Recent Developments in Quark-Hadron Sciences, 11-15 June, 2018

STRANGENESS NUCLEAR PHYSICS IN J-PARC EXPERIMENTS

Tomofumi NAGAE,

Kyoto University

YKIS2018

CONTENTS

- Status in Nuclear Physics at J-PARC
- Recent Topics
 - S=-1 Systems
 - E15+E31 : K⁻pp and Λ(1405)
 - E13 : γ-ray spectroscopy
 - E40 : Σp scattering
 - S=-2 Systems
 - E05+E70 : Ξ -hypernuclei
 - E07 : Double-Λ hypernuclei
- Future plan of Hadron Hall
- Summary

STATUS IN NUCLEAR PHYSICS

- Beam Power : reached at 50 kW, many thanks to the Accelerator people.
- Next target: waiting for a 90-kW target;

YKIS2018

- Essential for E70 (Ξ Hyp.), E03 (Ξ atom X), E57 (KdX), E42(H), ... *High-Intensity Kaon Era !!*
- Role of Strangeness in High-density matter
 - GW170817: Binary NS merger ! (finally)

a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

B.P. About et al., DOI: 10.1103/PhysRevLett.119.161101

R_{BNS}=1540+3200/-1220 Gpc⁻³yr⁻¹ 6-120 BNS mergers/yr *Rather high rate !*

S=-1 SYSTEMS

Λ(1405) and Kaonic Nuclei,Λ-Hypernuclear γ-rays,Σp Scattering

E31: STRUCTURE OF $\Lambda(1405)$, QQQ BARYON OR K^{BAR}N MOLECULE ?

 $\Lambda(1405)$: Double pole ?

• $\Sigma \pi$ mass spectrum below $M_{\overline{K}N}$ reveals its structure.

statistics.

YKIS2018

E13:γ-ray spectroscopy

T.O. Yamamoto et al., Phys. Rev. Lett. 115 (2015) 222501.

CSB (Charge Symmetry Breaking) in A=4 hypernuclei

All the previous theoretical works failed to understand it. Recent suggestion: $\Sigma - \Lambda$ coupling is a key to solve the puzzle.

A. Gal, PLB 744 (2015) 352, D. Gazda and A. Gal, PRL 116 (2016) 122501

Hypernuclear Gamma-rays

by H.Tamura

ΛN Effective Interaction $V_{\Lambda N}^{eff} = V_0(r) + V_{\sigma}(r)\vec{s_{\Lambda}s_{N}} + V_{\Lambda}(r)\vec{\ell_{\Lambda N}s_{\Lambda}} + V_{N}(r)\vec{\ell_{\Lambda N}s_{N}} + V_{T}(r)S_{12}$ SN S_{Λ} Parameters in MeV S_{Λ} S_N T Δ A = 7 - ? $-0.015 \quad -0.390 \quad 0.030$ 0.430 A = 11 - 16 $0.330 \quad -0.015 \quad -0.350$ 0.024 by D.J. Millener

Very small LS

¹⁹_AF:First sd-shell hypernuclei

S.B. Yang et al., Phys. Rev. Left. 120 (2018) 132505.

14

E40: Σ±p scattering

- $d\sigma/d\Omega$ for 10,000 events
 - $\Sigma^+ p$ elastic $\pi^\pm p \rightarrow K^+ + \Sigma^\pm, \Sigma^\pm p \rightarrow \Sigma^\pm p$
 - Σ⁻p elastic+inelastic

Ready for Run in 2018 !!

Kinematical Identification with LH₂ target and Large acceptance detector(CATCH)

- Understanding
 - the Repulsive core at short distance

Quark Pauli Effect in Σ+p channel ??

REPULSIVE CORE AT SHORT DISTANCE Σ+p (S=1)

- Meson Exchange Model:
 - Successful in Long-range Attraction.
 - Phenomenology for Short-range

- Quark Picture:
 - Quark Pauli Effect
 - Color-Magnetic Force

Attraction from Color-Magnetic Interaction (H dibaryon?)

