Confinement/deconfinement phase transition in SU(3) Yang-Mills theory and Non-Abelian dual Meissner effect

Akihiro Shibata (KEK)

In collaboration with: Kei-Ichi. Konodo (Chiba U.), Seikou Kato (Oyama NTC),

Introduction(1)

- Quark confinement follows from the area law of the Wilson loop average [Wilson,1974]
- Dual superconductivity is promising mechanism. [Y.Nambu (1974). G.'t Hooft, (1975).
 S.Mandelstam(1976), A.M. Polyakov (1975)]

- To establish this picture, we must show evidences of the dual version of the superconductivity in various situations.
- Quark confinement in the fundamental representation (our preceding works)
 Quark confinement in the higher representation (Matsudo, May 31 NFQCD)
 Confinement/deconfinement phase transition at finite temperature (this tall)
- Confinemet/deconfinement phase transition at finite temperature (this talk)

Dual superconductivity

Superconductor (condensed matter)

- Condensation of electric charges (Cooper pairs)
- Meissner effect: Abrikosov string (magnetic flux tube) connecting monopole and anti-monopole
- Linear potential between monopoles

Dual superconductor (QCD)

- Condensation of magnetic monopoles
- Dual Meissner effect: formation of a hadron string (chromo-electric flux tube) connecting quark and antiquark
- Linear potential between quark and anti-quark

June 11-15 2018

Extracting relevant mode for confinement

Abelian projection method

Extracting the relevant mode as the diagonal (Abelian) part in the maximal Abelian (MA) gauge. U=XV

- SU(2) → U(1)
- SU(3) → U(1)XU(1)

Problems:

- The results of Abelian projection method depends on the gauge fixing of the Yang-Mills theory.
- ✓ The gauge fixing breaks (global) color symmetry.

Decomposition method

[a new formulation on a lattice]

Extracting the relevant mode V for quark confinement by solving the defining equation in the gauge independent way (gauge-invariant way).

The Abelian projection method can be reformulated by using the decomposition method in the gauge invariant way.

A new formulation of Yang-Mills theory (on a lattice) [Phys.Rept. 579 (2015) 1-226]

<u>Decomposition of SU(N) gauge links</u> For SU(N) YM gauge link, there are sever al possible options of decomposition *discriminated by its stability groups*:

- □ SU(2) Yang-Mills link variables: unique U(1) \subset SU(2)
- □ SU(3) Yang-Mills link variables: <u>Two options</u>

<u>minimal option</u> : $U(2) \cong SU(2) \times U(1) \subseteq SU(3)$

Minimal case is derived for the Wilson loop, defined for quark in the fundamental representation, which follows from the non-Abelian Stokes' theorem

<u>maximal option :</u> $U(1) \times U(1) \subset SU(3)$

Maximal case is a gauge invariant version of Abelian projection in the maximal Abelian (MA) gauge. (the maximal torus group)

Dual Superconductivity in SU(3) Yang-Mills

Abelian Dual superconductivity

■ Abelian projection in MA gauge :: SU(3) → U(1)xU(1) (Maximal torus)

•Perfect Abelian dominance in string tension[Sakumichi-Suganuma]

Decomposition method

•Maximal option of a new formulation [ours]

Cho-Faddev-Niemi-Shavanov decomposition [N Cundy, Y.M. Cho et.al]

Non-Abelian Dual superconductivity

Decomposition method

•Minimal option: (non-Abelian dual superconductivity) based on the U(2) stability sub-group.

we have showed in the series works

 ✓ V-field dominance, non-Abalian magnetic monopole dominance in string tension
 ✓ chromo-flux tube and dual Meissner effect,
 ✓ confinement/deconfinement phase transition in terms of dual Meissner effect at finite temperature

Dual Superconductivity in SU(3) Yang-Mills (II)

□ In the series of workshop, we have studied the minimal option.

Because the non-Abelain Stokes theorem shows that Wilson loop of Yang-Mills field in the fundamental representation can be rewritten by using the restricted field V which is decomposed as new variables (U = XV)

□ Ordinary, Abelian picture (maximal option) has been studied.

Both can derive dual superconductivity picture such as V-field or "Abelian" dominance in string tension.

