HEAVY-QUARK EXOTICS

J. Rosner (University of Chicago) – Kyoto, June 15, 2018

New Frontiers in QCD 2018: Recent Developments in Quark-Hadron Sciences

1964: M. Gell-Mann and G. Zweig proposed that the known mesons were $q\bar{q}$ and baryons qqq, with quarks known at the time u ("up"), d ("down"), and s ("strange") having charges (2/3,-1/3,-1/3). Mesons and baryons would then have integral charges.

Mesons such as $qq\bar{q}\bar{q}$ and baryons such as $qqqq\bar{q}$ would also have integral charges. Why weren't they seen?

They *have* now been seen, as "molecules" of heavy-quark hadrons or as deeply bound states involving heavy quarks (charm and bottom).

Charm-anticharm and bottom-antibottom molecules; "pentaquark" as a charmed meson – baryon molecule; $\Xi_{cc}^{++} = ccu$ as the first doubly charmed baryon; ccs mass; stable $bb\bar{u}\bar{d}$ tetraquark; quark fusion

Thanks to Marek Karliner and Michael Gronau for many enjoyable collaborations on these and other topics. Bibliography at end has many references. Recent: M. Karliner, T. Skwarnicki, JLR, arXiv:1711.10626

u, d, s have charges 2/3,-1/3,-1/3 and strangeness 0,0,-1 No $qqqq\bar{q}$ baryons seen made of just these three quarks "Pentaquark" $uudd\bar{s}$ at 1540 MeV decaying to K^0p or K^+n claimed in early 2000's; not confirmed subsequently

No resonances made of u, d, s seen which would correspond to $qq\bar{q}\bar{q}$ but not $q\bar{q}$ (e.g., $uud\bar{s}$ decaying to $K^+\pi^+$)

Situation changes with heavy quarks c (charm), b (bottom)

EARLY HINT OF EXOTICS 4/33

Processes "dual" (JLR, 1968) to *t*-channel $q\bar{q}$ exchange:

s-channel resonances \Leftrightarrow *t*-channel Regge trajectories In antiproton-proton scattering, $q\bar{q}$ dual to $qq\bar{q}\bar{q}$ Predicts "exotic" $qq\bar{q}\bar{q}$ mesons, but where? Do resonances form via $q\bar{q}$ annihilation? (JLR, 1972):

 $p^* \leq 350 \, \operatorname{MeV}/c$

 $p * \le 250 \text{ MeV}/c$

BARYON-ANTIBARYON EXOTICS

(c)

(a)

(b)

(a) qq̄: Standard meson
(b) qqq: Standard baryon
(c) qqq̄q̄: Exotic meson

Freund-Waltz-JLR 1969, Imachi + 1974-7, Rossi-Veneziano 1977: decays occur via quark pair production (breaking of QCD string) $\Rightarrow qq\bar{q}\bar{q} \rightarrow$ baryon-antibaryon

Don't see meson + baryon \rightarrow baryon + (exotic meson)

Such exotics may fall apart into meson pairs and may be too broad to show up as distinct resonant peaks

R. Jaffe (1976-8): extensive study of $qq\bar{q}\bar{q}$ states within bag model of QCD; light diquark-antidiquark states could be familiar ones with masses of a GeV or less

First "baryonium" candidate: the pion (Fermi-Yang 1949)

$p\bar{p}$ threshold effect

Fermilab E687: Dip in diffractive 6π photoproduction near $p\bar{p}$ threshold (shading: amplitudes w/o interference)

The $p\bar{p}$ channel is "robbing" the 6π channel; rapid variation suggests production in an S-wave, and coupling to a photon suggests a ${}^{3}S_{1}$ state: $J^{PC} = 1^{--}$

6/33

Similar behavior in I = 0 $\pi\pi$ S wave near 1 GeV when $K\bar{K}$ threshold opens up near $f_0(980)$

Solodov, Baldini (Bad Honnef, 4/18): Behavior in $e^+e^- \rightarrow$ (hadrons) near $p\bar{p}$, $\Lambda_c\bar{\Lambda}_c$ thresholds