Beamline spectrometer

Momentum analysis of π beam

E40 experimental Setup 3. Energy of proton 2. Scattering angle Σp scattering Σ production 1. Momentum of Σ Σ_{\pm} π+ K+ Detection of Σp scattering event K-**KURAMA** spectrometer by CATCH detector KURAMA Identification of K+ • Momentum analysis **CATCH** system CATCH -Cylindrical Fiber Tracker р BH₂ **BGO** calorimeter BC3,4 Momentum reconstruction K+ (MWDC) of Σ beam <u>n (</u>missing) Beamline spectrometer Momentum analysis of π π^+ GC BH1 beam BF

S=-2 SYSTEMS

∃ hypernucleiDouble-∧ HypernucleiH dibaryon

S=-2 WORLD

Energy Spectrum of S=-2 systems

KEK E373

- * Double- Λ hypernuclei
- * Nagara Event; $\Lambda\Lambda^6$ He

J.K. Ahn et al., PRC 88 (2013) 014003.

- * Kiso Event; Ξ-¹⁴N
- * $\Xi^{+14}N \rightarrow {}^{10}\Lambda Be + {}^{5}\Lambda He$

B_{Ξ}=1.03 or 3.87 MeV $\pm \Gamma/2$

well beyond the atomic binding of 0.17 MeV

K. Nakazawa et al., PTEP (2015) 033D02

BNL E885

- * ¹²C(K⁻,K⁺) at 1.8 GeV/*c*
- no clear evidence of \(\mathbf{\Sigma}\)-hypernuclear bound state.
 - because of the limited mass
 resolution of 14 MeV_{FWHM}
- * suggested weakly attractive potential of -14 MeV depth. (B_E~4.5 MeV)
 - by shape analysis and counts in
 bound region, compared with DWIA
 calc.
- 89±14 nb/sr (<8deg. 42 events);
 42±5 nb/sr (<14deg. 67 events)

SKS

E05: ${}^{12}C(K^-, K^+){}^{12} \equiv Be$

SDC4 SDC4 loz K1.8 beam line with SKS' (110 msr) * AC + LC for π^+ , p veto in trigger ** Target K. at 1.8 GeV/ $CH_2(K^-,K^+) 9.54g/cm^2 \rightarrow \Delta E = 5.4 \text{ MeV}_{FWHM}$ $\mathbf{\mathbf{x}}$ **D4** Two weeks of beam time ; Oct.26 - Nov.19, 2015 1 day Detector tuning $\overset{\bullet}{\sim}$ 3 m **Q11** * $p(K^{-},K^{+}) \equiv -@1.5 - 1.9 \text{ GeV/c}$ 2 days Q10 - BFT BH1 $^{12}C(K^{-},K^{+}) \quad 9.36g/cm^{2}$ 10 days MS2 09 * 600k K⁻/spill was achieved for 39 kW beam power.

K- beam intensity

* 600k K⁻/spill was achieved for 39 kW beam power.

* Integrated K⁻ intensity reached 100 G !!

$K - P \rightarrow K^+ \Xi$

- ✤ Ξ⁻ at J-PARC !!
 - ♦ 6000 Ξ / day

$\Delta E \sim 5.4$ MeV fwhm

Target energy loss straggling limited. 10 MeV_{FWHM} at BNL

OPTIMUM MOMENTUM

- * Yield maximum at 1.8 GeV/*c* suggested by Dover & Gal.
 - New data from 1.5 to
 1.9 GeV/c.
 - Two orders better statistics.
 - Max. at 1.8 GeV/c is confirmed !

ANGULAR DISTRIBUTION OF K-P→K+Ξ

 Differential cross section at 1.8 GeV/c

Focus on this part.

PEAK FITTING

♦ QFΞ(linear)+Background(Flat)

+

- * One Gaussian (all free)
 - * B_{Ξ} =6.3 MeV, ΔB_{FWHM} =15.7 MeV

PEAK FITTING

- ♦ QFΞ(linear)+Background(Flat) +
- * One Gaussian (all free)

* B_{Ξ} =6.3 MeV, ΔB_{FWHM} =15.7 MeV

- ♦ QFΞ(linear)+Background(Flat)
 +
- Two Gaussians(fixed width=5.4 MeV)
 - * $B_{\Xi}=9.1$ MeV and 2.1 MeV

E70

Run Conditions	E05	E70	
K- intensity (M/spill)	0.6	1.31	Expected histogram 90 χ^2/ndf $33.34/22$ $Prob$ 0.05728 $p1$ 4.709 ± 0.216 $p2$ 0.3259 ± 0.3174 70 $p3$ 0.894 ± 0.092
MR beam power (kW)	39	85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Spill cycle (s)	5.52	4.7	20 10 0 -40 -30 -20 -10 0 10 20 Ex (MeV)
Target thickness (g/cm²)	9.3	10	Expected histogram
Spectrometer acceptance (msr)	110	55	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Missing-mass resolution (FWHM)	6	< 2	
Signal events/days of running	40/10 days	~110/20 davs	-40 -50 -20 -10 0 10 20 Ex (MeV)

E07: Hybrid Emulsion experiment

- Beam Exposure completed in June, 2017.
- Photographic Development completed.

