Tribaryon configuration and the inevitable three nucleon repulsion at short distance

Su Houng Lee

Attempts to understand the static energy of the 6 quark (2baryon) and 9 quark (3-baryon) configuration in a constituent quark model and their possible relation to nuclear force at short distance

Ref: Aaron Park, Woosung Park, SHL: 1801.10350, + in preparation

I. Few words on "Multiquark states"

II. Constituent quark model, Multiquark states and Short distance 2-N static energy

III. Tribaryons and short distance 3-N static energy

Few words on "Multiquark states"

X(3872)

- 2003 -

- 2007 -

 $B \rightarrow K \overline{\pi^{\pm} \psi'}$ $M = 4433 \pm 4 \pm 2 \text{ MeV}$ $\Gamma = 45^{+18}_{-13} (\text{stat})^{+30}_{-13} (\text{syst}) \text{ MeV}$

- 2014 -

Spin parity = 1+

 $\eta_{G} = \eta_{C} (-1)^{l}$

 $G=+ \rightarrow$ will look at C=-

Pentaquark - Pc

- 2015 -

S = 3

$$\Lambda_b^0 \to \overline{J/\psi p} K$$

$$/2 \begin{bmatrix} M_1 = 4380 \pm 8 \pm 29 \text{ MeV} \\ \Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV} \end{bmatrix} S = 5/2 \begin{bmatrix} M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV} \\ \Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV} \end{bmatrix}$$

Baryon with ccu

$$\Xi_{\rm cc}^{\scriptscriptstyle ++} o \Lambda_c^{\scriptscriptstyle +} \, K^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +}$$

 $m_{\Xi_{cc}} - m_{\Lambda_c} = 1334.94 \pm 0.72 \pm 0.27 \text{ MeV}$ $m_{\Xi_{cc}} = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 (\Lambda_c^+) \text{MeV}$

PRL119 (2017)112001

d*(2380)
$$I(J^{P}) = O(3^{+}) \quad \Gamma = 70 \text{ MeV}$$

Normal meson, compact multiquark, molecules, resonances

	Normal meson	Compact multiquark	Molecules	Resonance
Geometrical configuration				
Examples	Nucleon, pion, kaon	?	X(3872)	K*, rho meson

L Pc, d* **_**

II: Constituent quark model, Multiquark states and Short distance 2-N static energy

Lattice Results : HAL QCD collaboration for H dibaryon in SU(3) symmetric limit

→ Flavor 1 channel could give compact configuration

Compact multiquark states could exists if the static energy at short range is attraction

The $r \rightarrow 0$ can be understood from quark model: Oka et al. quark cluster model

Quark wave function for multiquark states (W.Park, A.Park, S.Cho, SHL)

- Some Previous works have limited Fock space: diquark picture ...
- Hard to picture interplay between various contribution
- Hard to understand SU(3) breaking effects.

 \rightarrow Work out the full (color) x (spin) x (flavor) wave function for all multiquark configurations at least for the ground state and with s-wave quark states only

Quark wave function for light dibaryons (W.Park, A.Park, SHL15.)

- Choose the spatial part to be symmetric
- Choose the Color-Flavor-Spin part to be antisymmetric : SU(12)

 $\left[1^{6}\right]_{CIS} = \left(\left[1\right]_{C}, \left[50\right]_{IS}\right) \oplus \left(\left[8\right]_{C}, \left[64\right]_{IS}\right) \oplus \left(\left[10\right]_{C}, \left[10\right]_{IS}\right) \oplus \left(\left[10\right]_{C}, \left[10\right]_{IS}\right) \oplus \left(\left[27\right]_{C}, \left[6\right]_{IS}\right) \right) \right)$

- Dibaryon: 5 Independent color singlet bases

 $|C_1\rangle = \{[(12)_63]_8[4(56)_6]_8\}_1$

1	3
2	5
4	6

 $|C_3\rangle = \{[(12)_6 3]_8 [4(56)_3]_8\}_1$

 $|C_2\rangle = \{[(12)_{\overline{3}}3]_{8}[4(56)_{6}]_{8}\}_{1}$

 $|C_4\rangle = \{[(12)_{\overline{3}}3]_8 [4(56)_{\overline{3}}]_8\}_1$

 $|C_5\rangle = \{[(12)_{\overline{3}}3]_1[4(56)_{\overline{3}}]_1\}_1$

- Pentaquark: 3 Independent color singlet bases (W.Park, A. Park, S.Cho, SHL PRD95,054027)