BEHAVIOR NEAR $p\bar{p}$ **THRESHOLD**

THE CHARMED QUARK

Leptons:
$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}$$
 (no strong interactions)

1964: Bjorken–Glashow, ...: quark–lepton analogy;

$$\left(\begin{array}{c}\nu_e\\e^-\end{array}\right), \left(\begin{array}{c}\nu_\mu\\\mu^-\end{array}\right) \Leftrightarrow \left(\begin{array}{c}u\\d\end{array}\right), \left(\begin{array}{c}c\\s\end{array}\right)$$

Glashow–Iliopoulos–Maiani (1970): $m_c \simeq 2$ GeV/ c^2 ; Gaillard-Lee (1973): electroweak role of charmed quark

1974: Charmed quark c in $J/\psi = c\bar{c}$. J = "Ting" (codiscoverer). *Charmonium* ($c\bar{c}$) spectrum is still evolving

Particles with one charmed quark: rich spectrum today Large m_c : nonrelativistic QM provides some insights

3RD QUARK-LEPTON FAMILY 9/33

At the same time as charm: the τ lepton (M. Perl, 1974) Quark-lepton analogy:

$$\left(\begin{array}{c}\nu_{e}\\e^{-}\end{array}\right)\left(\begin{array}{c}\nu_{\mu}\\\mu^{-}\end{array}\right)\left(\begin{array}{c}\nu_{\tau}\\\tau^{-}\end{array}\right)\Leftrightarrow\left(\begin{array}{c}u\\d\end{array}\right)\left(\begin{array}{c}c\\s\end{array}\right)\left(\begin{array}{c}t\\b\end{array}\right)$$

Third lepton pair $(\nu_{\tau}, \tau^{-}) \Rightarrow$ third quark pair (t [top], b [bottom]), predicted by Kobayashi and Maskawa.

1977 (Fermilab): Υ family of spin–1 $b\bar{b}$ particles produced in proton-proton interactions, decaying to e^+e^- , $\mu^+\mu^-$

Rich $b\overline{b}$ spectroscopy; "B" mesons containing a single b quark. Decays of particles with b quarks: an active field.

Top (1994 at Fermilab Tevatron): mass $M_t \simeq 173 \text{ GeV}/c^2$ large so decays too rapidly to have interesting spectroscopy

X(3872): Genuine exotic 10/33

State decaying to $J/\psi \pi^+\pi^-$ discovered by Belle (2003) at 3872 MeV (shown with $\psi'(3686 \text{ MeV})$); also seen by CDF (2004, left), D0 (2004, right), and BaBar (2008)

Within ~ 0.2 MeV of $D^0 ar{D}^{*0}$ threshold

X(3872) **PROPERTIES** 11/33

 $\begin{array}{l} M(X) = (3871.69 \pm 0.17) \ {\rm MeV} \simeq M(D^0) + M(\bar{D}^{*0}) = \\ (3871.68 \pm 0.07) \ {\rm MeV} \Rightarrow {\rm key\ role\ for\ that\ channel} \end{array}$

Decay $X \to \gamma J/\psi$ seen; implies C(X) = + and some admixture of $c\bar{c}$ in its wave function

Angular distribution of decay products implies $J^{PC} = 1^{++}$ as expected for S-wave state of $D^0 \overline{D}^{*0} + c.c.$

 $C \text{ invariance} \Rightarrow C(\pi^+\pi^-) = - \Rightarrow \pi^+\pi^- \text{ in a } \rho \text{ meson}$

Large $M(D^{(*)+} - D^{(*)0}) \Rightarrow$ little $D^{(*)\pm}$ in wave function

 $\Gamma(X\to\omega J/\psi)$ comparable to $\gamma(X\to J/\psi\rho),$ as one would expect for a state with $c\bar{c}u\bar{u}$ admixture

In addition to X(3872) (mixture of $2^{3}P_{1}$ $c\bar{c}$ state and $J^{PC} = 1^{++} c\bar{c}u\bar{u}$ state) one expects an orthogonal mixture (potential models: probably > 3900 MeV)

