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QCD phase diagram at finite T and 

First principle calculations are difficult due to the sign problem

chemical  potential
for the baryon 
number density

temperature



The sign problem in Monte Carlo methods

• At finite baryon number density (             ),

The fermion determinant becomes complex in general.

Generate configurations U with the probability
and calculate                     

(reweighting)

become exponentially small as the volume increases
due to violent fluctuations of the phase 

Number of configurations needed to evaluate <O> increases exponentially. 

“sign problem”



A new development toward 
solution to the sign problem

Key : complexification of dynamical variables

Minimize the sign problem by
deforming the integration contour

An equivalent stochastic process
of the complexified variables
(no sign problem !)

2011～

The original path integral

The phase of 
oscillates violently
(sign problem)

“Lefschetz thimble approach”

“complex Langevin method”

The equivalence to the original path integral
holds under certain conditions.

This talk



Brief history of the complex Langevin method

 1983 :  proposal by Parisi (’83), Klauder (’83) 
as an extension of the Langevin method   (stochastic quantization)

 80s : tested in various complex-action systems
works beautifully in some cases, 
but converges to wrong results in the other cases…

(The reasons were not understood, and the interest in this method faded away.)

 2011 : argument for justification discussed by Aarts, James, Seiler, Stamatescu
integration by parts can be invalid due to the excursion problem.

 2012 : “gauge cooling”    Seiler, Sexty, Stamatescu

 2013 : finite density QCD in the deconfined phase succeeded    Sexty
 2016 : QCD in the heavy dense limit succeeded    Aarts, Attanasio, Jager, Sexty



Brief history of the CLM (cont’d)

 2013 :  problems due to poles in the drift recognized   Mollgaard, Splittorff
(hinders finite density QCD at low T with light quarks)

 2015 :  theoretical understanding of the singular-drift problem
JN, Shimasaki

 2015 :  explicit justification of the gauge cooling             Nagata, JN, Shimasaki

 2016 :  argument for justification refined, 
 a useful criterion for correct convergence        Nagata, JN, Shimasaki

 2016 :  deformation technique for the singular-drift problem       Ito, JN

 2018 :  finite QCD at low T with light quarks succeeded   Nagata, JN, Shimasaki

I will explain how this was made possible.



The main message of this talk

1. Complex Langevin method works beautifully in many interesting cases,
including finite density QCD at low T with light quarks.

2.   Now we have an explicit criterion which tells us 
whether the obtained results are correct or not.

3.   Various techniques such as gauge cooling, deformation,… can be used
to meet this criterion. (Further development in this direction is desired, though.)

Complex Langevin method used to be a subtle method, 
which has no guarantee to give correct results.

This is not true any more !



Plan of the talk

1. Complex Langevin method

2. Argument for justification and 
the condition for correct convergence

3. Gauge cooling

4. Deformation technique

5. Application to lattice QCD at finite density

6. Summary and future prospects



1．Complex Langevin method



Stochastic quantization
Parisi-Wu (’81)
For review, see

Damgaard-Huffel (’87)

Langevin eq.
Gaussian noise

View this as the stationary distribution of a stochastic process.

Fokker-Planck eq.

“drift term”

Proof



Rem 2 :   The drift term                                   and the observables                .

The complex Langevin method
Parisi (’83), Klauder (’83)

complex

Complexify the dynamical variables, and consider their 
(fictitious) time evolution :

defined by the complex Langevin equation

Gaussian noise (real)

should be evaluated for complexified variables by analytic continuation.

?

Rem 1 :   When w(x) is real positive, it reduces to one of the usual MC methods.



2. Argument for justification and the 
condition for correct convergence

Ref.) Nagata-J.N.-Shimasaki, 
Phys.Rev. D94 (2016) no.11, 114515, arXiv:1606.07627 [hep-lat]



The key identity for justification

Fokker-Planck eq.

c.f.) J.N.-Shimasaki, PRD 92 (2015) 1, 011501 arXiv:1504.08359 [hep-lat]

This is OK provided that eq.(#) holds and
P(t=∞) is unique.

?
・・・・・・(#)

?



