

https://www.youtube.com/watch?v=vTeAFAGpfso&feature=share

NS matter EOS

- Tidal deformability extraction
- Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova from decay energy of the synthesized elements
- GW as standard siren
 - Hubble constant

NS matter EOS

- Tidal deformability extraction
- Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova from decay energy of the synthesized elements
- GW as standard siren
 - Hubble constant

- NS matter EOS
 - Tidal deformability extraction
 - Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova : UV-Infrared from decay energy of the synthesized elements
- GW as standard siren
 - Hubble constant

NS matter EOS

- Tidal deformability extraction
- Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova from decay energy of the synthesized elements

GW as standard siren

Hubble constant

NS matter EOS

- Tidal deformability extraction
- Maximum mass constraint
- Short gamma-ray bursts (SGRB) central engine
- Origin of heavy elements
 - r-process nucleosynthesis
 - kilonova/macronova from decay energy of the synthesized elements
- GW as standard siren
 - Hubble constant

A Numerical Relativity Modelling of GW (from GW170817)

NS(1.2Msolar)-NS(1.5Msolar) binary (APR EOS)

- Point particle approx.
 Information of orbits, <u>NS mass</u>, etc.
- Finite size effects appear
 <u>tidal deformability</u>
 radius
- > BH or NS ⇒ maximum mass
 > GWs from massive NS
 ⇒ NS radius of massive NS

Inspiral chirp signal provide mass and orbit parameters (90% C.L.)

- GW170817: S/N = 32.4
- under a reasonable assumption that NS is not spinning rapidly
 - In this talk, we only consider this low spin case

Primary mass
$$m_1$$
1.36–1Secondary mass m_2 1.17–1Chirp mass \mathcal{M} 1.188 $^+_-$ Mass ratio m_2/m_1 0.7Total mass m_{tot} 2.74 $^+_-$ Radiated energy E_{rad} > 0.02Luminosity distance D_L 40^{+8}_{-14} Viewing angle Θ \leq Using NGC 4993 location \leq

 $\begin{array}{l} 1.36 - 1.60 \ M_{\odot} \\ 1.17 - 1.36 \ M_{\odot} \\ 1.188_{-0.002}^{+0.004} M_{\odot} \\ 0.7 - 1.0 \\ 2.74_{-0.01}^{+0.04} M_{\odot} \\ > 0.025 M_{\odot} c^{2} \\ 40_{-14}^{+8} \ \text{Mpc} \\ \leq 55^{\circ} \\ \leq 28^{\circ} \end{array}$

Frequency (Hz)

Abbott et al. PRL 119, 161101 (2017)

Tidal deformability

- Tidal deformability : λ
 - Response of quadrupole moment
 Q_{ij} to external tidal field E_{ij}

$$Q_{ij}=-\lambda E_{ij}$$

Stiffer NS EOS ⇒ larger NS radius
 ⇒ larger tidal deformability ⇒
 more significant deviation of GW
 from point-particle GW

• We use non-dimensional version Λ

$$\lambda = \frac{C}{G} \Lambda R^5 \qquad C = \frac{GM}{c^2 R}$$

Tidal deformability

- Tidal deformability : λ
 - Response of quadrupole moment
 Q_{ij} to external tidal field E_{ij}

$$Q_{ij}=-\lambda E_{ij}$$

- Stiffer NS EOS ⇒ larger NS radius
 ⇒ larger tidal deformability ⇒
 more significant deviation of GW
 from point-particle GW
- We use non-dimensional version Λ

$$\lambda = \frac{C}{G} \Lambda R^5 \qquad C = \frac{GM}{c^2 R}$$

• Upper limit on tidal deformability $\Lambda_{1.4} \lesssim 800$ at 90% C.L. by GW170817

Lackey & Wade (2015)

Extraction of Tidal deformability

A lot of studies after GW170817 PRL paper

Extraction of Λ from GW data (extraction studies)

