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Introduction and motivation
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QCD crossover

» Lattice QCD is the only rigorous technique we know to
compute the thermodynamics of QCD in the chiral crossover
region

» We know quantitatively from Lattice calculations that for
2 + 1 flavor, the transition from hadronic matter at low T to
the QGP at high T is a crossover around 145 — 165MeV
[Brookhaven/HotQCD, TIFR, Wuppertal-Budapest, Bielefeld,
collaborations]

» Thermodynamics in this region well captured by the hadron
resonance gas See talk by K. Redlich

» Many aspects also captured by the PNJL model [Fukushima
(2003), Ratti, Thaler, Weise (2005)... Sasaki et. al (2012),
Ferreira et. al (2014)]
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QCD crossover

» Multiple observables computed on the lattice (eg. equation of
state, susceptibilities)

» But it is challenging to compute transport properties on the
lattice

» Finite p is also challenging but significant progress made. For
eg. [Datta, Gavai, Gupta (TIFR group); HOTQCD; Bielefeld

group]
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Simpler theory for long range correlations?

> If a quark description valid near the crossover then quarks are
light near T, since the condensate m — 0 in the chiral limit
at the critical temperature T,

» For finite quark mass, mg, there could be other light degrees
of freedom. We assume here that there are none
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The NJL model

>

Can one write a simpler effective model that captures the
correlations on length scales larger than 1/T7

It is a simple, and widely studied EFT model that captures the
physics of the chiral crossover ([Nambu, Jona-Lasinio (1961)])

It is based on the assumption that quarks are light degree of
freedom near the crossover

Typically the interaction between quarks is taken to be of a
very specific form and the parameters of the model are fixed
by using the vacuum properties for example m mass and decay
constant in vacuum

Since the EFT model is not valid beyond energies of the order
of T, can not fix the coupling constants to match lattice
measurements of the pressure etc.

But from this point of view more natural to compare
correlation functions on length scales larger than 1/ T

6
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Formalism
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The Euclidean action
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» There are no dimension 5 terms (for eg. 1(0)%t) consistent
with the SU(2)a symmetry

» Dimension 6 terms with derivatives in the mean field
approximation ()31 have also been listed but don't play a
role in our calculation. This is because we make a mean field
approximation
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Symmetry constraints

» Time and space distinguished: SO(3,1) — SO(3). For
example, the kinetic term is

g + d*0di

» Similarly, all vector interaction terms can have different spatial
and temporal coefficients

» All interaction terms with chiral symmetry written down
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Parameters of the theory

» Take the energy cutoff to be of the order of T or slightly
larger. We will use dim-reg with a renormalization scale
M~7T

» Tp sets the scale of the overall problem

> mg = d3 Ty acts as the bare quark mass, but is not fitted to 7
massat T =0

» All interaction terms with chiral symmetry written down

» Seems hopeless, 12 unknown parameters
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Mean field approximation

» But sectors of observables with only specific linear
combinations of d's emerge

» For example, in the mean field approximation

&a@bﬁ - 60(,8 <@Z1/}>

T — — — —
Lypr = =N 252 + 050 — ppya + "9 + mquyp + d©
> Including all the Fierz transformations,
A= (N+2)d*® —2d% — dP" + do" + df® — d2® + d?® — d°

> m=mg+X
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Parameters of the theory

» T, is the value for the critical point in the chiral limit. Take
the scale setting parameter To = T,

Ly

» Observables will be fit at one point below T,

» Parameters mq = d3Tp, d*

» M is the renormalization scale in the MS scheme

12/39



Current correlations and screening masses

> Long distance behavior of the correlations of currents (for eg.
A = w’y“’ys%az/;) can be used to extract the screening
masses of various channels

» [Hatsuda, Kunihiro (1985),...]

» We first focus on the axial vector correlations in Euclidean
field theory so that we can match to lattice data
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Fluctuations of the order parameter

v
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At very long wavelengths an effective Iagrangian for the 7's is
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7 lagrangian

» We start with the two point function
> Lr= 002 4 Y(dom) + 5 (V)
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Correlation functions

v

Correlations of currents related to 7 properties

Two illustrative examples
imge o [ d*xe™(P2(x)PH(0)) = (55 )2

2mq 9?+M2
. - . . 6ab 2
limge_yo [ d*xe™(Jgi(x)JE1(0)) = ((21‘)2)c4q2+7\‘/l72r
M2 = ¢T3 /c* related to the screening length

Static ™ — 7 correlator decays as ~ e~ Mx"

u=1+/c*is the 7 “speed”

