Constraining the QCD equation of state in hadron colliders

Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017)

New Frontiers in QCD 2018 7th June 2018, Yukawa Institute for Theoretical Physics, Kyoto, Japan

The quark-gluon plasma (QGP)

A high-temperature phase of QCD where quarks are deconfined from hadrons (> 2×10¹² K)

It can be created in relativistic nuclear collider experiments

One can study the properties of the hot matter under strong interaction quantitatively

- Relativistic nuclear colliders: a gateway to the QGP
 - ▶ Relativistic Heavy Ion Collider (RHIC)@BNL, √s_{NN} = 5.5-200 GeV (2000-)
 - Large Hadron Collider (LHC)@CERN, √s_{NN} = 2.76-5.44 TeV (2010-)
 - ► FAIR@GSI, NICA@JINR, SPS@CERN, J-PARC@JAEA/KEK ... ?

A "standard model" of heavy-ion collisions

A "standard model" of heavy-ion collisions

A "standard model" of heavy-ion collisions

Hadronic decay and transport
 Interaction becomes weaker when cold
 QCD liquid to QCD gas

Motivation and goals

Motivation

To investigate the QGP dynamics using hydrodynamic models (the first principle calculations are difficult at finite T and μ)

Goals ______
 To understand (I) the macroscopic evolution of the QCD matter and (II) the microscopic properties such as the equation of state (EoS) & transport coefficients

Relativistic hydrodynamics

Energy-momentum tensor (in the local rest frame)

$$T^{\mu\nu} = T_{eq}^{\mu\nu} + \delta T^{\mu\nu}$$

$$= \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Pi + \pi^{xx} & \pi^{xy} & \pi^{xz} \\ \pi^{yx} & \Pi + \pi^{yy} & \pi^{yz} \\ \pi^{zx} & \pi^{zy} & \Pi + \pi^{zz} \end{pmatrix}$$
where
$$\epsilon : \text{energy density} \qquad \Pi : \text{bulk pressure} \\ P : \text{pressure} \qquad \pi^{\mu\nu} : \text{shear stress tensor}$$

$$\ln \text{ a general frame}$$

$$T^{\mu\nu} = (\epsilon + P + \Pi)u^{\mu}u^{\nu} - (P + \Pi)g^{\mu\nu} + \pi^{\mu\nu} \\ u^{\mu} : \text{flow (four-velocity)} \qquad g^{\mu\nu} = \text{diag}(+, -, -, -)$$

Overview of the model

Constraining the QCD equation of state in hadron colliders

QCD equation of state (EoS)

- Static relation among thermodynamic variables; sensitive to degrees of freedom in the system
 - We have lattice QCD calculations at $\mu_B = 0$

Is it what we see in heavy-ions collisions?

QCD equation of state (EoS)

• We may see something different in HIC for various reasons:

. . .

QCD equation of state (EoS)

• We systematically generate variations of EoS at $\mu_B = 0$:

We estimate observables using hydrodynamic models for each EoS and find the correspondence between them and the EoS

Observable sensitive to EoS

Observable sensitive to EoS

Rough picture of hydro expansion

Transverse expansion and τ_{eff}

Longitudinal expansion is dominant ($R \sim R_0$)

Transverse expansion is relevant ($R > R_0$)

Effective radius of the medium: $R^2 = 2(\langle |\mathbf{x}(\tau)|^2 \rangle - |\langle \mathbf{x}(\tau) \rangle|^2)$

Cf: J.-Y. Ollitrault, PLB 273, 32 (1991)

Imprint of the EoS

Entropy density vs. Particle number

- $T_{
 m eff}$: effective temperature when transverse expansion starts
- R_0 : effective radius of the medium where $R_0^2 = 2(\langle |\mathbf{x}(\tau_0)|^2 \rangle |\langle \mathbf{x}(\tau_0) \rangle|^2)$
- T_f : freeze-out temperature (constant)
- *a* : dimensionless constant factor

Imprint of the EoS

■ Energy density over entropy density vs. Mean m_T

• Once transverse expansion sets in $(T \sim T_{\rm eff})$, longitudinal work becomes smaller and total energy is conserved $E(T_f) \sim E(T_{\rm eff})$

```
\begin{bmatrix} b : dimensionless constant factor \end{bmatrix}
```

Input for hydrodynamic model

- Transport coefficients
- Shear viscosity $\eta/s=1/4\pi$ P. Kovtun et al., PRL 94, 111601 (2005)
- \blacktriangleright Bulk viscosity $\zeta/s=2(1/3-c_s^2)\eta/s$ A. Buchel, PLB 663, 286 (2008)
- *Minimalistic choices from the gauge-string correspondence

Initial conditions

Monte-Carlo Glauber model	M. L. Miller et al., ARNPS 57, 205 (2007); AM, 1408.1410
Monte-Carlo KLN model	HJ. Drescher and Y. Nara, PRC 75, 034905 (2007)

We show the results of the MC Glauber model here The scaling relations not affected; may affect comparison to data

Determination of *a* and *b*

■ Ideal hydro calculations, Au-Au collisions, 0-5% central events

A single set of (a, b) fits hydro results on to all the EoS There is correspondence between the EoS and observables

Before comparing to data

Must considered are the effects of hadronic decay and viscosity

 \triangleright (a,b) can be determined so that all the EoS are satisfied

- Hadronic decay reduces $< m_T >$ and increases dN/dy
- Viscosity increases dN/dy by entropy production

Comparisons to experimental data

■ Viscous hydro results with hadronic decays, Au-Au, 0-5% events

Conclusions

- Compatible with the lattice QCD equation of state within errors
- Larger effective # of degrees of freedom allowed by the data

Summary and outlook

- We have probed collective properties of the hot QCD matter
- ▶ QCD equation of state is constrained using dN/dy and $< m_T >$
- The EoS with the effective number of DOF equal to or larger than that of lattice QCD is favored
- We may extract the finite-density EoS out of Beam Energy Scan experimental data
 AM and J.-Y. Ollitrault, in preparation

The end

Thank you for listening!