K/pi ratios from a dynamically integrated transport approach

Yasushi Nara (Akita International University)

- Introduction
- JAM+hydro: A new dynamically integrated transport model
- Equation of state (EoS) controlled collision term

This talk is baed on arXiv:1805.09024

NFQCD2018 at Kyoto June. 4, 2018

Search for the QCD equation of state (EoS) by the beam energy scan

Location of the critical point?

EoS from lattice QCD Sz.Borsanyi, et.al JHEP 1208(2013)053

Effective models:

NJL, PNJL, PQM, Quasi-particle model.....

<u>Non-monotonic structures</u> in beam energy dependence

Onset of de-confinement?

First-order phase transition? End point?

L. Adamczyk et al. (STAR Collaboration) Science 2014 Phys. Rev. Lett. 112, 162301 – Published 23 April 2014

Modeling at RHIC/LHC hybrid approach works

Initial conditions: Glauber, CGC, event generators

Hydrodynamics: viscous-hydro, anisotropic hydro

Hadron gas: hadron transport models

EoS: crossover from lattice QCD

Jet production and its Energy loss: pQCD

Non-abelian Weiszacker-Williams filed

Single thermalization time at tau = 0.6 fm/c

At high energies, factorization in time and energy works:

e.g. CGC + hydrodynamics + energy loss of jets + hadron transport model

Initial nucleon positions

Chun Shen, Bjorn Schenke arXiv:1710.00881 [nucl-th]

Assumption of single thermalization time breaks down at low beam energies

Time evolution

Red:mesons. Meson-baryon interactions are important before two Nuclei pass each other.

What is needed for HI at high baryon density

Cannot apply factorization in time; models at RHIC/LHC does not work

1) Hybrid approach:

coupling of Hydro + Boltzmann

2) Initial stages of collisions have to be described by the non-equilibrium transport models

3) How to model EoS with non-vanishing chemical potentials?

<u>Progresses in hybrid dynamical models</u> <u>at high baryon density region</u>

• UrQMD+hydro (2008) Petersen et.al.

initial condition from UrQMD \rightarrow hydrodynamics \rightarrow UrQMD

- Core-corona separation (K, Werner, 2007) in space configurations Steinheimer and Bleicher (2011)
- Dynamical initialization (2018) Shen and Schenke core-corona separation in time direction.

Dynamical Initialization of fluid at LHC

Dynamical initial condition for hydrodynamics as introduced by M. Okai, et. al Phys. Rev C 95, 054914 (2017)

$$\partial_{\mu}T_{f}^{\mu\nu} = J^{\nu}$$

Motivations

Dynamically integrated transport model: microscopic transport model + hydrodynamics

Dynamical initial condition for hydrodynamics through source terms

$$\partial_{\mu}T_{f}^{\mu\nu} = J^{\nu}, \quad \partial_{\mu}N_{f}^{\mu} = n_{B}$$

Some particles are converted into fluid elements with Gaussian profile.

$$J^{\mu} = \sum_{i} \frac{p_i^{\mu}(t)}{\Delta t} G(\boldsymbol{r} - \boldsymbol{r}_i(t)), \quad n_B = \sum_{i} \frac{B_i}{\Delta t} G(\boldsymbol{r} - \boldsymbol{r}_i(t))$$

JAM microscopic transport model

- spece-time propagation of particles based on cascade method
- Resonance (up to 2GeV) and string excitation and decays
- Re-scattering among all hadrons
- DPM type string excitation law as in HIJING.
- Use Pythia6 for string fragmentation
- Propagation by the hadronic mean-fields within RQMD/S formulation
- EoS controlled collision term

$$\dot{\boldsymbol{r}}_i = \frac{\boldsymbol{p}_i}{p_i^0} + \sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \boldsymbol{p}_i} \qquad \dot{\boldsymbol{p}}_i = -\sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \boldsymbol{r}_i} \qquad p_i^0 = \sqrt{\boldsymbol{p}_i^2 + m_i^2 + 2m_i V_i}$$

Arguments of potential $\mathbf{r}_i - \mathbf{r}_j$ and $\mathbf{p}_i - \mathbf{p}_j$ are replaced by the distances in the two-body c.m.

A new approach: JAM+hydro model

Dynamical coupling of fluids through source terms $\partial_{\mu}T_{f}^{\mu\nu}=J^{\nu}, \quad \partial_{\mu}N_{B}^{\mu}=\rho_{B}$

Time dependent Core-corona separation

Put Hadrons from string or resonance decay into fluids after their formation time except leading hadrons when local energy density exceeds a hydronization energy density

Model parameters

1) fluidization energy density

 $e_f = 0.5 - 1.0 \text{ GeV/fm}^3$ 2) particlization energy density $e_p = 0.5 \text{ GeV/fm}^3$ 3) equation of state: EOS-Q first-order phase transition Bag model B=235MeV^4 hadronic resonances up to 2GeV baryon density dependent repulsive potential for baryons

Fraction of fluid energy at central region is about 70% at top SPS energy.

Hybrid model for AGS and SPS energies

Switch to hadron transport below a critical energy density.

It is important to take into account potential effect in the Cooper-Fry formula to ensure smooth transition from fluid to particles.

$$\mu = B\mu_B + S\mu_S \to B(\mu_B - V(\rho_B)) + S\mu_S$$

Particle spectra from a new hybrid model in Pb+Pb at Elab=20AGeV

Beam energy dependence of transverse mass and multiplicities from a new hybrid model.

17

Beam energy dependence of K/pi ratios from <u>hybrid model.</u>

Incomplete thermalization of the sytem is important for the description of K/pi ratio.

Beam energy dependence of Lambfa/pi ratios from <u>a new hybrid model.</u>

Y. N., H. Niemi, J. Steinheimer, H. Stoecker, PLB769 (2017)

EOS modified collision term

H. Sorge, Phys. Rev. Lett. 82,2048 (1999) Virial Theorem for two body collisions

$$P = P_{free} + \frac{1}{3TV} \sum_{(i,j)} [(\boldsymbol{p}'_i - \boldsymbol{p}_i) \cdot \boldsymbol{r}_i + (\boldsymbol{p}'_j - \boldsymbol{p}_j) \cdot \boldsymbol{r}_j]$$

The momentum change is constrained by

$$(\mathbf{p}'_i - \mathbf{p}_i) \cdot (\mathbf{r}_i - \mathbf{r}_j) = 3 \frac{(P - P_{free})}{\rho} (\Delta t_i + \Delta t_j)$$

When P < Pfree: attractive orbit in the collision.

Fully baryon density dependent EoSs are implemented.Cross-over EOS: J. SteinheimerEOS-Q: Kolb, Sollfrank, Heinz

- Any EoS can be incorporated
- CPU time is as fast as standard cascade simulation
- Fully non-equilibrium transport approach 20

Y. N., H. Niemi, A. Ohnishi, J. Steinheimer, X. Luo, H. Stocker, Eur. Phys. A54 (2018) 18

21

<u>Summary</u>

- JAM is a microscopic transport model for high energy nuclear collisions based on strings and hadronic resonances
- We have developed a new hybrid approach by dynamical initialization of hydrodynamics which takes into account time dependent core-corona picture in order to simulate heavy ion collision at high baryon energy region.
- K/pi ratios from JAM+hydro approach is in good agreement with the data, which is explained by the incomplete thermailzation of the system.