From a combination of the static correlators one can extract
fv C4r MTI'

[Brandt, Francis, Meyer, Robaina (2014)]

16

39



Correlation functions

v

A finite temperature generalization of GOR relation is satisfied

272 = _nggww

[Son, Stephanov (2002)]
» We can compute f, c¢*, M, in the EFT model and compare to
the lattice data

v

v

v

Interesting behaviour of ¢4 at T¢ in the chiral limit:

A p*dp 2 1 _
“x [ T ep(p/T) p T+ op(p/T)
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Results

18 /39



» The peak of the chiral susceptibility in the EFT model occurs
at Too = 1.24T,

» Taking Teo = 211(5), we get T, =170+ 6
» Larger than the value of T, from the lattice for 2 4 1 flavors

» However for 2 flavors this agrees with the lattice prediction
[Brandt et. al. (2013)]
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Inputs

v

Matching v and M, at T =0.84T,

Error in T associated with T, = 211(5)MeV

Input from [Brandt, Francis, Meyer, Robaina (2014)] (figure
below). Heavy 7

Fitted values d® = 0.57[+6(input)] [+£3(scale) | [£3(T)],
d* = 1.20[+6(input) | [+4(scale)] [+(4)T]
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M;
» Pion Debye screening mass

3.5

1-loop

lattice —B—

1.8.75 08 0.85 0.9 0.95 1
/T,

» Also see [Ishii et. al. (2013); S Cheng, S Datta et. al. (2011)]
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Screening mass of 7
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» Pion velocity
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Speed of 7
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» Pion constant f

» An independent prediction
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7 four point function
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C41

» Pion four point function
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Towards finite u

> If we use the standard modification H - H — ulN

» In dim-reg an interesting result that T.(u)? + %Mz =TZin
the chiral limit

> In particular, implies that for small p,
2
Te(n) = Te(0) — 305Gy + O(1?)
» T(0)k = %
» Thus the mean field prediction is roughly 5 — 10 times the

lattice prediction for 2 + 1 flavors [Bielefeld, HotQCD,
collaborations]

» Several corrections in the EFT required at finite u
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P.: a qualitative comment

» Pressure of the 7
_3(e’TR)? [ (c2T§)_§]
64n2(cH) 32 B a2 T )

d3 n
—3T/ (27:))3 log(1 — eE™/T)

Py =

» E™ = /c*p? + 2T¢

» If ¢? is small the pressure is large. Energetic cost is small
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P
» Rise in the pressure of the m because of the thermal piece
d3p .
3T [ ——log(1—ef"/T 1
| G o1 =) (1)
as u decreases
» Disclaimer: Not rigorous; a curiousity

10

P4
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Real time dynamics
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Real time dynamics

Let us now consider (J2'(x)J2(0)) with x in Minkowski space
Using J5ai o fOym? we obtain the following

The 7 propagation in real time
i ab

J déxe® (x2(x)78(0)) = srmyiipe—c

At one loop order the diagrams are the same with the only
difference now that we need the real time propagators for the
fermions

However, subtlety related to order of limits: can not use the
static limit where g% — 0 first

Preliminary results [Ongoing with S. Gupta]
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Salient features

» We have preliminary results on the real time propagation of
the 7's

» The results show that the pole mass differs in the static and
the dynamic limit

» The dynamic limit is relevant for transport properties like
conductivity, where limg_,g is taken before lim,,_q

> At one loop order there is no damping. One needs to go to
three loops (in the fermions) to obtain the damping
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Conclusions

» Can be used to calculate dynamical properties

» We analyze the modification of the 7 properties near the
crossover

» Qualitatively, note that the medium modification of the

properties of hadrons (7), in particular the reduction of the
“speed” u just below T,
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Backup slides
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Outputs

» By fitting v and M, parameters we obtain the fermionic
parameters

» Uncertainty associated with M

» Different boxes associated with varying T, in the error band

> Useful if the fermionic parameters do not vary rapidly with T
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Order parameter

» By minimizing the free energy we can find the order
parameter m

> In the plot the width is associated with varying
M e (1.257TTO, 1.757TTO)

m
[ &
08 09 1. 11_42—13To
-0.2 -
----- d® = 0.004
----- d3® =0.04

38/39



Free energy expression

T dp m*+p?+(p*)?
b=y 2 G =)
pt=(2n+1)x T

3
= / (;T)p3(Ep + log[1 + exp(—E,/T)])

> E. — (d4)2p2+m2

> /0 =
4\2 p g2
satias |3 —10g( L) + o [ dpplog[L + exp(~Ep/ T)]
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