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Introduction

I Neutron stars are natural laboratories for studying the matter at low
temperatures, large baryon densities nB = (5− 10)n0 and large
isospin asymmetries β =

nn−np

nB
∼ 1, where n0 � nuclear saturation

density and nn, np - neutron and proton number densities

I Many possible phases of dense matter are relevant for NS physics:

I Liquid-gas phase transition (PT) at the inner crust-core boundary
I Hadronic phase with more baryons species - hyperons, ∆
I Meson (K, π, ρ−) condensates
I Quark-hadron (QH) PT ← this work

I Phases of quark matter - color superconductivity, dual chiral density
wave, etc.

I The most restrictive constraint comes from the maximum precisely
measured NS mass of 2.01± 0.04M�

I A lot of new data is expected from modern tools ⇒ new constraints:

I Simultaneous measurements of NS masses and radii
I New gravitational wave detections



Quark-hadron phase transition
Enforced local neutrality � Maxwell construction
Local electric neutrality condition requires a speci�c µe = µe(µB), so
only one chemical potential µB is left to ful�ll the Gibbs conditions

µ
(H)
B = µ

(Q)
B ≡ µc, P (Q)(µc) = P (H)(µc) ≡ Pc
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Baryon density and energy density ε is discontinuous across the phase
transition with the energy jump ∆ε = ε(n2)− ε(n1).



Third family of compact stars (twin stars)
With a Maxwell construction a disconnected branch of compact stars may appear [U.
Gerlach Phys.Rev. 172 1235 (1968)] if the quark matter is su�ciently sti� at large
nB , with the condition for the instability: [Z.F. Seidov Sov.Astron. 15 347 (1971)])

∆ε

εc
≥

1

2
+

3

2

Pc

εc
, εc ≡ ε(n1), ∆ε = ε(n2)− εc

[D. Alvarez-Castillo,D. Blaschke,A. Grunfeld,V. Pagura arXiv:1805.04105] - for QH PT

A measurement of NSs with same masses
and di�erent radii would prove the exis-
tence of a �rst-order PT, e.g. QH PT ⇒
QCD critical point, meson condensation,
etc.

More consequences - second neutrino
burst and starquake during the NS for-
mation; extra energy release for blowing
o� the supernova envelope [A.B. Migdal
et al. Phys.Rept.192(1990) 179-437 ]



Phase transition with two conserved charges
In general, the conservation laws can be obeyed globally, not locally [N.K.

Glendenning Phys.Rev. D46 (1992) 1274-1287]

The Gibbs conditions

µ
(H)
B = µ

(Q)
B , µ(H)

e = µ(Q)
e , P (H)(µ

(H)
B , µ(H)

e ) = P (Q)(µ
(Q)
B , µ(Q)

e )

now have solutions over a range of µB

A puzzle - mixed phase or Maxwell construction?



Finite-size e�ects

Coulomb interaction
Tends to break up the like-charged
regions into smaller ones

vs Surface tension
Requires minimization of the
surface

⇒ formation of structures with d = 3,2,1 (droplets, rods, slabs)
Thin di�useness layer ∼ 1 fm ⇒ can describe the surface contribution using
the surface tension parameter σ � not known and hard to calculate; usually

treated as a parameter
For the surface tension σ larger, than some critical σc formation of structures

becomes energetically unfavorable

solid lines - energy density of the
droplets for various σ [MeV/fm2]
relative to σ = 0
dashed line - Maxwell construc-
tion

adapted from [Heiselberg Pethick Staubo Phys.Rev.Lett. 70 (1993) 1355-1359]

Critical surface tension σc depends on the model



Solution to the puzzle - treatment of the electric �eld

Wigner-Seitz approximation with the cell radius RW (consider d=3)
Self-consistent treatment of electrostatic potential: µe → µe − V (r)
Equations of motion for the electric �eld potential in a phase p = H,Q

∆V (p)(r) = 4πe2n
(p)
ch [µB , µe − V (p)(r)]