Therefore, we investigate the dual superconductor picture in both options

minimal option: The decomposition of SU(3) link variable

$$W_{C}[U] \coloneqq \operatorname{Tr} \left[P \prod_{\langle x, x+\mu \rangle \in C} U_{x,\mu} \right] / \operatorname{Tr}(1)$$

$$U_{x,\mu} = X_{x,\mu} V_{x,\mu}$$

$$U_{x,\mu} \rightarrow U'_{x,\mu} = \Omega_{x} U_{x,\mu} \Omega^{\dagger}_{x+\mu}$$

$$V_{x,\mu} \rightarrow V'_{x,\mu} = \Omega_{x} V_{x,\mu} \Omega^{\dagger}_{x+\mu}$$

$$X_{x,\mu} \rightarrow X'_{x,\mu} = \Omega_{x} X_{x,\mu} \Omega^{\dagger}_{x}$$

$$\Omega_{x} \in G = SU(N)$$

$$W_{C}[V] \coloneqq \operatorname{Tr} \left[P \prod_{\langle x, x+\mu \rangle \in C} V_{x,\mu} \right] / \operatorname{Tr}(1)$$

$$W_{C}[U] = \operatorname{const.} W_{C}[V] :!$$

Minimal option: Defining equation for the decomposition

Introducing a color field $\mathbf{h}_x = \xi(\lambda^8/2)\xi^{\dagger} \in SU(3)/U(2)$ with $\xi \in SU(3)$, a set of the defining equation of decomposition $U_{x,\mu} = X_{x,\mu}V_{x,\mu}$ is given by

$$D^{\epsilon}_{\mu}[V]\mathbf{h}_{x} = \frac{1}{\epsilon}(V_{x,\mu}\mathbf{h}_{x+\mu}-\mathbf{h}_{x}V_{x,\mu}) = 0,$$

$$g_x = e^{-2\pi q_x/N} \exp(-a_x^{(0)} \mathbf{h}_x - i \sum_{i=1}^3 a_x^{(i)} u_x^{(i)}) = 1,$$

which correspond to the continuum version of the decomposition, $\mathcal{A}_{\mu}(x) = \mathcal{V}_{\mu}(x) + \mathcal{X}_{\mu}(x)$, $D_{\mu}[\mathcal{V}_{\mu}(x)]\mathbf{h}(x) = 0, \quad \operatorname{tr}(\mathcal{X}_{\mu}(x)\mathbf{h}(x)) = 0.$

Exact solution
(N=3)

$$X_{x,\mu} = \hat{L}_{x,\mu}^{\dagger} (\det \hat{L}_{x,\mu})^{1/N} g_x^{-1} \quad V_{x,\mu} = X_{x,\mu}^{\dagger} U_{x,\mu} = g_x \hat{L}_{x,\mu} U_x (\det \hat{L}_{x,\mu})^{-1/N}$$

$$\hat{L}_{x,\mu} = \left(\sqrt{L_{x,\mu}L_{x,\mu}^{\dagger}}\right)^{-1} L_{x,\mu}$$

$$L_{x,\mu} = \frac{N^2 - 2N + 2}{N} \mathbf{1} + (N - 2) \sqrt{\frac{2(N - 2)}{N}} (\mathbf{h}_x + U_{x,\mu}\mathbf{h}_{x+\mu}U_{x,\mu}^{-1})$$

$$+ 4(N - 1)\mathbf{h}_x U_{x,\mu}\mathbf{h}_{x+\mu}U_{x,\mu}^{-1}$$
Continuum limit

$$V_{\mu}(x) = \mathbf{A}_{\mu}(x) - \frac{2(N - 1)}{N} [\mathbf{h}(x), [\mathbf{h}(x), \mathbf{A}_{\mu}(x)]] - ig^{-1} \frac{2(N - 1)}{N} [\partial_{\mu}\mathbf{h}(x), \mathbf{h}(x)],$$

$$X_{\mu}(x) = \frac{2(N - 1)}{Y_{\text{KIS2ONBB Symposium, YITP Kyoto}} [\mathbf{h}(x), \mathbf{h}(x)] + ig^{-1} \frac{2(N - 1)}{N} [\partial_{\mu}\mathbf{h}(x), \mathbf{h}(x)].$$
9