THE BELLE $\Upsilon(nS)\pi$ **PEAKS** ^{12/33} Belle: $\Upsilon(10865) \rightarrow \Upsilon(1S, 2S, 3S)\pi^{+}\pi^{-} \Rightarrow$ unexpected structures " $Z_{b}(10610, 10650)$ " in $M[\pi^{\pm}\Upsilon(1S, 2S, 3S)]$

All spectra: peaks at $M(\Upsilon(nS)\pi = 10.61 \text{ and } 10.65 \text{ GeV})$ Within a few MeV of $M(B) + M(\bar{B}^*)$ and $M(B^*) + M(\bar{B}^*)$ Looks like S-wave molecules of $B\bar{B}^*(+\text{c.c.})$ and $B^*\bar{B}^*$

PION EXCHANGE AND $X_{c,b}$ ^{13/33}

 $\begin{array}{ll} D^0 \bar{D}^{*0} + \mathrm{c.c.\ molecule} & B\bar{B}^* + \mathrm{c.c.\ molecule} & B^*\bar{B}^* \ \mathrm{molecule} \\ \mathrm{Pion\ doesn't\ couple\ to\ a\ pair\ of\ pseudoscalar\ mesons\ }(P) \\ \mathrm{Implies\ no\ } D\bar{D} \ \mathrm{or\ } B\bar{B} \ \mathrm{molecules}; \ \mathrm{doesn't\ preclude\ genuine} \\ c\bar{c} \ \mathrm{or\ } b\bar{b} \ \mathrm{resonances\ slightly\ above\ threshold\ }(\mathrm{e.g.,\ } \Upsilon(4S) \\ \mathrm{Potential:\ } V \sim \pm (I_1 \cdot I_2)(S_1 \cdot S_2) \ \mathrm{for\ }(qq,q\bar{q}) \ \mathrm{interactions} \\ \mathrm{Expect\ } J^{PC} = 1^{++} \ X_b \ \mathrm{(analogue\ of\ } X(3872)) \ \mathrm{to\ have} \\ I = 0 \ \mathrm{because\ } M(B^{(*)-}) \simeq M(B^{(*)0}) \end{array}$

Distinct from the Z_b s which have I = 1; expect $M(X_b) \sim 10562-10585$ MeV ($\chi_b(3^3P_1)$?)(Karliner + JLR, PR D **91**)

V **EXPECTATION VALUES** ^{14/33}

Most deeply bound $D\bar{D}^*$, $D^*\bar{D}^*$, $B\bar{B}^*$, $B^*\bar{B}^*$ states:

 $D^* \overline{D}^*$ or $B^* \overline{B}^*$: $\langle I_1 \cdot I_2 \rangle = (-\frac{3}{4}, \frac{1}{2})$ for I = 0, 1; $\langle S_1 \cdot S_2 \rangle = (-2, -1, 1)$ for S = (0, 1, 2)

Hence $\langle V\rangle=-(I_1\cdot I_2)(S_1\cdot S_2)$ for $D^*\bar{D}^*$ or $B^*\bar{B}^*$ is most attractive in the I=S=0 channel

 $Z_c(4020),\ Z_b(10650)$ have $I=1;\ \langle V\rangle<0$ for S=2; expect lower-mass I=S=0 states

 $D\bar{D}^*$, $B\bar{B}^*$: use basis (e.g.) $[D^0\bar{D}^{*0}, D^{*0}\bar{D}^0, D^+D^{*-}, D^{*+}D^-]$ Eigenstates of potential have definite C, I

Most attractive channel with $\langle V\rangle=-3$ in some units has $C=+,\ I=0.$

 $Z_c(3900),~Z_b(10610)$ have I=1; if their $\langle V\rangle<0$ then it is 1/3 that for C=+,~I=0 state, and their C=-

PENTAQUARK P_c

LHCb (PRL **115**, 072001) sees bumps in $J/\psi~p$ invariant mass in the decay $\Lambda_b \rightarrow K^- J/\psi~p$ at 4380 and 4450 MeV

 Λ^* excitation

 P_c excitation

15/33

Dalitz plot: many K^-p resonances (all I = 0: $b \rightarrow c\bar{c}s$ is $\Delta I = 0$). May be missing high- $M(K^-p)$ states.

