Probing the Cold & Dense Pressure With pQCD Matias Säppi, University of Helsinki Collaborators: Gorda, Kurkela, Romatschke, Vuorinen New Frontiers in QCD 2018 Yukawa Institute, Kyoto, June 7 2018

and a company and

Outline		

2 Three-loop Pressure

3 Double-log at Four-loop Order

4 Conclusions

●0000	0000000	0000000	С

INTRODUCTION

00000	000000	0000000	00

What: Pressure of Cold QCD

Q: What is the pressure of QCD?

Introduction 00000			
	WHAT: PRES	SSURE OF COLD	OCD

Q: What is the pressure of QCD?

A: $P(\{\mu_i\}_i; \{m_i\}_i; T) = -T \log \int \mathcal{D}\psi \mathcal{D}\overline{\psi} \mathcal{D}A \mathcal{D}c \mathcal{D}\overline{c} \exp(-S)/V$

Q: What is the pressure of QCD?

A: $P(\{\mu_i\}_i; \{m_i\}_i; T) = -T \log \int \mathcal{D}\psi \mathcal{D}\overline{\psi} \mathcal{D}A \mathcal{D}c \mathcal{D}\overline{c} \exp(-S)/V$

■ Difficult to compute, need to simplify
▶ Here, we mostly care about the µ-dependence

WHAT: PRESSURE OF COLD QCD

Q: What is the pressure of QCD?

11

A:
$$P(\{\mu_i \succ \{x \in x_i; T\}) = -T \log \int \mathcal{D}\psi \mathcal{D}\overline{\psi} \mathcal{D}A \mathcal{D}c \mathcal{D}\overline{c} \exp(-S)/V$$

Difficult to compute, need to simplify

 Here, we mostly care about the µ-dependence

Will eventually need a limit: Zero-temperature and massless

▶ Good approximation for dense and cold systems (NS)

Introduction 00000			
	Why: Problems	With L	ARGE μ

Many methods applicable to thermal QCD have problems at very large μ :

Why: Problems With Large μ

Many methods applicable to thermal QCD have problems at very large μ :

Severe sign problem \implies T = 0, large μ out of reach of lattice, no complete solution

Many methods applicable to thermal QCD have problems at very large μ :

- Severe sign problem $\implies T = 0$, large μ out of reach of lattice, no complete solution
- > χ PT stops being an applicable EFT
- ► Dimensional reduction fails when temperature no longer dominates the Matsubara frequencies $(T/\mu \text{ small})$
- **>** ...

How: Applying Perturbation Theory at Large μ

Instead use: QCD perturbative for asymptotically large μ

How: Applying Perturbation Theory at Large μ

Instead use: QCD perturbative for asymptotically large μ

- ▶ First-principles method! We use the QCD Lagrangian...
- ...Almost: we use some HTL at times, but only to get rid of uninteresting higher-order bits

How: Applying Perturbation Theory at Large μ

Instead use: QCD perturbative for asymptotically large μ

- ▶ First-principles method! We use the QCD Lagrangian...
- ...Almost: we use some HTL at times, but only to get rid of uninteresting higher-order bits
- Requires high-order corrections to reach physical densities, convergence suboptimal
- Suffers from IR-ambiguities

Why II: Applications to Neutron Stars

Despite bad convergence, the pQCD EoS can be used *together* with a Nuclear EoS (χ PT...) to interpolate to the intermediate regime ^{*a*}

Why II: Applications to Neutron Stars

- Despite bad convergence, the pQCD EoS can be used *together* with a Nuclear EoS (χ PT...) to interpolate to the intermediate regime ^{*a*}
- M R-plane is constrained:
 - Thermodynamic consistency, subluminality, ...
 - Mass measurements, tidal deformabilities from GWs^b...
- Eg. The interpolation methods can still be improved

^bAnnala et al. astro-hep/1711.02644, figures borrowed from there

^aKurkela et al. astro-hep/1402.6618

INTRODUCTION T	hree-loop Pressure		
00000	000000	0000000	0

Three-loop Pressure

THERMAL PQCD HISTORY LESSON PT. I

 $p = c_0 + c_2 g^2 + \tilde{c}_4 g^4 \log g + c_4 g^4 + \tilde{c}_6' g^6 \log^2 g + \tilde{c}_6 g^6 \log g + c_6 g^6 + \dots$

