Model dependence of the pasta-structure effects in the quark-hadron mixed phase

Konstantin A. Maslov

Joint Institute for Nuclear Research (JINR, Dubna, Russia) National Research Nuclear University "MEPhI", (Moscow, Russia)

Collaboration: N. Yasutake (Chiba Institute of Technology) A. Ayriyan (JINR), H. Grigorian (JINR), D. Blaschke (U. of Wroclaw, JINR, MEPHI), D. N. Voskresensky (JINR, MEPHI), T. Maruyama (JAEA), T. Tatsumi (Kyoto U.)

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

RSF project 17-12-01427

NFQCD 2018 Kyoto

Introduction

- ▶ Neutron stars are natural laboratories for studying the matter at low temperatures, large baryon densities $n_B = (5 10)n_0$ and large isospin asymmetries $\beta = \frac{n_n n_p}{n_B} \sim 1$, where n_0 nuclear saturation density and n_n, n_p neutron and proton number densities
- Many possible phases of dense matter are relevant for NS physics:
 - ► Liquid-gas phase transition (PT) at the inner crust-core boundary
 - \blacktriangleright Hadronic phase with more baryons species hyperons, Δ
 - Meson (K, π , ρ^-) condensates
 - ► Quark-hadron (QH) PT ← this work
 - Phases of quark matter color superconductivity, dual chiral density wave, etc.
- \blacktriangleright The most restrictive constraint comes from the maximum precisely measured NS mass of $2.01\pm0.04\,M_{\odot}$
- A lot of new data is expected from modern tools \Rightarrow new constraints:
 - Simultaneous measurements of NS masses and radii
 - New gravitational wave detections

Quark-hadron phase transition

Enforced local neutrality - Maxwell construction

Local electric neutrality condition requires a specific $\mu_e = \mu_e(\mu_B)$, so only one chemical potential μ_B is left to fulfill the Gibbs conditions

$$\mu_B^{(H)} = \mu_B^{(Q)} \equiv \mu_c, \quad P^{(Q)}(\mu_c) = P^{(H)}(\mu_c) \equiv P_c$$

Baryon density and energy density ε is discontinuous across the phase transition with the energy jump $\Delta \varepsilon = \varepsilon(n_2) - \varepsilon(n_1)$.

Third family of compact stars (twin stars)

With a Maxwell construction a disconnected branch of compact stars may appear [U. Gerlach Phys.Rev. 172 1235 (1968)] if the quark matter is sufficiently stiff at large n_B , with the condition for the instability: [Z.F. Seidov Sov.Astron. 15 347 (1971)])

$$\frac{\Delta\varepsilon}{\varepsilon_c} \ge \frac{1}{2} + \frac{3}{2} \frac{P_c}{\varepsilon_c}, \quad \varepsilon_c \equiv \varepsilon(n_1), \quad \Delta\varepsilon = \varepsilon(n_2) - \varepsilon_c$$

[D. Alvarez-Castillo,D. Blaschke,A. Grunfeld,V. Pagura arXiv:1805.04105] - for QH PT

A measurement of NSs with same masses More consequences - second neutrino and different radii would prove the exis- burst and starquake during the NS fortence of a first-order PT, e.g. QH PT \Rightarrow mation; extra energy release for blowing QCD critical point, meson condensation, off the supernova envelope [A.B. Migdal etc. et al. Phys.Rept.192(1990) 179-437]

Phase transition with two conserved charges

In general, the conservation laws can be obeyed globally, not locally [N.K. Glendenning Phys.Rev. D46 (1992) 1274-1287] The Gibbs conditions

$$\mu_B^{(H)} = \mu_B^{(Q)}, \quad \mu_e^{(H)} = \mu_e^{(Q)}, \quad P^{(H)}(\mu_B^{(H)}, \mu_e^{(H)}) = P^{(Q)}(\mu_B^{(Q)}, \mu_e^{(Q)})$$

now have solutions over a range of μ_B

A puzzle - mixed phase or Maxwell construction?

Finite-size effects

$\begin{array}{c} \mbox{Coulomb interaction} \\ \mbox{Tends to break up the like-charged} \\ \mbox{regions into smaller ones} \\ \mbox{\Rightarrow formation of structures with d = 3,2,1 (droplets, rods, slabs)} \\ \mbox{Thin diffuseness layer \sim 1 fm \Rightarrow can describe the surface contribution using the surface tension parameter σ - not known and hard to calculate; usually treated as a parameter} \end{array}$

For the surface tension σ larger, than some critical σ_c formation of structures becomes energetically unfavorable

solid lines - energy density of the droplets for various $\sigma~[{\rm MeV/fm^2}]$ relative to $\sigma=0$ dashed line - Maxwell construction

adapted from [Heiselberg Pethick Staubo Phys.Rev.Lett. 70 (1993) 1355-1359] Critical surface tension σ_c depends on the model