⇒ nonuniform electron density distribution and charge screening
Linearized version de�nes Debye screening lengths in a phase p = H,Q

∆δV (p)(r) = 4πe2n
(p)
ch [µB , µe − Vref ] + (λ

(p)
D )−2δV (r),

δV (p)(r) = V (r)− V (p)
ref , (λ

(p)
D )−2 = −4πe2

(∂n(p)
ch

∂µe

)
µB

Linearized equation can be solved analytically with matching and boundary
conditions (R - radius of a droplet)

V (Q)(R) = V (H)(R), (
d

dr
V (Q))(R) = (

d

dr
V (H))(R), (

d

dr
V (H))(RW ) = 0

[D.N. Voskresensky, M. Yasuhira, T.Tatsumi PLB 541 (2002) 93-100, NPA 723 (2003)

291-339]



Schematic e�ect of the screening
1. Case R ∼ λD: smooth non-uniform electron density distribution

λD ∼ 1/e2 � di�useness layer thickness l ∼ 1 fm ⇒ neglected in nB(r) pro�le
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2. Case of large droplets R� λ
(Q,H)
D : electric �elds contributes only in the

thin border layer ⇒ contribution to the e�ective surface tension

V(r)

e

nB(r)

R

R
(Q, H)

D

RW r

p
(Q), bulk

F, e

p
(H), bulk

F, e
   n

(H)

ch = 0      n
(Q)

ch = 0   

Far from the border � bulk solution with n
(Q,H)
ch = 0 � Maxwell case



Critical surface tension

In the large droplet limit the energy per cell is (in terms of ξ = R/λ
(Q)
D ,

no muons)

ε ' 3

βλ
(Q)
D

σ − σc
ξ

σc = λ
(Q)
D

αβ(α+ 4/3)

3(1 + α)2
, α =

λ
(Q)
D

λ
(H)
D

, β =
3(µ

(H),bulk
e )2

8πe2(λ
(Q)
D )2

,

The critical value σc comes entirely from the electrostatic contribution
For σ > σc energy minimization leads to

ξ →∞ ⇒ Maxwell construction

Model dependence resides in µ
(H)
e (µB), λ

(Q,H)
D (µB , µe)



Recent work

Similar structure formation has been studied for many phase transitions:

I Nuclear liquid-gas phase transition in NS crust
Both phases within the same model ⇒ no need to introduce the
surface tension parameter [T. Maruyama et al. PRC72 (2005) 015802]

Can be also studied using molecular dynamics
[A.S. Scheider et al. PRC88 (2013) no.6, 065807]

+ many, many more works...

I Kaon condensation
[T. Maruyama et al. PRC73 (2006) 035802]

I Quark-hadron phase transition
[N. Yasutake et al. PRC89 (2014) 065803,

X. Wu, H. Shen PRC96 (2017) no.2, 025802]

Current work: quark-hadron phase transition
How does the pasta a�ect the third family?

How strong is the model dependence?



E�ect on the EoS
Typical result for the pressure with pasta:

[N. Yasutake et al. PRC89 (2014)
065803]

Di�erent symbols - di�erent struc-
tures (�gure from [N. Yasutake et al.
Phys.Rev. D80 (2009) 123009])

Pressure goes between bulk Gibbs
(σ = 0) and Maxwell (σ > σc) con-
structions
Possible e�ect results in blurring of the
phase transition
Its e�ect on the third family can be
studied phenomenologically



Phenomenological description
[A.Ayriyan et al. Phys.Rev. C97 (2018) no.4, 045802, EPJ Web Conf. 173 (2018) 03003]

Simple parabolic interpolating construction in terms of P (µ)
(here and below µ ≡ µB):

P (µ) =


P (H)(µ), µ < µcH ,

a(µ− µc)2 + b(µ− µc) + Pc + ∆P, µcH < µ < µcQ,

P (Q)(µ), µcQ < µ,

∆P - the only parameter of the
construction - excess of the pres-
sure relative to the Maxwell caused
by the structures
The parameters µcH , µcQ, a, b are
determined by requiring the conti-
nuity of the pressure and its �rst
derivative over µ - the baryon den-
sity



E�ect on the third family

The construction in terms of P (n)
for a given pair of hadronic and
quark models for various ∆P ≡ ∆P

Pc

Disconnected third branch
can disappear if the PT is
blurred for a large enough ∆P

Does the construction describe the pasta adequately?
What is the relation between ∆P and the surface tension σ?



