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Strongly interacting QGP
•Relativistic hydrodynamics
•Recombination model
•Jet quenching
•Color Glass Condensate
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Property	of	QGP
• Equation	of	State

– Lattice	QCD	
HotQCD,PRD90,094503(2014)

(2+1)	flavor,	Highly	improved	staggered	
quark	action
Nt=6,8,10,12,Ns=4Nt → continuum	limit
Parametrization	of	EoS

Borsanyi et	al,	PLB730,99(2014)

(2+1)	flavor,	Symanzik improved	gauge	and	a	
stout- link	improved	staggered	fermion	action
Nt=6,8,10,12,16 → continuum	limit
Parametrization	of	EoS

Tc � 155 MeV finite	µ:	sign	problem
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Property	of	QGP	
• Current	Status	for	transport	coefficients	

Chen,Deng,Dong,Wang,PRC87,024910(2013)

shear	viscosity bulk	viscosity

• Shear	viscosity	takes	the	minimum	
around	Tc.				Cf.	h/s=1/4p AdS/CFT

• Hydrodynamic	model
constant	h/s

• Bulk	viscosity	
Temperature	dependence	is	unclear.

• Hydrodynamic	model
vanishing

Detailed	feature	of	shear	and	bulk	viscosities

Hydro
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QGP	Property	from	Experiments
thermalization hydro hadronization freezeoutcollisions

Experimental	data

Hydrodynamic	Model

• One	of	successful	phenomenological	models	
• Close	relation	to	QGP	bulk	property	
• Strong	tools	for	understanding	shear	and	bulk	

viscosities	through	experimental	analyses
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QGP	Property	from	Experiments
thermalization hydro hadronization freezeoutcollisions

Experimental	data

Initial	conditions Hydrodynamics Final	state	interactions
QGP	bulk	property
EoS:	lattice	QCD
Shear	and	bulk	
viscosities		

Hadron	based	event	
generator

Fluctuations:	
Glauber,	KLN,	
IP-Glasma…

Relativistic	viscous	hydrodynamic	equation

Tµ� = (� + p)uµu� � pgµ�+�Tµ�

Denicol,Niemi,Molnar,Rischke, PRD85,	114047	(2012)
Denicol,	Jeon,	and	Gale,	Phys.	Rev.	C90,	024912	(2014)
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QGP	Property	from	Experiments
thermalization hydro hadronization freezeoutcollisions

Experimental	data

Initial	conditions Hydrodynamics Final	state	interactions
QGP	bulk	property
EoS:	lattice	QCD
Shear	and	bulk	
viscosities		

Hadron	based	event	
generator

Fluctuations:	
Glauber,	KLN,	
IP-Glasma…

New	
hydrodynamics	
code

Akamatsu et	al,	JCP256,34(2014)
Okamoto,	Akamatsu,	Nonaka,	EPJC76,579(2016)
Okamoto	and	Nonaka,	EPJC77,383(2017)
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Our	Strategy
1. Development	of	new	hydrodynamics	code

– Stable	with	small	numerical	dissipation
– Shock	wave	
– Strong	expansion	in	longitudinal	direction
– Conservation	property

2. Application	to	phenomenological	analyses	of	LHC	data
– Description	of	space-time	expansion	after	collisions	

thermalization hydro hadronization freezeoutcollisions

Experimental	data
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Riemann	solver	
in	Milne	coordinates
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Small	Numerical	Dissipation
• Numerical	dissipation:	deviation	from	analytical	solution

L(p(Ncell), p(anaytic)) =
Ncell�

i=1

|p(Ncell)� p(analytic)| �

Ncell

Ncell=100:	dx=0.1	fm

l=10	fm

For	analysis	of	heavy	ion	collisions

TL=0.4	GeV
v=0

TR=0.2	GeV
v=0

0 10

Akamatsu et	al,	JCP256,34(2014)
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Numerical	Tests	in	1D	
ü Bjorken’s scaling	solutions	
ü Landau-Khalatnikov Solution	(1D)
ü Longitudinal	fluctuations
ü Conservation	property

K.	Okamoto,	Y.	Akamatsu and	CN,	
Eur.	Phys.	J.	C76	(2016)579

Sum	of	violation	of	conservation	

fluctuations
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• Analytical	solution
– Bjorken flow	+	transverse	expansion

Gubser Flow	with	Finite	h/s	

temperature viscous	stress	tensor

Marrochio et	al,	PRC91,014903(2015)

Our	computed	results	show	good	agreement	
with	analytical	solution.

