Temperature Dependence of Transport Coefficients of QCD in High-Energy Heavy-Ion Collisions

Kobayashi-Maskawa Institute, Nagoya University Department of Physics, Nagoya University for the Origin of Particles and the Universe

Chiho NONAKA

June 12, 2018@YKIS2018b Symposium

Quark-Gluon Plasma

RHIC:2000

STAR

Heavy Ion Collisions:

Т

Strongly interacting QGP

- •Relativistic hydrodynamics
- Recombination model
- •Jet quenching
- Color Glass Condensate

Property of QGP

Equation of State

Lattice QCD

(2+1) flavor, Highly improved staggered quark action

Nt=6,8,10,12,Ns=4Nt \rightarrow continuum limit Parametrization of EoS

 $T_c \sim 155~{\rm MeV}$

(2+1) flavor, Symanzik improved gauge and a stout- link improved staggered fermion action
 Nt=6,8,10,12,16 → continuum limit
 Parametrization of EoS

finite μ : sign problem

Property of QGP

Current Status for transport coefficients

shear viscosity bulk viscosity 3 ----α_s < 0.1 ---- α_s < 0.1 (a) (b) __0.1 < α < 0.2 — 0.1 < α_s < 0.2 Hydro + v data I LQCD --- Hydro + v_2^2 data II 10⁻¹ 2 ₹Ī Sum rule -- pion gas --- pion gas l LQCD I s/μ ్లో 10⁻² pion gas II LQCD II massless pions 10⁻³ Hydro **10**⁻⁴ 10⁻⁵ 10⁻² 10⁻¹ 10² 10 10 T/T_c т/т

- Shear viscosity takes the minimum around $T_{\rm c}$. Cf. $\eta/s=1/4\pi$ AdS/CFT
- Hydrodynamic model constant η/s

Chen,Deng,Dong,Wang,PRC87,024910(2013) Bulk viscosity

10²

- Temperature dependence is unclear.
- Hydrodynamic model vanishing

Detailed feature of shear and bulk viscosities

QGP Property from Experiments

Hydrodynamic Model

- One of successful phenomenological models
- Close relation to QGP bulk property
- Strong tools for understanding shear and bulk viscosities through experimental analyses

QGP Property from Experiments

Initial conditions	Hydrodynamics	Final state interactions
Fluctuations: Glauber, KLN, IP-Glasma	QGP bulk property EoS: lattice QCD Shear and bulk viscosities	Hadron based event generator

Relativistic viscous hydrodynamic equation

$$\partial_{\mu}T^{\mu\nu} = 0$$

 $T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + \Delta T^{\mu\nu}$

Denicol, Niemi, Molnar, Rischke, PRD85, 114047 (2012) Denicol, Jeon, and Gale, Phys. Rev. C90, 024912 (2014)

QGP Property from Experiments

Initial conditions	Hydrodynamics	Final state interactions	
Fluctuations: Glauber, KLN, IP-Glasma	QGP bulk property EoS: lattice QCD Shear and bulk viscosities	Hadron based event generator	
	New hydrodynamics code		

Akamatsu et al, JCP256,34(2014) Okamoto, Akamatsu, Nonaka, EPJC76,579(2016) Okamoto and Nonaka, EPJC77,383(2017)

- 1. Development of new hydrodynamics code
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property

- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

- 1. Development of new hydrodynamics code
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property

- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

- 1. Development of new hydrodynamics code
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property
- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

Milne coordinate

t

 $\eta = \tanh^{-1}$

 $\tau = \sqrt{t^2 - z^2}$

- 1. Development of new hydrodynamics code
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property

Riemann solver in Milne coordinates

- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

Small Numerical Dissipation

Akamatsu et al, JCP256,34(2014)

• Numerical dissipation: deviation from analytical solution

Numerical Tests in 1D

✓ Bjorken's scaling solutions ✓ Landau-Khalatnikov Solution (1D) ✓ Longitudinal fluctuations ✓ Conservation property 2 conservative form with source term initial $(\times 0.04)$ 1.5 e(GeV/fm³) 1 0.5 0 -2 0 2 -8 6 8 4

