An alternative way (we do not take): Cf. H.-M. Tsai, B. Muller, 

Phys.Rev. E85 (2012) 011110.

The truncated Wigner

function apprach
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Time-evolution of Wigner function in semi-classical approx. and its sampling

t
[2] (p'+p, q'+p)

Gauss (p,q)

[3] (p'', q'')

Gauss (p+p'-p'', q+q'-q'')

[1] (p'(0), q'(0))

from init. dist.

(p', q')

(p''(0), q''(0))

→ f(p'',q'')

(p(0),q(0))

(p,q)
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Husimi-Wehrl Entropy in Multi-Dimensions (1)

Challenge: Evolution of Husimi fn. & Multi-Dim. integral

Monte-Carlo + Semi-classical approx.
H.Tsukiji, Iida, Ohnishi, Takahashi, TK, PTEP2015,083A01;PRD94,091502 

(R )(2016);PTEP(2018)013D02

Two-step Monte-Carlo method

Monte-Carlo integral +  Liouville theorem [ f
W

(q,p,t)=f
W

(q
0
,p

0
,t=0) ]

Test particle method: Test particle evol. + Monte-Carlo integral
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Husimi-Wehrl Entropy in Multi-Dimensions (2)

Two-step Monte-Carlo integral

Test particle method: test particle evolution + MC integral

Outside MC → S Inside MC → f
H

Tsukiji, Iida, Kunihiro, Ohnishi, Takahashi, PTEP(2015),PRD(2016),PTEP(2018)

Liouville
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“Yang-Mills” Quantum Mechanics

Yang-Mills quantum mechanics

Quartic interaction term → almost globally chaotic 
S. G. Matinyan, G. K. Savvidy, N. G. Ter-Arutunian Savvidy, Sov. Phys. JETP 53, 421 (1981); A. 

Carnegie and I. C. Percival, J. Phys. A: Math. Gen. 17, 801 (1984); P. 

Dahlqvist and G. Russberg, Phys. Rev. Lett. 65, 2837 (1990).
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YMQ:Monte-Carlo + Semi-Classical Approx.

Semi-Classical + MC methods reproduce mesh integral values of S
HW

.

Two-step MC results converge from above.

Test particle + MC results

converge from below.

Tsukiji, Iida, Kunihiro, Ohnishi, Takahashi, PTEP2015

H.-M. Tsai, B. Muller, Phys.Rev. E85 (2012) 011110.

Test-particle method combined with moment applied

directly to EOM of Husimi function  up to ℏ2 corrections

Tsai-Muller
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YMQ:Convergence



Another QM system with a few degrees of freedom with a chaotic behavior in

the classical limit: 

Modified Quantum Y-M system

Poincare map:

ε= 0.1
0.2

1.0

Integrable

case



HW entropy production in the modified quantum YM model

in the chaotic parametric regime H.Tsukii et al (2015)
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Husimi-Wehrl entropy of Yang-Mills field in semiclassical approx.

Husimi-Wehrl entropy of CYM on the lattice:

D=576 on 43 lattice for N
c
=2 → 1152 dim. integral, average exponent ~ D

(problem with large deviation !)

Hartree approximation

Hartree approx. gives error of 10-20 % in HW entropy 

for 2d quantum mech.

Tsukiji, Iida, Kunihiro, Ohnishi, Takahashi,PRD94(2016),091502
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Check in the case of quantum mechanical systems

Product ansatz gives consistent results within 10% error bar.

H.Tsukiji, H.Iida, T.K., A.Ohnishi,  and T.T.Takahashi (2015,2016)
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HW entropy production YM theory with a generic I.C. with fluctuations
Tsukiji, Iida, Kunihiro, Ohnishi, Takahashi,PRD94(2016),091502
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:Glasma IC.

H.Tsukiji,TK, A.Ohnishi and T.T.Takahashi, PTEP (2018),013D02
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HW entropy production YM theory with the `Glasma’ I.C. with fluctuations

H.Tsukiji,TK, A.Ohnishi and T.T.Takahashi, PTEP (2018),013D02
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Isotropization of pressures in YM theory with the `Glasma’ I.C. with fluctuations

H.Tsukiji,TK, A.Ohnishi and T.T.Takahashi, PTEP (2018),013D02
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Discussion 1: HW vs. thermal entropy
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Discussion 2: HW vs. the Boltzmann time due to H. Tsukiji



Summary
1. We have proposed to use Husimi function to describe isolated quantum

systems, so that an entropy (Husimi-Wehrl entropy) is defined.

2. For quantum systems whose classical limit are chaotic or unstable, 

the growth rate of their Husimi-Wehrl entropy is given by the KS entropy

(the sum of positive Lyapunov exponents) in the classical system.

3.The classical  Yang-Mills system shows chaotic behavior.

4. To trigger the instability leading to the chaotic behavior, the initial 

fluctuations as given by the initial quantum distribution is necessary.

5. We have shown that the semi-classical approximation makes the numerical

evaluation of the Husimi function and the H-W entropy feasible even for

many-body systems including the QFT.

6. We have shown that the entropy is created in the quantum Y-M theory,

which reflects the chaotic behavior in the classical limit.



Future problems

• Clarify the physical meaning of product ansatz.

• Calculate H-W entropy on a larger lattice.

• Case of expanding geometry



Back Ups
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Ⅱ. Equipartition



Some instabilities relevant to the initial stage of  CYM 

Weibel instability:  S. Mrowczynski(1988) known in U(1) plasma physics. E.S.Weibel (1959)

Nielsen-Olesen instability for charged particles with spin under Mag. field.

recall the Landau level in a mag. Field! : H.Nielsen and P.Olesen (1978), 

H.Fujii and K. Itakura (2008); H.Fujii, K. Itakura and A. Iwazaki (2009) 

Parametric Instability under the color magnetic field with a genuine non-Abelian gauge

S. Tsutsui, H.Iida, A. Ohnishi and TK, (2015), S.Tsutsui, A.Ohnishi and TK (2016)

B.G. , the  solution to which reads

Then the fluctuation fields are obeyed by the equation like

which admits instability bands according to Floquet theory (Bloch th.)