Minimal option: Non-Abelian magnetic monopole

For Wilson loop in the fundamental representation

From the non-Abelian Stokes theorem and the Hodge decomposition, the magnetic monopole is derived without using the Abelian projection

$$W_{C}[\mathcal{A}] = \int [d\mu(\xi)]_{\Sigma} \exp\left(-ig \int_{S:C=\partial\Sigma} dS^{\mu\nu} \sqrt{\frac{N-1}{2N}} \operatorname{tr}(2\mathbf{h}(x)\mathcal{F}_{\mu\nu}[\mathcal{V}](x))\right) \\ = \int [d\mu(\xi)]_{\Sigma} \exp\left(ig \sqrt{\frac{N-1}{2N}} (k, \Xi_{\Sigma}) + ig \sqrt{\frac{N-1}{2N}} (j, N_{\Sigma})\right) \\ \text{magnetic current } k := \delta^{*}F = {}^{*}dF, \quad \Xi_{\Sigma} := \delta^{*}\Theta_{\Sigma}\Delta^{-1} \\ \text{electric current } j := \delta F, \qquad N_{\Sigma} := \delta\Theta_{\Sigma}\Delta^{-1} \\ \Delta = d\delta + \delta d, \qquad \Theta_{\Sigma} := \int_{\Sigma} d^{2}S^{\mu\nu}(\sigma(x))\delta^{D}(x - x(\sigma)) \\ k \text{ and } j \text{ are gauge invariant and conserved currents; } \delta k = \delta j = 0. \end{cases}$$

$$K.-1. \text{ Kondo } PRD77 \\ O85929(2008)$$

Note that field strength F[V] is described by V-field in the minimal option.

The lattice version of magnetic monopole current is defined by using plaquette:

$$\begin{split} \Theta^{8}_{\mu\nu} &:= -\arg \operatorname{Tr} \left[\left(\frac{1}{3} \mathbf{1} - \frac{2}{\sqrt{3}} \mathbf{h}_{x} \right) V_{x,\mu} V_{x+\mu,\mu} V^{\dagger}_{x+\nu,\mu} V^{\dagger}_{x,\nu} \right], \\ k_{\mu} &= 2\pi n_{\mu} := \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} \partial_{\nu} \Theta^{8}_{\alpha\beta}, \end{split}$$

maximal option: The decomposition of SU(3) link variable

Gauge invariant construction of the Abelian projection to maximal torus group U(1) x U(1) in MA gauge.

maximal option: Defining equation for the decomposition

By introducing color fields $\mathbf{n}_x^{(3)} = \Theta_x(\lambda^3/2)\Theta^{\dagger}$, $\mathbf{n}_x^{(8)} = \Theta_x(\lambda^8/2)\Theta^{\dagger}$ $\in SU(3)_{\omega} \times [SU(3)/(U(1) \times U(1))]_{\theta}$, a set of the defining equation for the decomposition $U_{x,\mu} = X_{x,\mu}V_{x,\mu}$ is given by

$$D_{\mu}^{\varepsilon}[V]n_{x}^{(k)} = \frac{1}{\varepsilon}(V_{x,\mu}n_{x+\mu}^{(k)} - n_{x}^{(k)}V_{x,\mu}) = 0, \ (k = 3, 8)$$
$$g_{x} = \exp(2\pi i n/N)\exp(i\sum_{j=3,8}a^{(j)}n_{x}^{(j)}) = 1$$