 $|C_1\rangle = \{[(12)_63]_8[4(56)_6]_8\}_1$

 $|C_2\rangle = \{[(12)_3 3]_8 [4(56)_6]_8\}_1$

 $|C_{3}\rangle = \left\{ \left[(12)_{6} 3 \right]_{8} \left[4(5)_{\overline{3}} \right]_{8} \right\}_{1}$

 $|C_4\rangle = \left\{ \left[\left(12\right)_{\overline{3}} 3\right]_8 \left[4\left(5\right)_{\overline{3}} \right]_8 \right\}_1$

 $|C_{5}\rangle = \left\{ \left[\left(12\right)_{\overline{3}} 3\right]_{1} \left[4\left(5\right)_{\overline{3}} \right]_{1} \right\}_{1} \right\}_{1}$

- Heptaquark: 11 Independent color singlet bases (W.Park, A. Park, SHL PRD96,034029)

$$\begin{split} |C_{1}\rangle &= \begin{pmatrix} \boxed{1} & 2\\ 3 & 4\\ 5 & \boxed{7} \end{pmatrix}, \ |C_{2}\rangle = \begin{pmatrix} \boxed{1} & 3\\ 2 & 4\\ 5 & \boxed{7} \end{pmatrix}, \ |C_{3}\rangle = \begin{pmatrix} \boxed{1} & 2\\ 3 & 5\\ \hline{7} & \boxed{7} \end{pmatrix}, \ |C_{4}\rangle = \begin{pmatrix} \boxed{1} & 3\\ 2 & 5\\ \hline{7} & \boxed{7} \end{pmatrix}, \ |C_{5}\rangle = \begin{pmatrix} \boxed{1} & 4\\ 2 & 5\\ \hline{7} & \boxed{7} \end{pmatrix}, \\ |C_{6}\rangle &= \begin{pmatrix} \boxed{1} & 2 & 3\\ \hline{4} & 7\\ \hline{7} & \boxed{7} \end{pmatrix}, \ |C_{7}\rangle = \begin{pmatrix} \boxed{1} & 2 & 4\\ \hline{3} & 7\\ \hline{5} & 7\\ \hline{7} & \boxed{7} \end{pmatrix}, \ |C_{8}\rangle = \begin{pmatrix} \boxed{1} & 3 & 4\\ 2 & 7\\ \hline{5} & 7\\ \hline{7} & \boxed{7} \end{pmatrix}, \ |C_{9}\rangle = \begin{pmatrix} \boxed{1} & 2 & 5\\ \hline{3} & 7\\ \hline{7} & \boxed{7} \end{pmatrix}, \\ |C_{10}\rangle &= \begin{pmatrix} \boxed{1} & 3 & 5\\ \hline{2} & 7\\ \hline{4} & 7\\ \hline{7} & \boxed{7} \end{pmatrix}, \ |C_{11}\rangle = \begin{pmatrix} \boxed{1} & 4 & 5\\ \hline{2} & 7\\ \hline{3} & 7\\ \hline{7} \end{pmatrix}. \end{split}$$

In quark model: wave function should follow Pauli Principle

• Totally antisymmetric (color x spin x flavor) wave function (s-wave quarks)

Example: $\Omega\Omega$ in the Spin=3 channel is highly repulsive because

→ Hence, assuming all quarks are in the S wave, Pauli principle forbids compact configuration.

Such forbidden configuration are highly repulsive at $r \rightarrow 0$ (Oka et al quark cluster model)

what about states that are allowed?

