Search for the Kaonic Bound State K^{bar}NN via ³He(K⁻, Λp/πΣp)n Reactions

F. Sakuma, RIKEN on behalf of the J-PARC E15 collaboration

YKIS2018b Symposium "**Recent Developments in Quark-Hadron Sciences**" June 11 - June 15, 2018, Yukawa Institute for Theoretical Physics, Kyoto University

Kaonic Nuclei

- Bound states of nucleus and anti-kaon
- Predicted as a consequence of attractive K^{bar}N interaction in I=0
 m^{*}_K/m_K in nuclear matter

Will provide new insight on K^{bar}N interaction in media

K^{bar}N interaction - A good probe for low-energy QCD

Present Status of K^{bar}NN = "K⁻pp"

Theoretical Calculations on K^{bar}NN

K ^{bar} N int.	Chiral SU(3) (energy dependent)			Phenomenological (energy independent)			
Method	Variational		Faddeev	Variational		Faddeev	
	Barnea, Gal, Liverts	Dote, Hyodo, Weise	lkeda, Kamano, Sato	Yamazaki, Akaishi	Wyceck, Green	Shevchenko, Gal, Mares	Ikeda, Sato
B (MeV)	16	17-23	9-16	48	40-80	50-70	60-95
Γ (MeV)	41	40-70	34-46	61	40-85	90-110	45-80

• K^{bar}N interaction model:

- − Chiral SU(3) [energy dependent]
 → B.E. ~ 20 MeV
- − Phenomenological [energy independent] → B.E. ~ 40-70 MeV

Calculation method:

Almost the same results

Strongly depending on K^{bar}N interaction

"K⁻pp" Search via Stopped-K⁻

"K⁻pp" Search via pp Collision

"K⁻pp" Search via d(π ⁻,K⁺)X

- Need more statistics
- Expect a new experiment with 4π detector @ J-PARC

Present Status of K^{bar}NN = "K⁻pp"

J-PARC E15 Experiment

³He(*in-flight* K⁻,n) reaction @ 1.0 GeV/c
 2NA processes and Y decays can be discriminated kinematically

" K^-pp ", a \overline{K} -Meson Nuclear Bound State, Observed in ${}^{3}\text{He}(K^-,\Lambda p)n$ Reactions

S. Ajimura¹, H. Asano², G. Beer³, C. Berucci⁴, H. Bhang⁵, M. Bragadireanu⁶, P. Buehler⁴, L. Busso^{7,8}, M. Cargnelli⁴, S. Choi⁵, C. Curceanu⁹, S. Enomoto¹⁰, H. Fujioka¹¹, Y. Fujiwara¹², T. Fukuda¹³, C. Guaraldo⁹, T. Hashimoto¹⁴, R. S. Hayano¹², T. Hiraiwa¹, M. Ilo¹⁰, M. Iliescu⁹, K. Inoue¹, Y. Ishiguro¹⁵, T. Ishikawa¹² S. Ishimoto¹⁰, K. Itahashi², M. Iwasaki^{2,11},^{*} K. Kanno¹², K. Kato¹⁵, Y. Kato², S. Kawasaki¹, P. Kienle¹⁶,[†] H. Kou¹¹, Y. Ma², J. Marton⁴, Y. Matsuda¹², Y. Mizoi¹³, O. Morra⁷, T. Nagae¹⁵, H. Noumi¹, H. Ohnishi^{17,2}, S. Okada², H. Outa², K. Piscicchia⁹, Y. Sada¹, A. Sakaguchi¹, F. Sakuma^{2,‡} M. Sato¹⁰ A. Scordo⁹, M. Sekimoto¹⁰, H. Shi⁹, K. Shirotori¹, D. Sirghi^{9,6}, F. Sirghi^{9,6}, K. Suzuki⁴, S. Suzuki¹⁰, T. Suzuki¹², K. Tanida¹⁴, H. Tatsuno¹⁸, M. Tokuda¹¹, D. Tomono¹, A. Toyoda¹⁰, K. Tsukada¹⁷, O. Vazquez Doce^{9,16}, E. Widmann⁴, T. Yamaga^{2,1},[§] T. Yamazaki^{12,2}, Q. Zhang², and J. Zmeskal⁴ 32 May 2018 ¹ Osaka University, Osaka, 567-0047, Japan ² RIKEN, Wako, 351-0198, Japan ³ University of Victoria, Victoria BC V8W 3P6, Canada ⁴ Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria ⁵ Seoul National University, Seoul, 151-742, South Korea arXiv:1805.12275v1 [nucl-ex] Osaka Electro-Communication University, Osaka, 572-8530, Japan Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ¹⁵ Kyoto University, Kyoto, 606-8502, Japan ¹⁶ Technische Universität München, D-85748, Garching, Germany ¹⁷ Tohoku University, Sendai, 982-0826, Japan and ¹⁸ Lund University, Lund, 221 00, Sweden (J-PARC E15 Collaboration) We observed a distinct resonance peak in the Λp invariant-mass spectrum of ${}^{3}\text{He}(K^{-}, \Lambda p)n$, well