Prominent narrow band at $M(J/\psi p) = 4449.8 \pm 1.7 \pm 2.5$ MeV with fitted width $\Gamma = 39 \pm 5 \pm 8$ MeV

Karliner + JLR (PRL 115, 122001): Pion exchange binds $\Sigma_c(2453)$ and $D^*(2010)$ into a near-threshold bound state

$K^- p J/\psi$ dalitz plot

Asymmetric behavior along $M(J/\psi\ p)$ band indicates interference with an opposite-parity state

16/33

AN INTERPRETATION

17/33

Red curves: phase space. Λ^* resonances at low $M(K^-p)$

Peak at $M(J/\psi p) \simeq 4450$ MeV: could be a $\Sigma_c \overline{D}^*$ S-wave bound state with $J^P = 3/2^-$; quark content = $c\overline{c}uud$

Further structure fitted by LHCb with resonance $P_c(4380)$ ($\Gamma \simeq 205 \text{ MeV}$) with opposite parity to $P_c(4450)$

ARGAND PLOTS

 $P_c(4450)$: classic resonant behavior; $P_c(4380)$ anomalous No obvious molecular explanation for $P_c(4380)$ $\Sigma_c^*(2520)\overline{D}^*(2010)$ channel *above* the $P_c(4450)$ interfering *destructively* with a suitable background? (P?) BARYONS WITH > 1 HEAVY QUARK 19/33

So far: $Q\bar{Q}q\bar{q}'$ or $Q\bar{Q}qqq'$ (Q = heavy, q, q' = light). Can we predict masses of (simpler) QQ'q systems?

SELEX at Fermilab (2002-5) claimed $\Xi_{cc}^{++}(3520) = ccu$ and $\Xi_{cc}^{+}(3460) = ccd$; not confirmed by others

M. Karliner + JLR (PR D 90): Constituent-quark masses, hyperfine splittings, estimates of QQ' binding (q = u, d):

State	Quark content	M(J = 1/2)	M(J=3/2)
$\Xi_{cc}^{(*)}$	ccq	3627±12	3690 ± 12
$\Xi_{bc}^{(*)}$	b[cq]	6914 ± 13	6969 ± 14
Ξ_{bc}^{\prime}	b(cq)	6933 ± 12	_
$\Xi_{bb}^{(*)}$	bbq	10162 ± 12	10184 ± 12

LHCb PRL **119**, 112001: $M(\Xi_{cc}^{++}) = 3621.40 \pm 0.78$ MeV Other estimates (> 30): spread of at least 100 MeV

Similar peak seen in 8 TeV data; no $\Lambda_c K^- \pi^+$ peak We predicted $\tau(\Xi_{cc}^{++,+}) = (185,53)$ fs; $\Lambda_c K^- \pi^+$ peak disfavored by LHCb lifetime cut $\tau > 150$ fs LHCb (Novosibirsk, 5/22): $\tau(\Xi_{cc}^{++}) = 256^{+24}_{-22} \pm 14$ fs

20/33

INPUTS

21/33

Describe ground-state baryons containing u,d,s taking $m_u^b=m_d^b\equiv m_q^b=363$ MeV, $m_s^b=538$ MeV, and hyperfine interaction term $a/(m_q^b)^2=50~{\rm MeV}$