Constituent quark model

In Constituent quark model (Can fit experimental hadron spectrum well)

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

$$m_{M} = \langle \psi_{M} | H | \psi_{M} \rangle$$

= $\langle \psi_{M} (space) | H | \psi_{M} (space) \rangle \times \langle \psi_{M} (C - S - F) | H | \psi_{M} (C - S - F) \rangle$

 \rightarrow In this talk, Will concentrate on the Color-Spin-Flavor part

Baryon Mass splitting in a simplified version

$$Mass = Kinetic + confining.. + \sum_{i,j} \frac{C_B}{m_i m_j} \left[\lambda_i \lambda_j s_i \cdot s_j \right]$$
Example
$$A_c Mass = Kinetic + conf. - \frac{3}{4} \frac{C_B}{m_u m_d}$$

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

 $m_u = m_d = 300 \,\text{MeV}, \quad m_s = 500 \,\text{MeV}, \quad m_c = 1500 \,\text{MeV}, \quad m_b = 4700 \,\text{MeV}$

Mass diff	$M_{\Delta} - M_N$	M_{Σ} - M_{Λ}	$M_{\Sigma c}$ - $M_{\Lambda c}$	$M_{\Sigma b} ext{-}M_{\Lambda b}$
Formula	290 MeV	77 MeV	154 MeV	180 MeV
Experiment	290 MeV	75 MeV	170 MeV	192 MeV

When allowed, Where are the Compact multiquark configuration?

Kinetic energy part

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

Compact state 6 quark state vs 2 separated baryons \rightarrow Additional kinetic energy

Color-Color interaction ۲

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

Related to Casimir

$$\left(\lambda_{1}^{c} + \lambda_{2}^{c} + \dots \lambda_{n}^{c}\right)^{2} = 2\sum_{i < j}\lambda_{i}^{c}\lambda_{j}^{c} + \sum_{i}\left(\lambda_{i}^{c}\right)^{2}$$

It color singlet

Sum of color-color interaction is additive \rightarrow when the total number of quarks $N_{Total} = N_{B1} + N_{B2}$

$$\sum_{i < j} \lambda_i^c \lambda_j^c = -\frac{1}{2} \times \sum_{i=1}^{N_{Total}} \left(\lambda_i^c\right)^2 = -\frac{2}{3} N_{Total} = -\frac{2}{3} \left(N_{B1} + N_{B2}\right)$$

Quark 3-body force

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

Two types
$$V_1^{3-body} = c \sum_{i \neq j \neq k} f^{abc} F_i^a F_j^b F_k^c, \quad V_2^{3-body} = d \sum_{i \neq j \neq k} d^{abc} F_i^a F_j^b F_k^c$$

- Note, related to 2 Casimir

$$C_{1} = \left(F^{a}\right)^{2} = -\frac{2i}{3}f^{abc}F^{a}F^{b}F^{c}, \quad C_{2} = d^{abc}F^{a}F^{b}F^{c} = C_{1}\left(2C_{1} - \frac{11}{6}\right)$$

 \rightarrow 3-quark interaction are additive: For color singlet state composed of $N_{Total} = N_{B1} + N_{B2}$ quarks

$$V_1^{3-body} = 0$$

$$V_2^{3-body} = -(N_{B1} + N_{B2})C_1^q \left(2C_1^q - \frac{13}{3}\right)$$

Color spin interaction

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

Color-spin interaction for quark-quark and quark antiquark

$$K = \sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s)$$

quark-quark and

quark-antiquark

	qq			\overline{qq}				
Color	А	S	А	S	1	8	1	8
Flavor	А	А	S	S				
Spin	A(1)	S(3)	S(3)	A(1)	1	1	3	3
K	-8	-4/3	8/3	4	-16	2	16/3	-2/3

d

Color spin interaction - General remarks

 $K = -\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s)$

1) Part of a larger group

- Color: SU(3) and 8 generators λ^c
- Spin: SU(2) and 3 generators σ^s
- SU(6) generator: $\lambda^c \times \sigma^s$ (24) + $\lambda^c \times 1$ (8) + 1 × σ^s (3) = A (35 generators) Therefore SU(6) Casmir of N quarks $C_6 = \sum (A_1 + \cdots + A_N)^2 = 2 \sum_{i < j} A_i A_j + N (A_1^2)$ where $(A_1^2) = \frac{35}{6}$ and $2 \sum_{i < j} A_i A_j = \sum_{i < j} (\frac{1}{3} \sigma_i \sigma_j + \frac{1}{2} \lambda_i \lambda_j + \frac{1}{3} (\lambda \sigma)_i (\lambda \sigma)_j)$