below the mass threshold of $M(K^-pp)$. By selecting a relatively large momentum-transfer region $q = 350 \sim 650 \text{ MeV}/c$, one can clearly separate the resonance peak from the quasi-free process, $\overline{K}N \to \overline{K}N$ followed by the non-resonant absorption by the two spectator-nucleons $\overline{K}NN \to \Lambda N$. We found that the simplest fit to the observed peak gives us a Breit-Wigner pole at B_{Kpp} $47 \pm 3 (stat.) {}^{+3}_{-6} (sys.)$ MeV having a width $\Gamma_{Kpp} = 115 \pm 7 (stat.) {}^{+10}_{-9} (sys.)$ MeV, and the S-wave Gaussian reaction form-factor parameter $Q_{Kpp} = 381 \pm 14 (stat.)^{+57}_{-0} (sys.) \text{ MeV}/c$, as a new form of the nuclear bound system with strangeness - "K⁻pp".

Since the prediction of the π -meson by Yukawa [1], there has been a long-standing question as to whether a mesonic nuclear bound state exists. Mesons are introduced as mediators between nucleons to confine them in vacuum one needs energy m to produce them. If a mesonic nuclear bound state exists, it will form a quantum state at an energy E_M below m whose binding energy $B_M = m - E_M$. Many mesons have been examined

Experimental Setup @ K1.8BR

beam dump beam sweeping magnet neutron counter liquid ³He-target charge veto counter system proton counter CDS Neutron 10 m Counte Beam sweeping Trajectory of the neutron target system spech CDS& Beam line Trajectory of the beam center beam line spectrometer K. Agari et. al., PTEP 2012, 02B011

³He + K⁻ $\rightarrow \Lambda$ p n Selection

- $\Lambda \rightarrow \pi^- p$ and p are detected with CDS
 - A missing neutron is identified by missing-mass of ³He(K⁻,Λp)n
- Λpn_{miss} events are selected by log-likelihood method (*In*L)
 - distance-of-closest-approach for each vertex
 - kinematical constraint

IM(Λp) vs. cos(θ_n^{CM})

IM(Λp) vs. Momentum Transfer q_{Kn}

IM(Λp) vs. Momentum Transfer q_{Kn}

E15 collab., arXiv:1805.12275 IM(Λp) 400 M(Kpp) b Крр **stuno** 200 data $QF_{\overline{K}A}$ BG all counts 100 100 150 50 0 C) 1.0 9.5 0.5 0.5 a 0.0⊾ 2.0 2.2 2.4 2.6 2.8 3.0 $M_{inv.Ap}$ [GeV/ c^2]

* We conduct the fitting in each 2D bin

• Fit with 3 components

<u>Bound state</u>

- centroid NOT depend on q_{Kn}
- BW*(Gauss form-factor) $f_{\{Kpp\}}(M,q) = \frac{A_{Kpp} (\Gamma_{Kpp}/2)^2}{(M - M_{Kpp})^2 + (\Gamma_{Kpp}/2)^2} e^{-\left(\frac{q}{Q_{Kpp}}\right)^2},$

<u>Qasi-elastic K⁻ abs.</u>

- centroid depends on q_{Kn}
- Followed by Λp conversion

- Background

• Broad distribution

"K⁻pp" Bound-State

"K⁻pp" Bound-State

"K⁻pp" Bound-State

Present Status of "K⁻pp"

For further understandings: $\checkmark \Lambda(1405)$ production $\rightarrow \Lambda^* N$ doorway $\checkmark \pi \Sigma N$ decay channel \rightarrow new info. of K^{bar}NN

<mark>Λ(1405)</mark> in ³He(Κ⁻,πΣp)n

Λ(1405)p and "K⁻pp"

- Theoretically, "K⁻pp" is expected to be produced via <u>Λ(1405)+p→"K⁻pp" door-way process</u>
 - comparison between $\Lambda(1405)p$ and "K⁻pp" production would give us an important information

K^{-3} He → $π\Sigma$ pn @ E15

CDS

• Experimental challenge of neutron detection with thin scintillation counter (t=3cm)

n detection efficiency ~ 3%

$\pi\Sigma pn$ Events

IM($\pi\Sigma$) vs. cos(θ_n^{CM})

IM($\pi\Sigma$) vs. Momentum Transfer q_{Kn}

- To compare "K⁻pp" and Λ* production CS's, we select q_{Kn}<0.65 GeV/c region
 - "K⁻pp" and Λ^* signals can be seen in this region

Y^{*} CS (q_{Kn}<0.65)

Large CS of Λ^* compared to "K⁻pp" formation

"K⁻pp" in ³He(K⁻,πΣp)n

Search for "K⁻pp" $\rightarrow \pi \Sigma N$ decay channel

Two Decay Mode of "K⁻pp"