First three-loop ($O(g^4)$, NNLO) results at finite density from the 70s (!) ¹

Included everything for massless quarks at T = 0: $c_0, c_2, \tilde{c}_4, c_4$

¹Freedman & McLerran, Phys. Rev. D 16 1977

THERMAL PQCD HISTORY LESSON PT. I

 $p = c_0 + c_2 g^2 + \tilde{c}_4 g^4 \log g + c_4 g^4 + \tilde{c}_6' g^6 \log^2 g + \tilde{c}_6 g^6 \log g + c_6 g^6 + \dots$

- First three-loop ($O(g^4)$, NNLO) results at finite density from the 70s (!) ¹
- Included everything for massless quarks at T = 0: $c_0, c_2, \tilde{c}_4, c_4$
 - Later generalised to $m \neq 0^{-2}$ and small but finite T^{-3}

¹Freedman & McLerran, Phys. Rev. D 16 1977

²Kurkela et al., hep-ph/0912.1856

 $^{^3\}mathrm{Kurkela}$ & Vuorinen, hep-ph/1603.00750

THERMAL PQCD HISTORY LESSON PT. II

- $p = c_0 + c_2 g^2 + \tilde{c}_4 g^4 \log g + c_4 g^4 + \tilde{c}_6' g^6 \log^2 g + \tilde{c}_6 g^6 \log g + c_6 g^6 + \dots$
 - For comparison, consider "hot QCD", the large-T limit:
 c̃₆ = 0 and c̃₆ are known ⁴

⁴Kajantie et al. hep-ph/0211321

THERMAL PQCD HISTORY LESSON PT. II

 $p = c_0 + c_2 g^2 + \tilde{c}_4 g^4 \log g + c_4 g^4 + \tilde{c}_6' g^6 \log^2 g + \tilde{c}_6 g^6 \log g + c_6 g^6 + \dots$

- For comparison, consider "hot QCD", the large-T limit:
- $\tilde{c}_6' = 0$ and \tilde{c}_6 are known ⁴
- The theory is fundamentally different:
 - ▶ A 3d EFT description is available
 - ▶ However, there is is a magnetic scale g^2T
 - ▶ As a consequence, *c*⁶ *cannot* be computed in perturbation theory!

⁴Kajantie et al. hep-ph/0211321

Three-loop Pressure		
	Scale Hiera	RCHY

 Naïve diagrammatic expansion valid in vacuum Hard Scale $p \sim \mu$:

- ► Energetic excitations → medium effects small
- ▶ Naïve loop expansion OK

Scale Hierarchy

- Naïve diagrammatic expansion valid in vacuum
- In a dense medium this breaks down
- Need to resum classes of diagrams

Hard Scale $p \sim \mu$:

- ► Energetic excitations → medium effects small
- ▶ Naïve loop expansion OK

- Soft Scale $p \sim g\mu$:
 - ► Low-energy excitations → medium effects large
 - Resum IR-sensitive objects (gluons) to all orders

SCALE HIERARCHY

- Naïve diagrammatic expansion valid in vacuum
- In a dense medium this breaks down
- Need to resum classes of diagrams
- In the intermediate region, when ratios of scales are involved, this also causes nonanalytic terms $O(g^m \log^n g)$ to be generated

Hard Scale $p \sim \mu$:

- ► Energetic excitations → medium effects small
- ▶ Naïve loop expansion OK
- Semisoft Scale $g\mu \ll p \ll \mu$:
 - ► "Somewhat" energetic excitations → medium effects "average"
 - Need to resum; correction to naïve diagrams suppressed, but not enough
- Soft Scale $p \sim g\mu$:
 - ▶ Low-energy excitations → medium effects large
 - Resum IR-sensitive objects (gluons) to all orders