Okamoto	and	Nonaka,	EPJC77,383(2017)
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Quantitative	Analyses
thermalization hydro hadronization freezeoutcollisions

Experimental	data

Initial	conditions Hydrodynamics Final	state	interactions
QGP	bulk	property
EoS:	lattice	QCD
Shear	and	bulk	
viscosities		

Hadron	based	event	
generator

Fluctuations:	
Glauber,	KLN,	
IP-Glasma…

Bass	et	al.,	Prog.Part.Nucl.Phys.(1998)
Bleicher et	al.,	J.Phys.G25,1859(1999)

TRENTO UrQMDNew	
hydrodynamics	
code

Moreland	et	al.,PRC92,011901(2015)
Ke et	al.,PRC96,044192(2017)

Phenomenological	model
Parametrization
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Time	Evolution	of	Temperature

Ideal h/s=0.17, z/s=0 h/s=0.17, z/s（b=50)

Transverse		plane

x
fm

y fm

x
fm

hp

Ideal shear	 shear+bulk
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Shear	and	Bulk	Viscosities
shear	viscosity

shear	+	bulk	viscosities

temperature	dependent	shear	+	bulk	viscosities

⎷ Rapidity	distributions
central	collision:	parameter	fixing	

⎷ PT distributions	
⎷ Mean	PT
⎷ Collective	flow	v2,	v3

ζ = 𝑏η
1
3 − 𝑐+

,
,

ALICE	Pb+Pb TeV,	LHC
�

sNN = 2.76

�/s = 0.17

�/s = 0.17

b = 40 Molnar	et	al.,	PRC89,074010(2014)

Niemi,	Eskola,	Paatelainen,	PRC93,	024907(2016)
Denicol,	Monnai,	Schenke,	PRL	116,	212301	(2016)	
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Rapidity	Distributions

0-5%
10-20%

30-40%

50-60%

pseudorapidity η

input

output

• Parameters	in	initial	condition	TRENTO	are	fixed	from	comparison	with	
experimental	data	at	0-5	%	centrality.

colission axis

hp

hp
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h/s dependence
• pT spectra

𝒑𝑻

PT	spectra	do	not	depend	on	h/s.

0-5%10-20%

30-40%

50-60%
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h/s dependence

v2 and	v3	are	smaller	at	larger	h/s. h/s=0.17

• Collective	Flows
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Effect	of	Bulk	Viscosity
• Shear	+	Bulk	viscosities

30-40%0-5%
𝜋0

𝐾0

𝑝

Bulk	viscosity	reduces	the	transverse	expansion.	
->		Slope	of	PT spectra	becomes	steep.	
->		Close	to	ALICE	data.

Finite	bulk	viscosity

ζ = 𝑏η
1
3 − 𝑐+

,
,
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Effect	on	Expansion

ζ = 𝑏η
1
3 − 𝑐+

,
,

Bulk	viscosity	is	large	below	200	MeV.
->	Its	effect	appears	around	Tc ~160	MeV.
->	Expansion	rate	decreases	in	lower		

temperature	region.
->	Volume	elements	of	fluid	remain		

around	Tc temperature	longer.		

𝜏 = 7fm

initial

0-5%

+bulk

𝜏 = 7fm

0-5%

+bulk
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Effect	on	Collective	Flow
• Collective	flow	as	a	function	of	hp

• (3+1)-d	calculation	
• vn with		bulk	viscosity	is	much	closer	to	the	ALICE	data:

amplitude	and	slope	
• Effect	of	bulk	viscosity	at	forward	rapidity	is	large.	

Finite	bulk	viscosity

hp hp
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Temperature	Dependent	h/s

η/𝒔

Hadron	+	QGP
QGP
Hadron

hp hp

Hadron	+	QGP
QGP
Hadronζ = 𝑏η

1
3 − 𝑐+

,
,
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Temperature	Dependent	h/s

η/𝒔

Hadron	+	QGP
QGP
Hadron

hp hp

Hadron	+	QGP

ζ = 𝑏η
1
3 − 𝑐+

,
,
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Temperature	Dependent	h/s

η/𝒔

Hadron	+	QGP
QGP
Hadron

hp hp

QGP

ζ = 𝑏η
1
3 − 𝑐+

,
,



C.	NONAKA

Temperature	Dependent	h/s

η/𝒔

Hadron	+	QGP
QGP
Hadron

hp hp

Hadron

ζ = 𝑏η
1
3 − 𝑐+

,
,
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Temperature	Dependent	h/s

η/𝒔

Hadron	+	QGP
QGP
Hadron

• 0-5	%	centrality
h/s of	QGP	and	hadron	phases	is	important.

• 30-40	%	centrality
h/s	of	hadron	phase	is	dominant.	

Central	dependence	of	v2(hp)	reveals	
temperature	dependence	of	h/s.

hp hp

Hadron

ζ = 𝑏η
1
3 − 𝑐+

,
,
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Summary

• New	relativistic	viscous	hydrodynamics	code
– Stable	with	small	numerical	dissipation
– Phenomenological	model： TRENTO ー Hydro ー UrQMD
– Quantitative	analyses

• QGP	bulk	property
– Shear	and	bulk	viscosity
– Finite	bulk	viscosity,	central	dependence		of	v2(hp)

• Future	works	
– Two	particle	correlations（HBT）
– Electromagnetic	probes

Akamatsu et	al,	JCP256,34(2014)
Okamoto,	Akamatsu,	Nonaka,	EPJC76,579(2016)
Okamoto	and	Nonaka,	EPJC77,383(2017)
Okamoto	and	Nonaka,	arXiv:1712.00923

Quantitative	analyses

Understanding	QGP	bulk	property	

Bayesian	analyses,	deep	learning:	Bass,	Bernhard,	
Moreland,	Pang….