Solution to the puzzle - treatment of the electric field

Wigner-Seitz approximation with the cell radius R_W (consider d=3) Self-consistent treatment of electrostatic potential: $\mu_e \rightarrow \mu_e - V(r)$ Equations of motion for the electric field potential in a phase p = H, Q

$$\Delta V^{(p)}(r) = 4\pi e^2 n_{\rm ch}^{(p)}[\mu_B, \mu_e - V^{(p)}(r)]$$

 \Rightarrow nonuniform electron density distribution and charge screening Linearized version defines Debye screening lengths in a phase p = H, Q

$$\Delta \delta V^{(p)}(r) = 4\pi e^2 n_{\rm ch}^{(p)}[\mu_B, \mu_e - V_{\rm ref}] + (\lambda_D^{(p)})^{-2} \delta V(r),$$

$$\delta V^{(p)}(r) = V(r) - V_{\rm ref}^{(p)}, \quad (\lambda_D^{(p)})^{-2} = -4\pi e^2 \Big(\frac{\partial n_{\rm ch}^{(p)}}{\partial \mu_e}\Big)_{\mu_B}$$

Linearized equation can be solved analytically with matching and boundary conditions (R - radius of a droplet)

$$V^{(Q)}(R) = V^{(H)}(R), \quad (\frac{d}{dr}V^{(Q)})(R) = (\frac{d}{dr}V^{(H)})(R), \quad (\frac{d}{dr}V^{(H)})(R_W) = 0$$

[D.N. Voskresensky, M. Yasuhira, T.Tatsumi PLB 541 (2002) 93-100, NPA 723 (2003) 291-339]

Schematic effect of the screening

1. Case $R \sim \lambda_D$: smooth non-uniform electron density distribution $\lambda_D \sim 1/e^2 \gg$ diffuseness layer thickness $l \sim 1$ fm \Rightarrow neglected in $n_B(r)$ profile

2. Case of large droplets $R \gg \lambda_D^{(Q,H)}$: electric fields contributes only in the thin border layer \Rightarrow contribution to the effective surface tension

Far from the border – bulk solution with $n_{
m ch}^{(Q,H)}=0$ – Maxwell case

Critical surface tension

In the large droplet limit the energy per cell is (in terms of $\xi = R/\lambda_D^{(Q)}$, no muons)

$$\begin{split} \epsilon &\simeq \frac{3}{\beta \lambda_D^{(Q)}} \frac{\sigma - \sigma_c}{\xi} \\ \sigma_c &= \lambda_D^{(Q)} \frac{\alpha \beta (\alpha + 4/3)}{3(1+\alpha)^2}, \ \alpha &= \frac{\lambda_D^{(Q)}}{\lambda_D^{(H)}}, \ \beta &= \frac{3(\mu_e^{(H), \text{bulk}})^2}{8\pi e^2 (\lambda_D^{(Q)})^2}, \end{split}$$

The critical value σ_c comes entirely from the electrostatic contribution For $\sigma > \sigma_c$ energy minimization leads to $\xi \to \infty \Rightarrow$ Maxwell construction Model dependence resides in $\mu_e^{(H)}(\mu_B)$, $\lambda_D^{(Q,H)}(\mu_B, \mu_e)$

Recent work

Similar structure formation has been studied for many phase transitions:

- Nuclear liquid-gas phase transition in NS crust Both phases within the same model ⇒ no need to introduce the surface tension parameter [T. Maruyama et al. PRC72 (2005) 015802] Can be also studied using molecular dynamics [A.S. Scheider et al. PRC88 (2013) no.6, 065807] + many, many more works...
- Kaon condensation

[T. Maruyama et al. PRC73 (2006) 035802]

Quark-hadron phase transition
 [N. Yasutake et al. PRC89 (2014) 065803,
 X. Wu, H. Shen PRC96 (2017) no.2, 025802]

Current work: quark-hadron phase transition How does the pasta affect the third family? How strong is the model dependence?

Effect on the EoS

Typical result for the pressure with pasta:

Different symbols - different structures (figure from [N. Yasutake et al. Phys.Rev. D80 (2009) 123009])

Pressure goes between bulk Gibbs $(\sigma=0)$ and Maxwell $(\sigma>\sigma_c)$ constructions

Possible effect results in blurring of the phase transition

Its effect on the third family can be studied phenomenologically

Phenomenological description

[A. Ayriyan et al. Phys.Rev. C97 (2018) no.4, 045802, EPJ Web Conf. 173 (2018) 03003]