- Abbott et al. (2018a,b)
 - 1805.11579 : Updated analysis by LIGO-Virgo, Analysis using GW data only
 - 1805.11581 : Analysis with EOS modelling as in other studies listed below
- De et al. (2018) 1804.08583
 - Analysis combining GW data with constraints from nuclear experiments
- Interpretation of the extracted Λ (interpretation studies)
 - Annala et al. (2018) PRL 120, 172703
 - Based on chiral EFT + perturbative QCD
 - Hebeler et al. (2013) ApJ 773, 11; Kurkela et al. (2014) ApJ 789, 127
 - Tews et al. (2018) 1804.02783
 - Based on chiral EFT + perturbative QCD
 - Tews et al. (2018) 1801.01923
 - Fattoyev et al. (2018) PRL 120, 172702
 - Combining GW with PREX (symmetry energy) exp. and a small set of EOS family
 - Most et al. (2018) 1803.00549, and more

An interpretation of $\Lambda_{1.4} < 800$

Interpretation with an EOS model

- $n < 1.1 n_{\rm s}$: Chiral EFT Hebeler et al. (2013) ApJ 773, 11
- $\mu_B > 2.6 \text{ GeV}$: NNLO pQCD by Kurkela et al. (2014) PRD 81
- intermediate: A parametrized (piecewise polytrope) EOS with causality constraint

▶ $10 \leq R_{1.4} \leq 13.6$ km and $\Lambda_{1.4} \gtrsim 120$ for $M_{\text{max}} > 2M_{\odot}$

Extraction of A from GW data

- Abbott et al. (2018a,b) will be reviewed later
- Interpretation of the extracted Λ
 - Annala et al. (2018) : chiral EFT (up to 1.1ns) + perturbative QCD
 - ▶ $120 \leq \Lambda_{1.4} \leq 800$, $10 \leq R_{1.4} \leq 13.6$ km
 - Tews et al. (2018) : chiral EFT (up to 2ns !!) + perturbative QCD
 - ▶ 80 $\lesssim \Lambda_{1.4} \lesssim 570$ (upper limit from EOS model, not from GW data)
 - Fattoyev et al. (2018) : GW data with PREX data and small EOS familiy
 - ▶ 400 $\leq \Lambda \leq 800$, 12 $\leq R_{1.4} \leq 13.6$ km (lower limit from $R_{skin}^{208} \gtrsim 0.15$ fm)
 - See also, Most et al. (2018) and more

Updated data analysis by LIGO-Virgo

Extraction of <u>A</u> from GW data : Abbott et al. (2018a,b)

- 1805.11579 : Updated analysis by LIGO-Virgo, using GW data only
- 1805.11581 : Analysis with EOS modelling
- Wider frequency range : 30-2048 Hz to 23-2048 Hz
 - 1500 additional GW cycles obtained
- Analysis using sky location from electro-magnetic observations
- Waveforms calibrated by numerical relativity (NR) simulations are used in parameter estimation
 - Tidal effects start to appear in 5PN order
 - SPN point particle corrections will be necessary
 - 2017 PRL paper : 3.5 PN point particle + Tidal corrections
 - 2018 new paper : NR calibrated, include higher order corrections

New constraint $\widetilde{\Lambda}=300^{+420}_{-230}$ 90% highest posterior density interval

Abbott et al. (2018) 1805.11579

New constraint in $\Lambda_1 - \Lambda_2$ plane

Updated analysis using EOS model

• extracted Λ without the $2M_{\odot}$ constraint (blue curve)

Updated analysis using EOS model

- Analysis without $2M_{\odot}$ constraint
 - $R_1 = 10.8^{+2.0}_{-1.7}$ km
 - $R_2 = 10.7^{+2.1}_{-1.5}$ km

• Analysis with $2M_{\odot}$ constraint

4PR

 $R \,(\mathrm{km})$

12

14

0

10

- $R_1 = 11.9^{+1.4}_{-1.4}$ km
- $R_2 = 11.9^{+1.4}_{-1.4}$ km

Constraint on NS EOS

Massive NS is necessary to explore high density region

- core bounce in supernovae
 - mass: 0.5~0.7Msun
 - ρc: a few ρs
- canonical neutron stars
 - ▶ mass: 1.35-1.4Msun
 - ρc: several ρs
- massive NS (> 1.6 Msun)
 - ρc :> 4ρs
- massive NSs are necessary to explore higher densities
 - We can use GW from NS-NS merger remnant:
 - NS with M > 2 Msun