The eigenvalue spectrum of the Fokker-Planck Ham.
is NOT an issue !

=

c.f.) J.N.-Shimasaki, PRD 92 (2015) 1, 011501 arXiv:1504.08359 [hep-lat]

Fokker-Planck eq.



Previous argument for the key identity
Aarts, James, Seiler, Stamatescu:
Eur. Phys. J. C (’11) 71, 1756

There are 2 subtle points in this argument !

It was implicitly assumed that
this expression is well-defined for infinite t.Subtlety 2

e.g.) when P(x,y;t) does not fall off fast enough at large y.

The integration by parts used here cannot be always justified.
Subtlety 1



The condition for the time-evolved 
observables to be well-defined

In order for this expression to be valid for finite      ,
the infinite series should have a finite convergence radius.

This requires that the probability of the drift term should be 
suppressed exponentially at large magnitude.

This is slightly stronger than the condition for justifying the integration by parts;
hence it gives a necessary and sufficient condition.

Nagata-J.N.-Shimasaki, Phys.Rev. D94 (2016) no.11, 114515, 
arXiv: 1606.07627 [hep-lat]



Demonstration of our condition

The probability distribution of the magnitude of the drift term

semi-log plot log-log plot

power-law fall off



3. Gauge cooling



“gauge cooling” 

enhances upon complexification of variables

One can modify the Langevin process as :

“gauge cooling”

Seiler-Sexty-Stamatescu, PLB 723 (2013) 213
arXiv:1211.3709 [hep-lat]]



Justification of the gauge cooling

The only effect of gauge cooling

Note, however, that P(x,y;t) changes non-trivially 
because the noise term does not transform covariantly under
the complexified symmetry.            

One can use this freedom to satisfy the condition for correct convergence !

disappears from this expression !

Nagata-J.N.-Shimasaki, Phys.Rev. D94 (2016) no.11, 114515, 
arXiv: 1606.07627 [hep-lat]



4. Deformation technique

Ref.) Ito, JN : JHEP 12 (2016) 009 [arXiv:1609.04501 [hep-lat]]



a simple matrix model motivated 
from string theory J.N. PRD 65, 105012 (2002),  hep-th/0108070

c.f.) In matrix model formulation of superstring theory, 
SSB : SO(10)  SO(4) is expected to occur.  

Anagnostopoulos-Azuma-Ito-J.N.-Papadoudis : JHEP 02 (2018) 151.



Application of the complex Langevin method

In order to investigate the SSB, we introduce 
an infinitesimal SO(4) breaking terms :

and calculate : 

Ito-J.N., JHEP 12 (2016) 009 



Results of the CLM
In order to cure the singular-drift problem, we deform the fermion action as:

CLM reproduces the SSB of SO(4) induced by complex fermion determinant ! 

Ito-J.N., JHEP 12 (2016) 009 



5. Application to lattice QCD at finite 
density

Ref.) Nagata, JN, Shimasaki : arXiv:1805.03964 [hep-lat]



Set up of our calculations
Nagata, JN, Shimasaki : arXiv:1805.03964 [hep-lat]



Rem.) The fermion determinant gives rise to a drift 

1) link variables become far from unitary (excursion problem)

2) has eigenvalues close to zero (singular drift problem)

the complex Langevin method for QCD

The drift term can become large when :

Complexification of dynamical variables : 

Discretized version of complex Langevin eq.

“gauge cooling”

generators of SU(3)

“deformation technique”



Deformation technique
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baryon number density
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6.  Summary and future prospects



Summary and future prospects

 The complex Langevin method is a powerful tool
to investigate interesting systems with complex action.

 The argument for justification was refined, 
and the condition for correct convergence was obtained.

 The singular-drift problem may be avoided by the deformation technique. 

 Finite density QCD at low temperature with light quarks

 The singular drift problem can be avoided by the deformation technique.
(Also successful applications in matrix models related to superstring theory.) 

 Future directions

 Larger lattices with lighter quarks
 Exploration of “the critical end point” at finite T
 Cases with 2 quark flavors  
 Applications to other complex-action systems

S.Tsutsui’s talk
in the afternoon