Color spin interaction - General remarks II

$$\rightarrow \sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) \propto C_6 - N \frac{35}{6} - \frac{1}{2} (\sigma_{Total}^2 - \sum \sigma_i^2) - \frac{3}{4} (\lambda_{Total}^2 - \sum \lambda_i^2)$$

2) Color –flavor-spin wave function should be totally antisymmetric. (Aerts, Mulders, de Swart 78)

For SU(2) flavor:
$$-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = \frac{4}{3} N(N-6) + 4I(I+1) + \frac{4}{3} S(S+1) + 2C_c$$

For SU(3) flavor:
$$-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = N(N-10) + 4C_F + \frac{4}{3}S(S+1) + 2C_C$$

For SU(4) flavor: $-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = \frac{5}{6} N \left(N - \frac{72}{5} \right) + 4C_F^{SU(4)} + \frac{4}{3} S(S+1) + 2C_C$

Short distance energy is dominated by color-spin interaction

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

 $m_{M} = \langle \psi_{M} | H | \psi_{M} \rangle$ $= \langle \psi_{M} (space) | H | \psi_{M} (space) \rangle \times \langle \psi_{M} (C - S - F) | H | \psi_{M} (C - S - F) \rangle$

Most important part $K = -\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s)$

Comparison with lattice – NN interaction in SU(2)

For SU(2) flavor: $K = -\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = \frac{4}{3} N(N-6) + 4I(I+1) + \frac{4}{3}S(S+1) + 2C_c$

$$K_{2-N} = K_{6-quark} - (K_{1N} + K_{1N})$$

 $K_{1N} = -8$ For P, N and A

Positive for all 6 quark configuration

K of 6 quark state and their decays (W Park, A Park, Lee 2015)

• H dibaryon and Color spin interaction for 3 flavors

For SU(3) flavor: $K = -\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = N(N - 10) + 4C_F + \frac{4}{3}S(S + 1) + 2C_C$ Nucleon and $\Lambda \rightarrow K = -8$ even in the SU(3) broken limit

- Jaffe (77) : K for H-dibaryon vs two Λ

→ using Nucleon(K=-8) to Delta (K=+8) mass difference of 290 MeV

 ΔK =-8 corresponds to about 145 MeV attraction \gg additional Kinetic energy of 100 MeV

• H dibaryon in SU(3) symmetric limit

TABLE III. The matrix element of $-\langle \lambda_i^c \lambda_i^c \sigma_i \cdot \sigma_j \rangle$ for hyperfine potential of the dibaryon with respect to isospin

 $\left|\psi_{N}\right\rangle = \begin{pmatrix}F^{1}\\F^{27}\end{pmatrix}$

Diquark picture does not work

and flavor.		,	
Isospin Flavor	$-\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle i < j = 1$	$1-4 - \langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle \ i = 1-4, \ j = 5,$	$6 -\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle \ i = 5, \ j = 6$
$I = 0, F^1$	-5/6	u,d $-11/4$ $u,$	<i>S</i> 3 <i>S</i> , <i>S</i>
$I = 0, F^{27}$	-13/18	13/12	11/3
Cross terms	$1/(6\sqrt{3})$	$-1/(4\sqrt{3})$	$1/\sqrt{3}$
$I = 1, F^{27}$	4/9	1/3	8/3
$I = 2, F^{28}$	16/5	16/5	16/5
$I = 2, F^{27}$	146/45	-28/15	52/15
Cross terms	$-2\sqrt{2}/(15\sqrt{3})$	$\sqrt{2}/(5\sqrt{3})$	$-4\sqrt{2}/(5\sqrt{3})$

$$\frac{K}{m_{i}m_{j}} = \begin{pmatrix} -\frac{5}{m_{u}^{2}} - \frac{22}{m_{u}m_{s}} + \frac{3}{m_{s}^{2}} & \frac{1}{\sqrt{3}m_{u}^{2}} - \frac{2}{\sqrt{3}m_{u}m_{s}} + \frac{1}{\sqrt{3}m_{s}^{2}} \\ \frac{1}{\sqrt{3}m_{u}^{2}} - \frac{2}{\sqrt{3}m_{u}m_{s}} + \frac{1}{\sqrt{3}m_{s}^{2}} & -\frac{13}{3m_{u}^{2}} + \frac{26}{3m_{u}m_{s}} + \frac{11}{3m_{s}^{2}} \end{pmatrix} \xrightarrow{SU(3)} \begin{pmatrix} -\frac{24}{m_{u}^{2}} & 0 \\ 0 & \frac{8}{m_{u}^{2}} \end{pmatrix}$$