No GW from merger remnant detected

GW spectra and characteristic peak f_{GW}

GW spectra and characteristic peak f_{GW}

Constraint on M_{\max} from merger modelling and observations of EM counterpart

Condition 1 : BH should not be directly formed :

 $M_{\rm crit} \gtrsim 2.74 M_{\odot}$

To small mass ejection and observed kilonova cannot be explained

<u>Condition 2 : merger remnant should not be too long-lived :</u>

 $M_{\rm max,sph} + \Delta M_{\rm rot,rig} \lesssim 2.74 M_{\odot}$

 If long-lived, activities associated with this monster magnetar (merger remnant is strongly magnetized) should have been observed

Constraint on M_{\max} from merger modelling and observations of EM counterpart

Critical mass of BH formation

 $M_{\rm crit} = M_{\rm max,sph} + \Delta M_{\rm rot,rig} + \Delta M_{\rm rot,diff} + \Delta M_{\rm therm}$

- $M_{\text{max,sph}}$: maximum mass of cold spherical NS
- $\Delta M_{\text{rot,rig}}$: effect of rigid rotation
- $\Delta M_{\rm rot,diff}$: effect of differential rotation
- ΔM_{therm} : thermal contribution

Condition 1 : BH should not be directly formed :

 $M_{\rm crit} \gtrsim 2.74 M_{\odot}$

To small mass ejection and observed kilonova cannot be explained

Condition 2 : merger remnant should not be too long-lived :

$M_{\rm max,sph} + \Delta M_{\rm rot,rig} \lesssim 2.74 M_{\odot}$

 If long-lived, activities associated with this monster magnetar (merger remnant is strongly magnetized) should have been observed Constraint on M_{\max} from merger modelling and observations of EM counterpart

Condition 1 : BH should not be directly formed :

 $M_{\rm crit} \gtrsim 2.74 M_{\odot}$

- Constraint on NS radius (compactness) or maximum mass
- $R_{1.6} \gtrsim 10.68^{+0.15}_{-0.04}$ km (Bauswein et al. 2017)
- $M_{\max,sph} \gtrsim 2.1 M_{\odot}$ (Shibata et al. 2017)

Condition 2 : merger remnant should not be too long-lived :

$$M_{\rm max,sph} + \Delta M_{\rm rot,rig} \lesssim 2.74 M_{\odot}$$

- Constraint on M_{max,sph}
- $M_{\max,sph} \lesssim 2.17 M_{\odot}$ (Margalit & Metzger 2017)
- $M_{\max,sph} \lesssim 2.25 M_{\odot}$ (Shibata et al. 2017)
- $M_{\max,sph} \lesssim 2.16^{+0.17}_{-0.15} M_{\odot}$ (Rezzolla et al. 2018)

Constraint from nuclear experiments+

▶ Symmetry energy constraints from nuclear experiments
 ⇒ NS radius constraint

Constraint from nuclear experiments

Symmetry energy constraints from nuclear experiments
 ⇒ NS radius constraint

Expected NS-NS merger rate: 320-4740 Gpc⁻³yr⁻¹

NS-NS merger as origin of r-process nucleosynthesis

- ▶ NS-NS rate from GW170817 : 320-4740 Gpc⁻³yr⁻¹
 - Mej ~ 0.01 Msun is sufficient for NS-NS merger to be the origin of r-process elements ! (Abbott et al. 2017)

LIGO and Virgo Collaboration 1805.11581

- orange: previous PRL
- Blue: parametrized EOS model by Lindblom (similar to piecewise Polytoric EOS) without 2Msun NS constraint
- Green: EOS independent relation by Yagi-Yunes

Annala et al. (2018) PRL 120, 172703

Chiral EFT by Hebeler et al. (2013) ApJ 773, 11 for n < 1.1ns and NNLO pQCD by Kurkela et al. (2014) PRD 81, 105021 for mu_B > 2.6GeV (n >~ 40ns), parametrized EOS between them with causality constraint