Simple parabolic interpolating construction in terms of $P(\mu)$ (here and below $\mu \equiv \mu_B$):

$$P(\mu) = \begin{cases} P^{(H)}(\mu), & \mu < \mu_{cH}, \\ a(\mu - \mu_c)^2 + b(\mu - \mu_c) + P_c + \Delta P, & \mu_{cH} < \mu < \mu_{cQ}, \\ P^{(Q)}(\mu), & \mu_{cQ} < \mu, \end{cases}$$

 ΔP - the only parameter of the construction - excess of the pressure relative to the Maxwell caused by the structures

The parameters μ_{cH}, μ_{cQ}, a, b are determined by requiring the continuity of the pressure and its first derivative over μ - the baryon density

Effect on the third family

The construction in terms of P(n)Disconnected for a given pair of hadronic and can disappear if the quark models for various $\Delta_P \equiv \frac{\Delta P}{P}$ blurred for a large enough Δ_P

third

branch

PΤ is

Does the construction describe the pasta adequately? What is the relation between Δ_P and the surface tension σ ?

Logic of the work

- 1. Perform the numerical calculation of the pasta phases for a set of hadronic and quark models, and for a range of σ
- 2. For each σ find the best fit parameter $\Delta_P \Rightarrow \Delta_P(\sigma)$ Maximum possible $\Delta_P^{\max} = \Delta_P(\sigma = 0)$
- 3. Determine critical surface tension σ_c from the condition $\Delta_P(\sigma > \sigma_c) \simeq 0$
- 4. Investigate the model dependence of the σ_c and compare with analytical predictions
- 5. Evaluate properties of neutron stars and compare with known constraints

Need for a complicated model: contradicting constraints

Constraint for the pressure, obtained from analyses of transverse and elliptic flows in heavy-ion collisions Passed by rather soft EoSs

[P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002)]

The maximum NS mass constraint favors stiff EoS

NS cooling data \Rightarrow direct URCA (DU) is not operative for most stars \Rightarrow constraint for the proton fraction

figures from [T. Klahn et al. PRC74 (2006)]

Hadronic models: framework

- E. E. Kolomeitsev and D. N. Voskresensky NPA 759 (2005) 373
 - Walecka-type model with in-medium change of masses and coupling constants of all hadrons in terms of the scalar field σ:

$$m_i^* = m_i \Phi_i(\sigma), \ g_{mB}^* = g_{mB} \chi_m(\sigma),$$

$$m = \{\text{mesons}\}, \ B = \{\text{baryons}\}, \ i = B \cup m$$

Common decrease of hadron masses [Brown, Rho Phys. Rev. Lett. 66 (1991) 2720; Phys. Rept. 363 (2002) 85]:

$$\frac{m_N^*}{m_N} \simeq \frac{m_\sigma^*}{m_\sigma} \simeq \frac{m_\omega^*}{m_\omega} \simeq \frac{m_\rho^*}{m_\rho}$$

In the infinite matter only η_m(σ) = Φ²_m(σ)/χ²_m(σ) enter the EoS - we define them phenomenologically to pass the constraints

Below we use the dimensionless scalar field $f(n)\equiv rac{g_{\sigma N}\chi_{\sigma}(\sigma)\sigma}{m_N}$

Working models

Initial model: KVOR [E.E.K., D.N.V. NPA 759 (2005)] described many constraints, but only without hyperons \Rightarrow need for enhancement Contributions of ω, ρ mesons to the pressure couple to the scalar field. "Cut" mechanism: rapid decrease of $\eta_m(f)$ quenches the growth of the scalar field f(n) and leads to the stiffening of an EoS [K.A.M, E.E.K., D.N.V. PRC 92 (2015)].

KVORcut03	KVORcut02	MKVOR*
Based on KVOR		New parameterization
Sharp decrease in $\eta_\omega(f)$		Sharp decrease in $\eta_ ho(f)$
Stiff in NS matter		Stiff in NS matter,
and symmetric matter		soft in symmetric matter
Flow constraint +	Flow constraint –	Flow constraint $+$
Twins -	Twins +	Twins +

- In this work we use the stiffer KVORcut02 (H1) and the softer KVORcut03 (H2)
- They the maximum NS mass constraint with both hyperons (with help of φ-meson) and Δ-isobars included
 [E.E.K., K.A.M., D.N.V. Nucl.Phys. A961 (2017) 106-141]
- Many other constraints are also satisfied

Scalar sector version of this method was successfully employed in recent work [H.Pais, C.Providência PRC94 (2016), M.Dutra et al. PRC93 (2016)]

Quark models

Generalized phenomenological functional for the quark matter (cf. the talk of David Blaschke)