Logic of the work

1. Perform the numerical calculation of the pasta phases for a set of
hadronic and quark models, and for a range of σ

2. For each σ �nd the best �t parameter ∆P ⇒ ∆P (σ)
Maximum possible ∆max

P = ∆P (σ = 0)

3. Determine critical surface tension σc from the condition
∆P (σ > σc) ' 0

4. Investigate the model dependence of the σc and compare with
analytical predictions

5. Evaluate properties of neutron stars and compare with known
constraints



Need for a complicated model: contradicting constraints

Constraint for the pressure, obtained
from analyses of transverse and el-
liptic �ows in heavy-ion collisions

The maximum NS mass constraint
favors sti� EoS

Passed by rather soft EoSs
[ P. Danielewicz, R. Lacey, W.G. Lynch, Sci-

ence 298 (2002)]

NS cooling data ⇒ direct URCA
(DU) is not operative for most stars
⇒ constraint for the proton fraction

�gures from [T. Klahn et al. PRC74 (2006)]



Hadronic models: framework

E. E. Kolomeitsev and D. N. Voskresensky NPA 759 (2005) 373

I Walecka-type model with in-medium change of masses and coupling
constants of all hadrons in terms of the scalar �eld σ:

m∗
i = miΦi(σ), g∗mB = gmBχm(σ),

m = {mesons}, B = {baryons}, i = B ∪m

I Common decrease of hadron masses [Brown, Rho Phys. Rev. Lett. 66

(1991) 2720; Phys. Rept. 363 (2002) 85]:

m∗
N

mN
' m∗

σ

mσ
' m∗

ω

mω
'
m∗
ρ

mρ

I In the in�nite matter only ηm(σ) =
Φ2

m(σ)
χ2
m(σ) enter the EoS - we de�ne

them phenomenologically to pass the constraints

Below we use the dimensionless scalar �eld f(n) ≡ gσNχσ(σ)σ

mN



Working models
Initial model: KVOR [E.E.K., D.N.V. NPA 759 (2005)] described many
constraints, but only without hyperons ⇒ need for enhancement
Contributions of ω, ρ mesons to the pressure couple to the scalar �eld.
"Cut" mechanism: rapid decrease of ηm(f) quenches the growth of the scalar
�eld f(n) and leads to the sti�ening of an EoS
[K.A.M, E.E.K., D.N.V. PRC 92 (2015)].

KVORcut03 KVORcut02 MKVOR*

Based on KVOR New parameterization
Sharp decrease in ηω(f) Sharp decrease in ηρ(f)

Sti� in NS matter Sti� in NS matter,
and symmetric matter soft in symmetric matter

Flow constraint + Flow constraint � Flow constraint +

Twins - Twins + Twins +

I In this work we use the sti�er KVORcut02 (H1) and the softer
KVORcut03 (H2)

I They the maximum NS mass constraint with both hyperons (with help of
φ-meson) and ∆-isobars included
[E.E.K., K.A.M., D.N.V. Nucl.Phys. A961 (2017) 106-141]

I Many other constraints are also satis�ed

Scalar sector version of this method was successfully employed in recent work
[H.Pais, C.Provid�encia PRC94 (2016), M.Dutra et al. PRC93 (2016)]



Quark models
Generalized phenomenological functional for the quark matter (cf. the talk of
David Blaschke)
From a generic Lagrangian [M.Kaltenborn et al. Phys.Rev. D96 (2017) no.5,

056024]