Coressponding to the continuum version of the decomposition $\mathcal{A}_{\mu}(x) = V_{\mu}(x) + \mathcal{X}_{\mu}(x)$ $D_{\mu}[V_{\mu}]\mathbf{n}^{(k)}(x) = 0, \quad tr(\mathbf{n}^{(k)}(x)\mathcal{X}_{\mu}(x)) = 0, \quad (k = 3, 8)$

$$X_{x,\mu} = \hat{K}_{x,\mu}^{\dagger} \det(K_{x,\mu})^{1/3} g_x^{-1}, \quad V_{x,\mu} = g_x \hat{K}_{x,\mu} \det(K_{x,\mu})^{-1/3}$$

where

$$\hat{K}_{x,\mu} := \left(\sqrt{K_{x,\mu}K_{x,\mu}^{\dagger}}\right)^{-1} K_{x,\mu}, \quad \hat{K}_{x,\mu}^{\dagger} = K_{x,\mu}^{\dagger} \left(\sqrt{K_{x,\mu}K_{x,\mu}^{\dagger}}\right)^{-1} K_{x,\mu}$$
$$K_{x,\mu} = 1 + 6\mathbf{n}_{x}^{(3)} U_{x,\mu} \mathbf{n}_{x+\mu}^{(3)} U_{x,\mu}^{\dagger} + 6\mathbf{n}_{x}^{(8)} U_{x,\mu} \mathbf{n}_{x+\mu}^{(8)} U_{x,\mu}^{\dagger}$$

Reduction condition

•The reduction condition is introduced such that the theory in terms of new variables is <u>equipollent to the original</u> <u>Yang-Mills theory</u>

•We here introduce the reduction condition which is the kinetic term of adjoint gauge-Higgs system.

→ gauge-Higgs system as effective theory in view of the new variables V,X,**n**

Minimal option: $SU(3)_{\omega} \times [SU(3)/U(2)]_{\theta} \rightarrow SU(3)_{\omega=\theta}$

Determining \mathbf{h}_x to minimize the reduction function for given $U_{x,\mu}$ $F_{\text{red}}[\mathbf{h}_x, U_{x,\mu}] = \sum_{x,\mu} \operatorname{tr} \left\{ \left(D_{\mu}^{\epsilon} [U_{x,\mu}] \mathbf{h}_x \right)^{\dagger} \left(D_{\mu}^{\epsilon} [U_{x,\mu}] \mathbf{h}_x \right) \right\}$

Maximal option:

 $SU(3)_{\omega} \times \left[SU(3)/(U(1) \times U(1)) \right]_{\theta} \rightarrow SU(3)_{\omega=\theta}$

Determine $\mathbf{n}^{(3)}$ and $\mathbf{n}^{(8)}$ to minimize the following functional $F_{\max}[\mathbf{n}^{(3)}, \mathbf{n}^{(8)}; U_{x,\mu}] = \sum_{x,\mu} tr\left(\left\| D_{\mu}[U] \mathbf{n}_{x}^{(3)} \right\|^{2} \right) + \sum_{x,\mu} tr\left(\left\| D_{\mu}[U] \mathbf{n}_{x}^{(8)} \right\|^{2} \right)$ $\mathbf{n}_{x}^{(3)} = \Theta_{x}(\lambda^{3}/2)\Theta_{x}^{\dagger}, \quad \mathbf{n}_{x}^{(8)} = \Theta_{x}(\lambda^{8}/2)\Theta_{x}^{\dagger}$

Reduction condition for maximal option is rewritten into the gauge fixing of maximal Abelian gauge (next slide)

Maximal option

□ magnetic monopole

We have two kind of magnetic monopoles in the maximal option

Decomposition in the MA gauge

Decomposition formula is rewritten into Abelian projection in Maximal Abelian gauge

→ Abelian projection in in the MA gage

$$k_{\mu}^{(j)} := \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} \partial_{\nu} \Theta_{\alpha\beta}^{(j)}$$

$$\Theta_{\alpha\beta}^{(1)} = \arg \left[\left(\frac{1}{3} \mathbf{1} + \mathbf{n}_{x} + \frac{1}{\sqrt{3}} \mathbf{m}_{x} \right) V_{x,\alpha} V_{x+\alpha,\beta} V_{x+\beta}^{\dagger}, \alpha V_{x,\beta}^{\dagger} \right]$$

$$\Theta_{\alpha\beta}^{(2)} = \arg \left[\left(\frac{1}{3} \mathbf{1} - \frac{2}{\sqrt{3}} \mathbf{m}_{x} \right) V_{x,\alpha} V_{x+\alpha,\beta} V_{x+\beta}^{\dagger}, \alpha V_{x,\beta}^{\dagger} \right]$$