From a generic Lagrangian [M.Kaltenborn et al. Phys.Rev. D96 (2017) no.5, 056024]

$$\mathcal{L} = \mathcal{L}_{\text{free}} - U(\bar{q}q, \bar{q}\gamma_0 q)$$

by expanding around the mean-field values $\langle \bar{q}q \rangle = n_S, \langle \bar{q}\gamma_0q \rangle = n_V$ and neglecting the fluctuations one gets by the standard way

$$P = \sum_{f=u,d} P_{\text{quasi}}(\{\mu_f^*\}, \{m_f^*\}) - (U - n_S \Sigma_S - n_V \Sigma_V),$$

$$\Sigma_S(n_S, n_V) = \frac{\partial U}{\partial n_S}, \quad \Sigma_V(n_S, n_V) = \frac{\partial U}{\partial n_V}, \quad m_f^* = m_f + \Sigma_S, \quad \mu_f^* = \mu_f - \Sigma_V$$

Values of the n_S, n_V for a given set of μ_f follows from the self-consistency condition

$$n_{S} = \frac{3}{\pi^{2}} \sum_{f=u,d} \int_{0}^{p_{\mathrm{F},f}} dp p^{2} \frac{m_{f}^{*}}{E_{f}^{*}}, \quad n_{V} = \sum_{f=u,d} \frac{p_{\mathrm{F},f}^{3}}{\pi^{2}}, \quad p_{\mathrm{F},f} = \sqrt{(\mu_{f}^{*})^{2} - (m_{f}^{*})^{2}},$$
$$E_{f}^{*} = \sqrt{p^{2} + m_{f}^{*2}}$$

Parameterization of the effective potential

$$U(n_S, n_V) = D(n_V) n_S^{2/3} + a n_V^2 + \frac{b n_V^4}{1 + c n_V^2}$$

- ► $\Sigma_S = D(n_V)n_S^{-1/3}$ quark effective mass diverges at $n_B \to 0$: simulation of the confinement; $D(n_V) = D_0 \exp(-\alpha(n_V \cdot \text{fm}^{-3}) - \text{reduction of the effective string tension in the medium.}$
- ▶ an_V^2 ordinary vector repulsion

▶ Nonlinear repulsion – needed to control the existence of the third family.

Two models we use differ by the value of α : Q1: $\alpha = 0.2$ and Q2: $\alpha = 0.3$

[M.Kaltenborn et al. Phys.Rev. D96 (2017) no.5, 056024]

Phenomenological results for models of this class

We found that the critical value of Δ_P for the twin disappearance is 6-7% within these types of models [A.Ayriyan et al. Phys.Rev. C97 (2018) no.4, 045802]

Fitting the pasta results: example (Q1-H2)

Fit works reasonably well, so the polynomial construction indeed can be used to describe the effect of the structures

Determination of the critical surface tension

Thus obtained $\Delta_P(\sigma)$ decreases with increase of σ – shown by symbols

There exists a systematic error due to numeric limitations: spatial grid step, maximum WS cell size and limited precision.

 Δ_P cannot be exactly zero for any σ

 Possible definition of the critical surface tension σ_c: filter out the error using the smoothing fit function

$$\Delta_P = \Delta_P^{(0)} \left(1 - \left(\frac{\sigma}{\sigma_c}\right)^{\alpha} \right)^{\beta}$$

shown by lines

Critical surface tension: model dependence

Parameter of the phase transition, characterizing a pair of models: pressure on the Maxwell line P_c - different for all the models.

Filled symbols – numeric result,

Empty symbols - analytical result using the expression above

Observations:

- Critical surface tension grows almost linearly with Pc
- Numeric result agrees well with the analytical estimate
- If the energy jump is sufficiently large, low P_c ⇒ low-mass twins. So these models should be less affected by the structures

Compact star structure: effect of muons

Usually in literature the contribution of muons to the pasta is neglected. Results with muons – normal symbols; without muons – transparent symbols

- Muon contribution is indeed important
- Linear relation between σ_c and P_c holds
- Maximum possible $\Delta_P^{(0)}$ decreases and is less than 6%.

Results for MR relation

Compare the Maxwell case (solid) with the maximum Δ_P case (dashed)

Moment of inertia

Vertical line - upcoming measurement of the moment of inertia

Tidal deformabilities

solid – Maxwell, dashed – bulk Gibbs dotted line: NS-HS with Maxwell H1-Q2 Models not passing the constraint still can be reconciled with it by the phase transition

Inclusion of mixed phase \Rightarrow the GW170817 could be a HS-HS merger

Summary

Results and conclusions

- The effect of the structures can be approximately described by a simple phenomenological construction
- We found the critical surface tension for a class of models in a realistic calculation with inclusion of screening Critical surface tension is proportional to the Maxwell construction pressure It is consistent with analytical result

Outlook

- Inclusion of strangeness
- Dependence on the symmetry energy? today's talk of Xuhao Wu
- Another class of models?
- Calculation of the surface tension is still needed to make a decisive conclusion

- Maximum possible effect of the structures does not destroy the third family
- GW170817 could be produced by two hybrid stars with mixed phase inside
- Muons cannot be neglected