State (mass	Spin	Expression for mass	Predicted
in MeV)			mass (MeV)
N(939)	1/2	$3m_{q}^{b} - 3a/(m_{q}^{b})^{2}$	939
$\Delta(1232)$	3/2	$3m_{g}^{b} + 3a/(m_{g}^{b})^{2}$	1239
$\Lambda(1116)$	1/2	$2m_{q}^{b}+m_{s}^{b}-3a/(m_{q}^{b})^{2}$	1114
$\Sigma(1193)$	1/2	$2m_a^b + m_s^b + a/(m_a^b)^2 - 4a/m_a^b m_s^b$	1179
$\Sigma(1385)$	3/2	$2m_a^b + m_s^b + a/(m_a^b)^2 + 2a/m_a^b m_s^b$	1381
$\Xi(1318)$	1/2	$2m_s^b + m_a^b + a/(m_s^b)^2 - 4a/m_a^b m_s^b$	1327
$\Xi(1530)$	3/2	$2m_s^{b} + m_a^{b} + a/(m_s^{b})^2 + 2a/m_a^{b}m_s^{b}$	1529
$\Omega(1672)$	3/2	$3m_{s}^{b} + 3a/(m_{s}^{b})^{2}$	1682

Describe mesons with quark masses $m_{u,d,s}^m \sim 55$ MeV less $M(\Lambda_{c,b}) - M(\Lambda) \Rightarrow m_{c,b}^b = (1710.5, 5043.5)$ MeV

CHARMED & BOTTOM BARYONS

Above choices of mass sufficient to describe nonstrange baryons with one $c \mbox{ or } b \mbox{ quark}$

When taking account of deeper cs or bs binding in baryons with one or two strange quarks and one charm or bottom fit all baryons with one c or b

Charmed baryons			Bottom baryons		
State (M	Spin	Predicted	State (M	Spin	Predicted
in MeV)		M (MeV)	in MeV)		M (MeV)
$\Lambda_c(2286.5)$	1/2	Input	$\Lambda_b(5619.5)$	1/2	Input
$\Sigma_{c}(2453.4)$	1/2	2444.0	$\Sigma_{b}(5814.3)$	1/2	5805.1
$\Sigma_{c}^{*}(2518.1)$	3/2	2507.7	$\Sigma_{b}^{*}(5833.8)$	3/2	5826.7
$\Xi_c(2469.3)$	1/2	2475.3	$\Xi_{b}(5792.7)$	1/2	5801.5
$\Xi_{c}^{\prime}(2575.8)$	1/2	2565.4	$\Xi_b'(-)$	1/2	5921.3
$\Xi_{c}^{*}(2645.9)$	3/2	2628.6	$\Xi_b^*(5949.7)$	3/2	5944.1
$\Omega_{c}(2695.2)$	1/2	2692.1	$\Omega_b(6046.4)$	1/2	6042.8
$\Omega_{c}^{*}(2765.9)$	3/2	2762.8	$\Omega_b^*(-)$	3/2	6066.7

HEAVY QUARK PAIR BINDING^{3/33}

Quark pair more deeply bound when neither is u or d $B(c\bar{s}) = [3M(D_s^*) + M(D_s)]/4 - m_s^m - m_c^m = -69.9 \text{ MeV}$ Assume $B(cs)/B(c\bar{s}) = 1/2$ as for single-gluon exchange Then B(cs) = -35 MeV; also find B(bs) = -41.8 MeV Rescale hyperfine interactions when neither quark is u or d; take a cue from $M(D_s^*) - M(D_s) \simeq M(D^*) - M(D)$ Now we are ready to deal with cc, cb, bb Charm-anticharm binding: $B(c\bar{c}) = [3M(J/\psi) +$ $M(\eta_c)]/4 - 2m_c^m = -258$ MeV, so B(cc) = -129 MeV

Similar calculations give $B(bb)=-281.4~{\rm MeV}$ and $B(bc)=-167.8\pm3.0~{\rm MeV}$ (uncertainty in B_c^* mass)

STABLE $bb\bar{u}\bar{d}$ TETRAQUARK ^{24/33}

We looked at $QQ'\bar{u}\bar{d}$ systems (Q = c or b) (PRL **119**)

We found $cc\bar{u}\bar{d}$ unbound; it could decay to DD^* or $DD\gamma$

Lowest-lying $bc\bar{u}\bar{d}$ state was near $BD\gamma$ threshold and we could not tell for sure whether it was bound or unbound