Three-loop Pressure		
	1-loop Ri	ng Sum

First logs at $\mathcal{O}(g^4)$: The gluonic ring sum

Introduction 00000	Three-loop Pressure	Double-log at Four-loop Order 0000000	Conclusions	00
			1-loop Ring	SUM

First logs at $\mathcal{O}(g^4)$: The gluonic ring sum

Contributes non-analytic terms 𝒪(g⁴ log g): č₄ ≠ 0
Some diagrams / terms easiest to handle with naïve loop expansion, watch out for double counting

Three-loop Pressure			
	HTL	APPROXIM	ATION

Even the 1-loop self-energy ~ 1 is complicated

■ IR DoFs admit an effective description

- Even the 1-loop self-energy ~ 0 is complicated
- IR DoFs admit an effective description
- Hard Thermal Loops ⁵ suitable since hard modes dominate the self-energies

- Physical motivation: Accounts for the medium
- Computing the resummed correction from the ring sum yields $O(g^4)$, $O(g^4 \log g)$ vs. naïve first term $O(g^4)$: Logarithmic enhancement at 3-loop order from the semisoft modes

⁵Hard Dense Loops, really, but abbreviated HTL

HTL Propagators & m_E

After scalarisation, transversal and longitudinal gluons:

$$G_T(P) = rac{-1}{P^2 + rac{m_E^2}{d-1} - rac{P^2}{p^2} \Pi_{ ext{HTL}}(P)}, \ G_L(P) = rac{1}{p^2 + \Pi_{ ext{HTL}}(P)}$$

HTL structure is given by the function

$$\Pi_{\rm HTL}(P) = m_E^2 \left(1 - \int\limits_{S^{d-1}} \Omega_{\bf v} \frac{iP_0}{iP_0 - {\bf p} \cdot {\bf v}} \right)$$

 Details unimportant, point is that the propagators are nontrivial

HTL Propagators & m_E

After scalarisation, transversal and longitudinal gluons:

$$G_T(P) = rac{-1}{P^2 + rac{m_E^2}{d-1} - rac{P^2}{p^2} \Pi_{ ext{HTL}}(P)}, \ G_L(P) = rac{1}{p^2 + \Pi_{ ext{HTL}}(P)}$$

HTL structure is given by the function

$$\Pi_{\mathrm{HTL}}(P) = m_E^2 \left(1 - \int\limits_{S^{d-1}} \Omega_{\mathbf{v}} \frac{iP_0}{iP_0 - \mathbf{p} \cdot \mathbf{v}} \right)$$

- Details unimportant, point is that the propagators are nontrivial
- Without quark masses, the only scale is the effective mass

$$m_E^2 \equiv \mathrm{Tr} \Pi \stackrel{T \to 0}{\propto} (g\mu)^2$$

00000	000000	•000000	0

DOUBLE-LOG AT FOUR-LOOP ORDER

	Double-log at Four-loop Order 000000		
		Starting	Point

- The next order is $\mathcal{O}(g^6)$, NNNLO. How do we get there?
- Complete four-loop diagrams (*c*₆) are difficult, but...

Introduction 00000	Three-loop Pressure 0000000	Double-log at Four-loop Order 000000	Conclusions	00
			Starting	Point

- **The next order is** $\mathcal{O}(g^6)$, NNNLO. How do we get there?
- Complete four-loop diagrams (*c*₆) are difficult, but...
- ...At $O(g^4)$ the ring sum contribution was somehow separate from the rest
- **Try to compute the non-analytic terms** $\tilde{c}_6, \tilde{c}'_6$ first

	Double-log at Four-loop Order 000000		
		Starting	Point

- **The next order is** $\mathcal{O}(g^6)$, NNNLO. How do we get there?
- Complete four-loop diagrams (*c*₆) are difficult, but...
- ...At 𝒪(*g*⁴) the ring sum contribution was somehow separate from the rest
- **Try to compute the non-analytic terms** $\tilde{c}_6, \tilde{c}'_6$ first
 - Non-hard modes need to be resummed again
 - Analogous with hot QCD development