L = Lfree − U(q̄q, q̄γ0q)

by expanding around the mean-�eld values 〈q̄q〉 = nS , 〈q̄γ0q〉 = nV and
neglecting the �uctuations one gets by the standard way

P =
∑
f=u,d

Pquasi({µ∗
f}, {m∗

f})− (U − nSΣS − nV ΣV ),

ΣS(nS , nV ) =
∂U

∂nS
, ΣV (nS , nV ) =

∂U

∂nV
, m∗

f = mf + ΣS , µ∗
f = µf − ΣV

Values of the nS , nV for a given set of µf follows from the self-consistency
condition

nS =
3

π2

∑
f=u,d

pF,f∫
0

dpp2
m∗
f

E∗
f

, nV =
∑
f=u,d

p3F,f
π2

, pF,f =
√

(µ∗
f )2 − (m∗

f )2,

E∗
f =

√
p2 +m∗2

f



Parameterization of the e�ective potential

U(nS , nV ) = D(nV )n
2/3
S + an2

V +
bn4
V

1 + cn2
V

.

I ΣS = D(nV )n
−1/3
S � quark e�ective mass diverges at nB → 0 :

simulation of the con�nement; D(nV ) = D0 exp(−α(nV · fm−3) �
reduction of the e�ective string tension in the medium.

I an2
V � ordinary vector repulsion

I Nonlinear repulsion � needed to control the existence of the third family.

Two models we use di�er by the value of α: Q1: α = 0.2 and Q2: α = 0.3

[M.Kaltenborn et al. Phys.Rev. D96 (2017) no.5, 056024]



Phenomenological results for models of this class

We found that the critical value of ∆P for the twin disappearance is 6− 7%
within these types of models [A.Ayriyan et al. Phys.Rev. C97 (2018) no.4, 045802]



Fitting the pasta results: example (Q1�H2)
without muons
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Fit works reasonably well, so the polynomial construction indeed can be used to
describe the e�ect of the structures



Determination of the critical surface tension

Thus obtained ∆P (σ) decreases with increase of σ � shown by symbols
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Critical surface tension: model dependence

Parameter of the phase transition, characterizing a pair of models: pressure on
the Maxwell line Pc - di�erent for all the models.
Filled symbols � numeric result,
Empty symbols � analytical result using the expression above
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grows almost linearly with
Pc

I Numeric result agrees well
with the analytical estimate

I If the energy jump is
su�ciently large, low Pc ⇒
low-mass twins. So these
models should be less
a�ected by the structures



Compact star structure: e�ect of muons

Usually in literature the contribution of muons to the pasta is neglected.
Results with muons � normal symbols; without muons � transparent
symbols
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I Muon contribution is indeed important

I Linear relation between σc and Pc holds

I Maximum possible ∆
(0)
P decreases and is less than 6%.



Results for MR relation

Compare the Maxwell case (solid) with the maximum ∆P case (dashed)
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I H1 model: The radius
di�erence shrinks, but both
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twins survive the inclusion of
the pasta phases
Consistent with results of
[A.Ayriyan et al. Phys.Rev.
C97 (2018) no.4, 045802]



Moment of inertia
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Tidal deformabilities

Can be constrained using gravitational-wave signals

Chirp massM≡ (M1M2)3/5

(M1 +M2)1/5
= 1.188M� for GW170817
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phase transition
Inclusion of mixed phase ⇒ the GW170817 could be a HS-HS merger



Summary
Results and conclusions

I The e�ect of the structures can
be approximately described by a
simple phenomenological
construction

I We found the critical surface
tension for a class of models in a
realistic calculation with
inclusion of screening

Critical surface tension is
proportional to the Maxwell
construction pressure

It is consistent with analytical
result

I Maximum possible e�ect of the
structures does not destroy the
third family

I GW170817 could be produced
by two hybrid stars with mixed
phase inside

I Muons cannot be neglected

Outlook
I Inclusion of strangeness

I Dependence on the symmetry energy? today's talk of Xuhao Wu

I Another class of models?

I Calculation of the surface tension is still needed to make a decisive conclusion