Predicted $M(bb\bar{u}\bar{d}) = 10,389 \pm 12$ MeV, 215 MeV below B^-B^{*0} threshold and 170 MeV below $B^-B^0\gamma$ threshold

Regard bb as a color-3^{*} diquark (transforming under QCD as an antiquark); fermi statistics require its spin to be 1

Lightest $\bar{q}\bar{q}'$ state (q,q'=u,d) is a color-3 $\bar{u}\bar{d}$ state with isospin zero; fermi statistics require its spin to be zero

Mass prediction then relies on accounting for constituentquark masses, hyperfine interactions, and binding effects

TETRAQUARKS $QQ'\bar{u}\bar{d}$

25/33

Contributions (MeV) to mass of lightest tetraquark:

$cc\bar{u}d, J^P$	$r = 1^+$	$bc\bar{u}d, J^P$	$' = 0^+$	$bb\bar{u}\bar{d},~J$	$^{P} = 1^{+}$
Contribution	Value	Contribution	Value	Contribution	Value
$2m_c^b$	3421.0	$m_b + m_c$	6754.0	$2m_b^b$	10087.0
$2m_q^b$	726.0	$2m_q^b$	726.0	$2m_q^b$	726.0
cc hyperfine	14.2	bc hyperfine	-25.5	bb hyperfine	7.8
$-3a/(m_{q}^{b})^{2}$	-150.0	$-3a/(m_{q}^{b})^{2}$	-150.0	$-3a/(m_{q}^{b})^{2}$	-150.0
cc binding	-129.0	bc binding	-170.8	bb binding	-281.4
Total	3882±12	Total	7134±13	Total	10389 ± 12

Spin zero allowed for the $bc\bar{u}d$ state, taking advantage of the attractive bc hyperfine interaction Since $M(cc\bar{u}\bar{d}) > M(D^0) + M(D^+) = 3734$ MeV, it can decay to $D^0D^+\gamma$ (decay to D^0D^+ is forbidden) $M(bc\bar{u}\bar{d}) < M(D^0) + \bar{M}(B^0) = 7144$ MeV? Estimated lifetime of $bb\bar{u}\bar{d}$ state: 367 fs

COMPARISON OF TQ MASSES^{6/33}

Distance in MeV of the $cc\bar{u}d$, $bc\bar{u}d$ and $bb\bar{u}d$ tetraquark masses from corresponding thresholds $D^0D^+\gamma$, \bar{B}^0D^0 , and $\bar{B}^0B^-\gamma$, plotted against reduced masses of the doublyheavy diquarks $\mu(QQ')$, Q,Q'=c,b.

HEAVY QUARK FUSION 27/33

MK + JLR, Nature **551**, 89 (2017): $\Lambda_Q + \Lambda_{Q'} \rightarrow \Xi_{QQ'} + N$

$QQ\bar{Q}\bar{Q}\bar{Q}$ **States**

28/33

M. Karliner, S. Nussinov, JLR: Masses, production, decays of $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$ states (PR D **95**, 034011 (2017))

Compensate 55 MeV difference in effective quark masses in mesons and baryons with 165 MeV per "string junction" $M_{(cc)(\bar{cc})} = 6192 \pm 25$ MeV, 225 ± 25 MeV above $2M(\eta_c)$ $M_{(bb)(\bar{bb})} = 18826 \pm 25$ MeV, 28 ± 25 MeV above $2M(\eta_b)$, could exhibit non-hadronic decays if estimate is $> 1\sigma$ high Hadronic production of an extra $Q\bar{Q}$: probability $\sim 0.1\%$ CMS (JHEP 05 (2017) 013): double $\Upsilon(1S)$ production; 38 events, each $\Upsilon \to \mu^+\mu^-$, [20.7 fb⁻¹, $\sqrt{s} = 8$ TeV]

S. Durgut (CMS, thesis, U. of Iowa, April 2018 APS Meeting): Excess in $\Upsilon(1S)\ell^+\ell^-$ at $18.5\pm0.1\pm0.2~{\rm GeV}$