η

K. Okamoto, Y. Akamatsu and CN, Eur. Phys. J. C76 (2016)579

fluctuations

Sum of violation of conservation

	ϵ_E	\mathcal{E}_M
conservative	1.38E-09	8.59E-09
with souce	1.27E-02	5.61E-02

Gubser Flow with Finite η/s

Okamoto and Nonaka, EPJC77,383(2017)

Analytical solution

Marrochio et al, PRC91,014903(2015)

- Bjorken flow + transverse expansion

Our computed results show good agreement with analytical solution.

- 1. Development of new hydrodynamics code
 - Stable with small numerical dissipation
 - Shock wave
 - Strong expansion in longitudinal direction
 - Conservation property

Riemann solver in Milne coordinates

- 2. Application to phenomenological analyses of LHC data
 - Description of space-time expansion after collisions

Time Evolution of Temperature

shear+bulk

(r)

η

Shear and Bulk Viscosities

shear viscosity

$$\ \, \eta/s=0.17$$

shear + bulk viscosities

$$\eta/s = 0.17$$

$$\zeta = b\eta \left(\frac{1}{3} - c_s^2\right)^2 \quad b = 0$$

ALICE Pb+Pb $\sqrt{s_{NN}}=2.76$ TeV, LHC

- ✓ Rapidity distributions central collision: parameter fixing
- $\checkmark P_{T}$ distributions
- \checkmark Mean $P_{\rm T}$
- \checkmark Collective flow v_2 , v_3

40 Molnar et al., PRC89,074010(2014)

temperature dependent shear + bulk viscosities

Rapidity Distributions

• Parameters in initial condition TRENTO are fixed from comparison with experimental data at 0-5 % centrality.

 η /s dependence

• p_{T} spectra

 $P_{\rm T}$ spectra do not depend on η/s .

Effect of Bulk Viscosity

• Shear + Bulk viscosities

Bulk viscosity reduces the transverse expansion.

- -> Slope of P_{T} spectra becomes steep.
- -> Close to ALICE data.

Finite bulk viscosity

Effect on Expansion

Bulk viscosity is large below 200 MeV.

- -> Its effect appears around $T_c \sim 160$ MeV.
- -> Expansion rate decreases in lower temperature region.
- -> Volume elements of fluid remain around T_c temperature longer.

Effect on Collective Flow

• Collective flow as a function of η_p

- (3+1)-d calculation
- v_n with bulk viscosity is much closer to the ALICE data: amplitude and slope
- Effect of bulk viscosity at forward rapidity is large.

Finite bulk viscosity

T(MeV)

T(MeV)

 $\zeta = b\eta$

- 0-5 % centrality η/s of QGP and hadron phases is important.
- 30-40 % centrality η/s of hadron phase is dominant.

$$\left(\frac{1}{3}-c_{s}^{2}\right)^{2} \stackrel{0.7}{=} 0.4 \\ 0.3 \\ 0.2 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1$$

150

200

250

T(MeV)

0.8

η/s=0.17

c₁=20 c₂=0.7 c₁=0 c₂=0.7

c1=20 c2=0

300

350

400

Central dependence of
$$v_2(\eta_p)$$
 reveals
temperature dependence of η/s .

Understanding QGP bulk property

TRENTO

- New relativistic viscous hydrodynamics code
 - Stable with small numerical dissipation
 - Phenomenological model :
 - Quantitative analyses
- QGP bulk property
 - Shear and bulk viscosity
- Okamoto, Akamatsu, Nonaka, EPJC76,579(2016) Okamoto and Nonaka, EPJC77,383(2017) Okamoto and Nonaka, arXiv:1712.00923

– Hydro

Akamatsu et al, JCP256,34(2014)

Quantitative analyses

— UrQMD

- Finite bulk viscosity, central dependence of $v_2(\eta_p)$
- Future works

Bayesian analyses, deep learning: Bass, Bernhard, Moreland, Pang....

- Two particle correlations (HBT)
- Electromagnetic probes