→ Ratio between F^1 and F^{27}

$$K_{2-N} = K_{6-quark} - (K_{1N} + K_{1N})$$

• H dibaryon with realistic quark masses: W.Park, A. Park, SHL, PRD93(2016)074007

Isospin Flavor	$-\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle \ i < j = 1 - \frac{1}{2}$	$4 \qquad -\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle \ i = 1 - 4, \ j = 5,$	$6 -\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle \ i = 5, \ j = 6$
$I = 0, F^1$ $I = 0, F^{27}$	-5/6 -13/18 <i>U</i>	$, d \qquad -11/4 \qquad u, $	S 3 S , S 11/3
Cross terms	$1/(6\sqrt{3})$	$-1/(4\sqrt{3})$	$1/\sqrt{3}$
$I = 1, F^{27}$	4/9	1/3	8/3
$I = 2, F^{28}$ $I = 2, F^{27}$ Cross terms	16/5 146/45 $-2\sqrt{2}/(15\sqrt{3})$	16/5 -28/15 $\sqrt{2}/(5\sqrt{3})$	16/5 52/15 $-4\sqrt{2}/(5\sqrt{3})$

TABLE III. The matrix element of $-\langle \lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j \rangle$ for hyperfine potential of the dibaryon with respect to isospin and flavor.

$$m_{u,d} = 300 \text{ MeV},$$

 $m_s = 500 \text{ MeV}$

1/

$$K = -\sum_{i < j} \lambda_i^c \lambda_j^c \sigma_i^s \sigma_j^s$$

 \rightarrow If the SU(3) breaking is taken into account. Color spin with constituent quark mass

$-\sum_{i< j}^{n} \frac{\kappa}{m_i m_j}$	H dibaryon	$\Lambda + \Lambda$	∆ E _{color spin}	Δ $E_{kinetic}$
$m_{u,d} = m_s$	$-\frac{24}{m_u^2}$	$\left -\frac{8}{m_u^2}-\frac{8}{m_u^2}\right $	-145 MeV	+100MeV
$m_{u,d} \approx \frac{3}{5}m_s$	$\left(-\frac{5}{m_u^2} - \frac{22}{m_u m_s} + \frac{3}{m_s^2}\right) \approx -\frac{17.12}{m_u^2}$	$-\frac{8}{m_u^2}-\frac{8}{m_u^2}$	-20 MeV	+ 84 MeV

III. Tribaryons and

Short distance repulsive three body nuclear force

- Three body nuclear force is repulsive at short distance
- 1) Review by Sakuragi (PTEP 2016,06A106)
- 2) Hyperon Puzzle : slide by Tamura

"Hyperon puzzle" in neutron stars

Hyperons (Λ at least) should appear at ρ ~ 2-3 ρ₀
 EOS's with hyperons or kaons too soft => cannot support M > 1.5 M_{sun}
 Heavy NS's (~2.0 M_{sun}) were observed.

PSR 31614-2230 (2010) 1.97 ±0.04 M_{sun} PSR 30348-0432 (2013) 2.01 ±0.04 M_{sun}

=> Unknown repulsion at high ρ

Strong repulsion in three-body force including hyperons, NNN, YNN, YYN, YYY ?

Chiral EFT is successful in NNN force. Extension to include hyperons requires high quality YN scattering data.

E/A (MeV)

Phase transition to quark matter ? (quark star or hybrid star)

> We need to know YN, YY, K^{bar}N interactions both <u>in free space</u> and <u>in nuclear medium</u>

• Tribaryon configurations (Aaron Park, W. Park, SH Lee 1801.10350)