$QQ\bar{Q}\bar{Q}\bar{Q}$ decay

29/33

If $M(0^+) < 2m(\eta_Q)$, main decay to flavored meson pair:

 $Q\bar{Q} \rightarrow q\bar{q}$ partial width of α_s^2 order (tens of MeV) Wave function overlap uncertain; could be very small $\sigma(pp \rightarrow X_{bb\bar{b}\bar{b}}[0^{++}] \rightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-) \leq 4 \text{ fb} \text{ (LHC, 13 TeV)};$

upper limit attained only if little competition from $X_{bb\bar{b}\bar{b}}[0^{++}] \to B\bar{B}X \ .$

PREDICTIONS FOR $\Omega_{cc} = ccs^{30/33}$

Strange quark is about 175 MeV heavier than nonstrange but more deeply bound to cc diquark than nonstrange

Ξ_{cc} :	= ccq	$\Omega_{cc} = ccs$		
Contribution	Value (MeV)	Contribution	Value (MeV)	
$2m_c^b + m_q^b$	3789.0	$2m_c^b + m_s^b$	3959.0	
cc binding	-129.0	cc binding	-129.0	
$a_{cc}/(m_c^b)^2$	14.2	$a_{cc}/(m_c^b)^2$	14.2	
$-4a/m_q^b m_c^b$	-42.4	$-4a'/m_s^bm_c^b$	-42.4	
Totaĺ	3626.8 ± 12	Subtotal	3801.8 ± 12	

Additional binding of s to $cc:~-109.4\pm10.5$ MeV, giving $M(\Omega_{cc})=3692\pm16$ MeV, $M(\Omega_{cc}^*)=3756\pm16$ MeV

Superscripts on quark masses: value in a baryon

Universal quark masses and 165 MeV "string junction" term for baryons: predict $M(\Omega_{cc}) \sim 40$ MeV higher

EXCITED Ω_c **STATES** 31/33

Ground *css* states: $\Omega_c(2695, 1/2^+)$, $\Omega_c^*(2766, 3/2^+)$ (PDG) LHCb (PRL **118**): Five narrow Ω_c^* states $\rightarrow \Xi_c^+ K^-$ Karliner + JLR (PR D **95**): Five P-wave excitations?

ALTERNATIVE ASSIGNMENT 32/33

In this case two $J^P = 1/2^-$ states yet to be seen One around 2904 MeV decaying to $\Omega_c \gamma$ and/or $\Omega_c \pi^0$ The other around 2978 MeV $\rightarrow \Xi_c^+ K^-$ in S-wave

PROSPECTS

33/33

Exotic mesons and baryons (beyond $q\bar{q}$ and qqq) do exist; molecular configurations are at least part of the story

Heavy quarks have a lower kinetic energy and help to stabilize exotic configurations containing them

Techniques for mass estimation (constituent-quark masses, hyperfine interactions, binding effects) relatively straightforward and starting to be tested for QQ'q baryons

Frontier: $Q_1 Q_2 \overline{Q}_3 \overline{Q}_4$; any $cc \overline{c} \overline{c}$ lighter than $2M(\eta_c)$? Any $bb\overline{b}\overline{b}$ lighter than $2M(\eta_b)$?

Can quark-level analogue of nuclear fusion be put to use?

Still to be known: What does it cost to produce one or more extra heavy quarks via strong interactions? When do two heavy quarks end up in the same hadron?