Theoretically, $\pi\Sigma N$ decay is expected to be the dominant channel

IM($\pi\Sigma p$) vs. cos(θ_n^{CM})

32

IM($\pi\Sigma p$) vs. Momentum Transfer q_{Kn}

33

IM($\pi^{\pm}\Sigma^{\mp}$) vs. IM($\pi^{\pm}\Sigma^{\mp}p$)

Conclusions

- We have observed a resonance peak below the K⁻pp threshold in ³He(K⁻,Λp)n, "K⁻pp"
 - Binding energy: ~50 MeV
 - Width: ~100 MeV
 - S-wave form factor: ~400 MeV
 E15 collab., arXiv:1805.12275
- Λ (1405) was clearly observed in $\pi^{\pm}\Sigma^{\mp}p$ n_{miss} final state
 - Large CS of Λ^* compared to "K⁻pp" formation

heed theoretical feedbacks

- Weak structure below the K⁻pp threshold is seen in IM($\pi^{\pm}\Sigma^{\mp}p$)
 - Non-meonic YN decay modes would be dominant

← need further investigation of "K⁻pp" → $\pi\Sigma N$

What we have to do next

- More quantitative studies of the "K⁻pp"
 - **—** J^P
 - Angular distributions of "K⁻pp"→Λp and Λ→π⁻p are consistent with S-wave, in current statistics
 - $-\pi\Sigma p$ decay mode
 - Due to phase-space, or, detector acceptance(?)
- Series of the kaonic nuclei searches:
 - "K⁻ppn" via [K⁻ + ⁴He], "K⁻ppnn/K⁻pppnn" via [K⁻ + ⁶Li], etc.
 - "K⁻K⁻pp" via [p^{bar} + ³He annihilation]

We need a 4π detector system with γ /n sensitive detectors

Thank You!

J-PARC E15 Collaboration

S. Ajimura^a, H. Asanoⁿ, G. Beer^b, C. Berucci^f, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomoto^o, H. Fujioka^m, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^u, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoue^a, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, K. Kanno^k, K. Kato^j, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle ^{+ p}, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j\$}, H. Noumi^a, H. Ohnishi^w, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, Y. Sada^a, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Sato^o, A. Scordo^d, M. Sekimoto^o, H. Shi^d, K. Shirotori^a, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^u, H. Tatsuno^v, M. Tokuda^m, D. Tomono^a, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,p}, E. Widmann^f, T. Yamagaⁿ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan 🔎 (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 🛃 (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy (e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳 (g) INFN Sezione di Torino, Torino, Italy (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan 🖲 (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 💻 (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan 💻 (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan 🔎 (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan 🔎 (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔎 (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan 🔎 (p) Technische Universität München, D-85748, Garching, Germany 📒 (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan 🔎 (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan 🔎 (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳 (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💽 (u) ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan 💻 (v) Department of Chemical Physics, Lund University, Lund, 221 00, Sweden (w) Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826, Japan 💻

Spares

A Theoretical Interpretation of E15

K^{bar}NN or NOT? --- Other Possibilities

A structure near K^{bar}NN threshold

- <u>Λ(1405)N bound state</u>
 - loosely-bound system, I=1/2, $J^{\pi}=0^{-1}$
 - various decay modes, $\Lambda N / \Sigma N / \pi \Sigma N$

A structure near $\pi\Sigma N$ threshold

- $\pi \Lambda N \pi \Sigma N$ dibaryon
 - structure near $\pi\Sigma N$ threshold
 - − I=3/2, J^{π}=2⁺ → no Λ p decay (I=1/2)?
- **Double-pole** K^{bar}NN A. Dote, T. Inoue, T. Myo, PTEP (2015) 043D02.
 - loosely-bound K^{bar}NN, &
 - broad resonance near the $\pi\Sigma N$ threshold $\rightarrow \pi\Sigma N$ decay
- Partial restoration of Chiral symmetry
 - enhancement of the K^{bar}N interaction in dense nuclei

S. Maeda, Y. Akaishi, T. Yamazaki, Proc. Jpn. Acad., B89(2013)418.

T. Uchino et al., NPA868(2011)53.

H. Garcilazo, A. Gal, NPA897(2013)167.

³He(K⁻,Λp)n: Decay Channel

 $\Gamma(\Lambda p) > \Gamma(\Sigma^{0}p) !?$

Neutron ID with CDS

- $\pi^+\pi^-p$ events (3 tracks) in CDS with 4 CDH hits are selected
- a CDH hit with CDC-veto (outer-layer) is applied to identify the "neutral hit"

1/β

Neutron can be identified with CDS

Λ^* pn Events

 $K^{-} + {}^{3}\text{He} \rightarrow \Lambda(1520) + p + n: ~ 70 \,\mu\text{b}$

IM($\pi\Sigma p$) vs. Momentum Transfer q_{Kn}

Detector Acceptance: Ap vs. $\pi\Sigma p$

