Fourier coefficients of net-baryon density and chiral criticality

Kenji Morita (U.Wroclaw / Riken)

Collaborators: Gabor Almasi, Bengt Friman, Pok Man Lo, Krzysztof Redlich

Refs: arXiv: 1805.04441, in preparation

Contents

- **1.** Introduction: Imaginary $\mu_{\rm B}$
- **2.** Singularities in Complex $\mu_{\rm B}$
- **3**. Fourier coefficients
 - **1**. Asymptotic form
 - 2. Model studies: PQM model
 - 3. Locating singularities
 - 4. Fluctuations of net-baryon number

4. Summary

QCD Phase Diagram from Imaginary $\mu_{\rm B}$

 $\mu_{B} \rightarrow \mu_{B} = iT\theta_{B}$ No sign problem
in $P(T, V, \theta_{B})$ Analytic continuation
ex) $T_{c}(\theta) \rightarrow T_{c}(\mu)$ Canonical approach $Z(T, V, \theta) \rightarrow Z_{c}(T, V, N)$

Fourier expansion at Imaginary μ

Partition function – Canonical approach

$$Z(T, V, \theta) = \sum_{N=-\infty}^{\infty} Z_c(T, V, N) e^{iN\theta}$$

- Thermodynamics from *Z*_c(*T*,*V*,*N*)
- Probability distribution P(N)
 →fluctuation of N: large |N| sensitive

 to critical property of the system
 (KM et al., EPJC'14,PRC'13,PLB'15)

Pressure (or density) – Cluster expansion

$$\operatorname{Im}\frac{\partial p/T^4}{\partial (\mu_B/T)} = \sum_{k=1}^{\infty} b_k \sin(k\theta) \quad \Rightarrow \quad \frac{n}{T^3} = \sum_{k=1}^{\infty} b_k \sinh(k\mu/T)$$

Related Works

Lattice QCD

- fit Imχ(θ) (Bornyakov+ 1712.02830)
- up to b₄ at physical point (Vovchenko+, Budapest-Wuppertal data, 1708.02852)
- Effect of deconfinement (Kashiwa and Ohnishi, 1712.06220)
 - Long tail in *b_k*
- Cluster Expansion Model (Vovchenko+, 1711.01261)
 - Ansatz motivated by repulsive interaction

$$b_{k}^{\text{CEM}} = \left[\frac{b_{1}(T)}{b_{1}^{\text{SB}}}\right]^{2} \frac{b_{2}^{\text{SB}}}{b_{2}(T)} \left[\frac{b_{1}^{\text{SB}}}{b_{1}(T)} \frac{b_{2}(T)}{b_{2}^{\text{SB}}}\right]^{k} b_{k}^{\text{SE}}$$

exponential damping

- b₁ and b₂ from lattice QCD consistent b₃ and b₄
- Prediction of higher order cumulants

This work : effect of criticality in b_k ?

QCD Phase Diagram at Imaginary $\boldsymbol{\mu}$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} [\operatorname{Im}\chi_1^B(T, i\theta_B)] \sin(k\theta_B)$$

- > Temperature-dependent effect:
 - $T > T_{RW}$: 1st order transition
 - *T*=*T*_{RW} : Roberge-Weiss endpoint
 - $T_c < T < T_{RW}$: Phase boundary
 - $T < T_c$: No phase transition at Im μ

Density: PQM model (MF)

Dotted: Reconstructed

Density in imaginary μ

Kink: phase boundary Discontinuity: RW transition

June 5, 2018

Asymptotic
$$b_k$$
: Regular part

Regular part (massive Fermi gas)

$$b_k \sim (-1)^{k+1} \frac{K_2(km/T)}{k} \sim (-1)^{k+1} \frac{e^{-km/T}}{k^{3/2}}$$

Exponential damping Sign change : thermal singularity

Asymptotic b_k : 1st order PT ($T > T_c$)

First order transition \rightarrow Discontinuty at θ_c in Im χ_1^B

$$\operatorname{Im}\chi_{1}^{B}(T, i\theta_{B}) = f(\theta_{B})\Theta(\theta_{c} - \theta_{B}) + g(\theta_{B})\Theta(\theta_{B} - \theta_{c})$$
$$b_{k} = \frac{2\cos(k\theta_{c})}{\pi k} \left(g(\theta_{c}) - f(\theta_{c})\right) + \text{subleading terms}$$

Oscillation×1/k×density gap

For
$$T > T_{\text{RW}}$$
, $\theta_c = \pi$
 $b_k \sim (-1)^{k+1} \frac{2}{\pi k} \text{Im} \chi_1^B(\theta_B = \pi)$

1.6

1.4

≚ ^{1.2}

0.8

0.6

Ω

0.5

θ_B/π

RW transition

1.5

June 5, 2018

Exponential damping: location of CP

June 5, 2018

Kenji Morita, NFQCD2018@YITP,Kyoto

1.6

RW transition

Asymptotic *b_k*: Crossover

Crossover: Branch points at $\theta_B = \pm \theta_c \pm i \mu_c / T$

$$b_k \sim \frac{e^{-k\mu_c/T}}{k^{\phi+1}} \sin\left(k\theta_c + (\phi+1)\frac{\pi}{2}\right)$$

Steepest descent method for large k: Choose integration contour to satisfy R-L lemma

Exponential damping: location of real part of CP Oscillation: location of imaginary part of CP Power law: Critical exponent

June 5, 2018

Location of branch point from *b_k*

Fit to *b_k* yields real and imaginary part of the location of the singularity

Scaling theory : Branch point location scales with $h^{-1/3}$

Physical and Heavy m_{π}

- b_k at physical m_{π} near T_c • Stronger damping
 - hard to get large k
- Oscillation still visible

Heavier m_{π} close to CEM

Net-baryon fluctuations from
$$b_k$$

Observable consequence of characteristic *b_k*

$$\chi_{2n}^{B} = \sum_{k=1}^{k_{\max}} k^{2n-1} b_{k}$$

Negative χ_6 – Remnant of O(4) 2nd order transition

Relation to b_k ?

June 5, 2018

Net-baryon fluctuations from b_k

Observable consequence of characteristic *b*_k

June 5, 2018

Summary and Outlook

Fourier coefficients provide interesting insights into phase structure and critical property

> Complex singularities dictate large order behavior

• One may be able to locate the singularity from b_k

Temperature	$T < T_c$	$T_c < T < T_{\rm RW}$	T=T _{RW}	T > T_{RW}
Chiral limit	$\frac{e^{-k\mu_c/T}}{k^{2-\alpha}}$	$\frac{\sin(k\theta_c - \alpha\pi/2)}{k^{2-\alpha}}$	$(-1)^{k+1}$	$(-1)^{k+1}$
Nonzero m_{π}	$\frac{e^{-k\mu_c/T}\sin(k\theta_c - \alpha\pi/2)}{k^{2-\alpha}}$		$k^{1+1/\delta}$ $k^{\Delta n _{\theta_B}}$	

June 5, 2018

Summary and Outlook

Related to criticality in net-baryon fluctuations
 Negative χ₆ from complex singularity

To apply to Lattice QCD...

Effect of Lee-Yang zeros in finite size systems
 How large k is practically possible?

Backup Slides

June 5, 2018

PQM model: setup

June 5, 2018

Temperature dependence

June 5, 2018