BIBLIOGRAPHY

E. Fermi and C. N. Yang, Phys. Rev. **76**, 1739 (1949). M. Gell-Mann, Phys. Lett. 8, 214 (1964) (quark model) G. Zweig, CERN Reports No. TH-401, TH-412 (quark model) J. L. Rosner, Phys. Rev. Lett. **21**, 950 (1968) (baryonium from duality) H. Harari, Phys. Rev. Lett. 22, 562 (1969); J. L. Rosner, Phys. Rev. Lett. 22, 689 (1969) (duality diagrams) P. G. O. Freund, R. Waltz, and J. L. Rosner, Nucl. Phys. B13, 237 (1969) (selection rule). J. L. Rosner, Phys. Rev. D 6, 2717 (1972) (resonance formation) M. Imachi et al., Prog. Theor. Phys. 52, 341 (1974); 54, 280 (1975); **55**, 551 (1975); **57**, 517 (1977) (strings) R. L. Jaffe, Phys. Rev. D 15, 267, 281 (1977); 17, 1444 (1978) (multiquark hadrons; QQQQ states) G. C. Rossi and G. Veneziano, Phys. Lett. **70B**, 255 (1977); Nucl. Phys. **B123**, 507 (1977) (QCD-string models) I. S. Shapiro, Sov. Phys. Usp. 21, 645-673 (1978) [Usp. Fiz. Nauk 125 577-630 (1978)] (potential model)

BIBLIOGRAPHY, CONTINUED^{35/33}

A. Antonelli et al. (FENICE Collaboration), Nucl. Phys. **B517**, 3 (1998) (dip in $e^+e^- \rightarrow 6\pi$ cross section near $2m_p$) P. L. Frabetti et al. (Fermilab E687), Phys. Lett. B 514, 240 (2001) $(6\pi \text{ diffractive photoproduction})$ M. Mattson et al. (SELEX), PRL 89, 112001 (2002); A. Ocherashvili *et al.* (SELEX), PL B **628**, 18 (2005) (Ξ_{cc}) T. Nakano *et al.* (LEPS), PRL **91**, 012002 (2003) $[\Theta^+(1540)]$ J. Z. Bai *et al.* (BES), PRL **91**, 022001 (2003) (narrow $p\bar{p}$ state) S. K. Choi *el.* (Belle), PRL **91**, 262001 (2003) (X(3872) discovery) J. L. Rosner, Phys. Rev. D 68, 014004 (2003) (baryonia in *B* decays) J. L. Rosner, PR D 69, 094014 (2004) (exotics in heavy meson decays) D. Acosta *et al.* (CDF), PRL **93**, 072001 (2004) (X(3872) signal) V. M. Abazov et al. (D0), PRL 93, 262002 (2004) (X(3872) signal) J. L. Rosner, Phys. Rev. D 74, 067006 (2006) (thresholds) B. Aubert *et al.* (BaBar), PR D **77**, 111101 (2008) (X(3872) signal)

BIBLIOGRAPHY, CONTINUED^{36/33}

M. Gaspero al. (BaBar), PR D 78, 014015 (2008); AIP Conf. Proc. **1257**, 242 (2010) $(J^{PC} = 0^{--} \text{ state in } D^0 \text{ decay})$ M. Karliner et al., Ann. Phys. **324**, 2 (2009) (b baryons) D. Ebert *et al.*. PR D **84**, 014025 (2011) (excited $\Sigma_{c.b}$ s) A. Bondar *et al.* (Belle), PRL **108**, 122001 (2012) (Z_b states) M. Karliner and J. L. Rosner, Phys. Rev. D **90**, 094007 (2014) (QQ'q)Z. S. Brown et al., PR D 90, 094507 (2014) (QQ'q on lattice) S. L. Olsen, Front. Phys. 10, 221 (2015) M. Karliner and JLR, PR D **91**, 014014 (2015) $(X(3872), Z_bs)$ R. Aaij *et al.* (LHCb), PRL **115**, 072001 (2015) (pentaquarks P_c) M. Karliner and J. L. Rosner, Phys. Rev. Lett. **115**, 122001 (2015); Phys. Lett. B 752, 329 (2015) (pentaquark; its photoproduction) M. Karliner and J. L. Rosner, Phys. Rev. D **92**, 074026 (2015) ($\Sigma_{c.b}$) M. Gronau and JLR, PR D 92, 114018 (2015) (exotic in D^0 decay) M. Karliner and JLR, Nucl. Phys. A954, 365 (2016) (η exchange) R. Aaij *et al.* (LHCb), arXiv:1606.07895 ($J/\psi\phi$ structures)