$\Xi^{\text{-}}$ statistics in spectrometer analysis

	stack	∃- event	E ⁻ stop (simulation)
2016	18	27.9 k	1.13 k
2017	100	216 k	11.9 k

Hybrid emulsion method

Scanning in progress

3 vertex event

Several Hyper-fragments have been observed. 1 year for fast scanning of all the emulsions.

2 vertex events

SmK spectroscopy

• Supra-precision (π, K) spectroscopy to probe 3-body YNN

Science Goal

- GW170817; Binary NS merger
 - \rightarrow New era of Dense matter physics

- GW170817; Binary NS merger
 - \rightarrow New era of Dense matter physics
- New insight on $\Lambda(1405)$ in E31.

- GW170817; Binary NS merger
 - \rightarrow New era of Dense matter physics
- New insight on $\Lambda(1405)$ in E31.
- Large Charge-Symmetry Breaking in A=4 hypernuclei

- GW170817; Binary NS merger
 - \rightarrow New era of Dense matter physics
- New insight on $\Lambda(1405)$ in E31.
- Large Charge-Symmetry Breaking in A=4 hypernuclei
- ${}^{19}{}_{\Lambda}F$ γ -rays are measured in sd-shell, for the first time.

- GW170817; Binary NS merger
 - \rightarrow New era of Dense matter physics
- New insight on $\Lambda(1405)$ in E31.
- Large Charge-Symmetry Breaking in A=4 hypernuclei
- ${}^{19}{}_{\Lambda}F$ γ -rays are measured in sd-shell, for the first time.
- Strong evidence for Ξ -Hypernuclei in E05 together with the "Kiso" event.

- GW170817; Binary NS merger
 → New era of Dense matter physics
- New insight on $\Lambda(1405)$ in E31.
- Large Charge-Symmetry Breaking in A=4 hypernuclei
- ${}^{19}{}_{\Lambda}F$ γ -rays are measured in sd-shell, for the first time.
- Strong evidence for Ξ -Hypernuclei in E05 together with the "Kiso" event.

YKIS2018

• E07 completed the emulsion exposure in 2017, and under scanning.

- GW170817; Binary NS merger
 → New era of Dense matter physics
- New insight on $\Lambda(1405)$ in E31.
- Large Charge-Symmetry Breaking in A=4 hypernuclei
- ${}^{19}_{\Lambda}F$ γ -rays are measured in sd-shell, for the first time.
- Strong evidence for Ξ -Hypernuclei in E05 together with the "Kiso" event.

- E07 completed the emulsion exposure in 2017, and under scanning.
- Data taking on E31, E40, are on-going in 2018 with 50 kW.

- GW170817; Binary NS merger
 → New era of Dense matter physics
- New insight on $\Lambda(1405)$ in E31.
- Large Charge-Symmetry Breaking in A=4 hypernuclei
- ${}^{19}{}_{\Lambda}F$ γ -rays are measured in sd-shell, for the first time.
- Strong evidence for Ξ -Hypernuclei in E05 together with the "Kiso" event.

- E07 completed the emulsion exposure in 2017, and under scanning.
- Data taking on E31, E40, are on-going in 2018 with 50 kW.
- New 90 kW target to be installed in 2019 for conducting S=-2 experiments.

- GW170817; Binary NS merger
 → New era of Dense matter physics
- New insight on $\Lambda(1405)$ in E31.
- Large Charge-Symmetry Breaking in A=4 hypernuclei
- ${}^{19}_{\Lambda}F$ γ -rays are measured in sd-shell, for the first time.
- Strong evidence for Ξ -Hypernuclei in E05 together with the "Kiso" event.

- E07 completed the emulsion exposure in 2017, and under scanning.
- Data taking on E31, E40, are on-going in 2018 with 50 kW.
- New 90 kW target to be installed in 2019 for conducting S=-2 experiments.
- Hadron Hall Future Plan: cost reduction and staging options are in discussion, focusing on Dense matter physics.