- There are now double logs $\mathcal{O}(g^6 \log^2 g), \tilde{c}'_6$, and single logs $\mathcal{O}(g^6 \log g), \tilde{c}_6$.
 - Five classes of IR-sensitive 2-loop diagrams. Two of them are gluonic and contribute to both logs:

- There are now double logs $\mathcal{O}(g^6 \log^2 g), \tilde{c}'_6$, and single logs $\mathcal{O}(g^6 \log g), \tilde{c}_6$.
 - Five classes of IR-sensitive 2-loop diagrams. Two of them are gluonic and contribute to both logs:

Two-loop Ring Sums: Fermionic Diagrams

There are also fermionic classes that contribute only at $\mathcal{O}(g^6 \log g)$:

Two-loop Ring Sums: Fermionic Diagrams

There are also fermionic classes that contribute only at $\mathcal{O}(g^6 \log g)$:

Two-loop Ring Sums: Fermionic Diagrams

There are also fermionic classes that contribute only at $\mathcal{O}(g^6 \log g)$:

- Gluons IR-sensitive ⇒ resummed, but HTL-approximated
- Fermions IR-insensitive \implies not resummed, but loop-corrected

Two-loop Ring Sums: Double-log

- Double log \tilde{c}'_6 easier to extract ⁶
- Need two resummed gluon lines, so only the first two diagram classes contribute

 $^{^{6}\}mathrm{Writing}$ the paper (arXiv soon...) with Tyler Gorda, Aleksi Kurkela, Paul Romatschke, MS and Aleksi Vuorinen

- Double log \tilde{c}'_6 easier to extract ⁶
- Need two resummed gluon lines, so only the first two diagram classes contribute
- The HTL corrections to the *ggg* and *gggg* vertices are required
- However, for the leading log only one-loop (HTL) self-energies and vertices are required...
 - ▶ ...But for the subleading log \tilde{c}_6 this is not enough
 - …And the other diagrams are needed
 - ► Ensuring correct coefficients, no double-counting etc. takes quite a lot of diagrammatics (aka "SCIENCE CLOUDS")

 $^{^{6}\}mathrm{Writing}$ the paper (arXiv soon...) with Tyler Gorda, Aleksi Kurkela, Paul Romatschke, MS and Aleksi Vuorinen

	Double-log at Four-loop Order 0000000	
		Our Calculation

- Relevant HTL diagrams appear in the literature ⁷
- The double-log could be extracted from the semisoft regime with some tricks and we obtained the $\mathcal{O}(g^6 \log^2 g)$ -term

⁷Andersen et al., hep-ph/0205085

- Relevant HTL diagrams appear in the literature ⁷
- The double-log could be extracted from the semisoft regime with some tricks and we obtained the $\mathcal{O}(g^6 \log^2 g)$ -term

$$\tilde{c}_6' g^6 \log^2 g = -\frac{11}{96} \frac{N_c d_A}{(2\pi)^4} g^2 m_E^4 \log^2 g$$

Surprisingly simple result

No renormalisation scale dependence yet...

⁷Andersen et al., hep-ph/0205085

	Double-log at Four-loop Order 0000000		
		m_{∞}	-TRICK

Physical intuition: In the semisoft region transverse gluons massive with mass $m_{\infty}^2 = \frac{1}{d-1}m_E^2$, longitudinal gluons massless

	Double-log at Four-loop Order 0000000	
m		

- Physical intuition: In the semisoft region transverse gluons massive with mass $m_{\infty}^2 = \frac{1}{d-1}m_E^2$, longitudinal gluons massless
- This is a sufficient approximation for the $\log^2 g!$ Can remove complicated Π_{HTL} leaving just a constant mass
- Much easier to compute, verified that it gives the same $\log^2 g$

	Conclusions	
		•

Conclusions

0●	Conclusions		
LUSIONS	Conc		

- 3-loop pQCD pressure understood in many regimes
- IR-sector requires resummation starting at 3-loops But this lets us compute part of the 4-loop result
- $\square \ \mathcal{O}(g^6 \log^2 g) \text{ done, paper out soon}$
- $O(g^6 \log g)$ will require eg. higher order HTL-corrections...
- Resummation schemes, small-T corrections etc. also under consideration...