1) Color singlet x Flavor spin state

 $\begin{array}{l} [333]_{FS} &= [63]_F \otimes [63]_S + [54]_F \otimes [54]_S + [621]_F \otimes \\ [54]_S + [531]_F \otimes [72]_S + [531]_F \otimes [63]_S + [531]_F \otimes [54]_S + \\ [522]_F \otimes [63]_S + [441]_F \otimes [63]_S + [432]_F \otimes [81]_S + [432]_F \otimes \\ [72]_S + [432]_F \otimes [63]_S + [432]_F \otimes [54]_S + [333]_F \otimes [9]_S + \\ [333]_F \otimes [72]_S + [333]_F \otimes [63]_S. \end{array}$

2) Possible Flavor state

Color spin interaction - General remarks Tribaryon configuration (Aaron Park)

$$K = -\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s)$$

1) SU(2): Three nucleons

For SU(2) flavor: $-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = \frac{4}{3} N(N-6) + 4I(I+1) + \frac{4}{3} S(S+1) + 2C_c$

For nucleon K=-8, But But Tribaryon (N=9) K>>0

2) SU(3): Including hyperons

 $\left(K_{1N}+K_{1N}+K_{1N}\right) \rightarrow$

Flavor		$-\sum_{i}$	$_{\leq j} \lambda_i \lambda_j$	$\sigma_i \cdot \sigma_j$	
1 14/01	$S = \frac{1}{2}$	$S = \frac{3}{2}$	$S = \frac{5}{2}$	$S = \frac{7}{2}$	$S = \frac{9}{2}$
1		-4	83		24
8	4	8	$\frac{44}{3}$	24	
10		20			
10		20			
27	24	28	$\frac{104}{3}$		
35	40				
35	40				
64		56			
V	-24	-24	-8	8	24

·C

For SU(3) flavor:
$$-\sum_{i < j} (\lambda_i^c \lambda_j^c) (\sigma_i^s \sigma_j^s) = N(N - 10) + 4C_F + \frac{4}{2}S(S + 1) + 2C_F$$

All tribaryon channel is very repulsive

 \rightarrow Three Baryon force should be repulsive with or without strangeness

• Color spin interaction - Tribaryon configuration with broken SU(3)

1) With one strangeness and isospin 0

Flavor	$-\sum_{i < j} \lambda_i \lambda_j \sigma_i \cdot \sigma_j$					
1 10101	$S = \frac{1}{2}$	$S = \frac{3}{2}$	$S = \frac{5}{2}$	$S = \frac{7}{2}$	$S = \frac{9}{2}$	
1		-4	83		24	
8	4	8	$\frac{44}{3}$	24		
10		20				
10		20				
27	24	28	$\frac{104}{3}$			
35	40					
35	40					
64		56				
V	-24	-24	-8	8	24	

With one strangeness: least repulsive state is S=3/2, Flavor antidecuplet

$$\overline{10}\left(S=\frac{3}{2}\right) \rightarrow K_9 - \left(\sum K_{1N}\right) = 20 + \frac{20}{3}\left(1-\frac{m_u}{m_s}\right) + 24 ? 0$$

$$\overline{35}\left(S=\frac{1}{2}\right) \rightarrow K_9 - \left(\sum K_{1N}\right) = 40 - \frac{40}{3}\left(1 - \frac{m_u}{m_s}\right) + 24 ? 0$$

Purely three body repulsion

$$K = -\sum_{i < j} \lambda_i^c \lambda_j^c \sigma_i^s \sigma_j^s$$

- → 2-Nucleon $K_{2-N} = K_6 (K_{1N} + K_{1N})$
- → 3-Nucleon $K_{3-N} = K_9 \left(\sum K_{2-N}\right) \left(\sum K_{1N}\right)$

1) SU(2): Triton configuration (I,S)=(1/2,1/2)

$$K_{3-N} = K_9 - \left(\sum K_{2-N}\right) - \left(\sum K_{1N}\right) = 8$$

2) Configuration with one strange quark

$$K_{3-N} = K_9 - \left(\sum K_{2-N}\right) - \left(\sum K_{1N}\right) = 12$$

- Constituent quark model can be used to study multiquark configurations: d*, Pc, X(3872), Z are most likely molecular states
- Qualitative features of the short distance Nuclear two-body repulsion from HAL QCD can be understood from a very simple constituent quark picture
- Short distance Nuclear three-body interactions seems to be repulsive in the NNN and NNA configurations even in the SU(3) symmetry breaking case as required from phenomenology

 \rightarrow more work in progress and looking forward to more lattice data on this