$$\mathbf{n}_{x}^{(3)} = \Theta_{x}(\lambda^{3}/2)\Theta_{x}^{\dagger}, \quad \mathbf{n}_{x}^{(8)} = \Theta_{x}(\lambda^{8}/2)\Theta_{x}^{\dagger}, \quad \Theta_{x,\mu} = \Theta_{x}^{\dagger}U_{x,\mu}\Theta_{x+\mu}$$

$$\begin{split} K_{x,\mu} &= \left(U_{x,\mu} + 6\mathbf{n}_{x}^{(3)}U_{x,\mu}\mathbf{n}_{x+\mu}^{(3)} + 6\mathbf{n}_{x}^{(8)}U_{x,\mu}\mathbf{n}_{x+\mu}^{(8)} \right) U_{x,\mu}^{\dagger} \\ &= \Theta_{x} \left[\stackrel{\Theta}{=} U_{x,\mu}^{\dagger} + 6\frac{\lambda^{3}}{2} \stackrel{\Theta}{=} U_{x,\mu}^{\dagger} \frac{\lambda^{3}}{2} + 6\frac{\lambda^{8}}{2} \stackrel{\Theta}{=} U_{x,\mu}^{\dagger} \frac{\lambda^{8}}{2} \right] \Theta_{x+\mu}^{\dagger} U_{x,\mu}^{\dagger} \\ &= 3\Theta_{x} \left[\stackrel{\Theta}{=} u_{x,\mu}^{11} & 0 & 0 \\ 0 \stackrel{\Theta}{=} u_{x,\mu}^{22} & 0 \\ 0 \stackrel{\Theta}{=} u_{x,\mu}^{33} \right] \Theta_{x+\mu}^{\dagger} U_{x,\mu}^{\dagger} \\ V &= diag \left(\frac{\stackrel{\Theta}{=} u_{x,\mu}^{11}}{|\stackrel{\Theta}{=} u_{x,\mu}^{11}|}, \frac{\stackrel{\Theta}{=} u_{x,\mu}^{22}}{|\stackrel{\Theta}{=} u_{x,\mu}^{23}|}, \frac{\stackrel{\Theta}{=} u_{x,\mu}^{33}}{|\stackrel{\Theta}{=} u_{x,\mu}^{33}|} \right) \end{split}$$

DUAL SUPERCONDUCTIVITY AT ZERO TEMPERATUER

String tension: zero temperature

Static potential from Wilson loop average of YM-field and two V-fields in minimal and maximal options

log <W[T=10,R]> vs R

- We obtain the restricted field ("Abelian") dominance (86%) in the string tension for both the minimal option and the maximal option.
- The string tension is almost same with the both options and YM field

Measurement of chromo flux:

The field strength by quark and antiquark can be defined as

 $F_{\mu\nu}(x) = \sqrt{\frac{\beta}{2N}} \rho_W(x)$

To know the difference between the decomposition, we measure the three types of probes and compare them.

Proposed by Adriano Di Giacomo et.al. [Phys.Lett.B236:199,1990] [Nucl.Phys.B347:441-460,1990]

$$\begin{split} O^{[YM]} &= L[U]U_pL[U]^{-1} & :: \text{ original YM} \\ O^{[\min]} &= L[V^{[\min]}]V_p^{[\min]}L[V^{[\min]}]^{-1} & :: \text{V field in minimal option} \\ O^{[\max]} &= L[V^{[\max]}]V_p^{[\max]}L[V^{[\max]}]^{-1} & :: \text{V field in maximal option} \end{split}$$

chromo flux

Full Yang-Mills field

Ristriced field in minimal option

Chromoelectric flux tubes in QCD

Full Yang-Mills

Restricted field V in minimal option

Dual Meissner effect and type of vacuum Clem's method GL parameter

0.12

0.1

0.08

0.06

0.04

0.02

0

0

1

2

3

5

6

4

y/ε

7

 $E_{Z} \epsilon^{2}$

 $\kappa = \sqrt{2} \frac{\lambda}{\zeta} \sqrt{1 - K_0^2(\zeta/\lambda)/K_1^2(\zeta/\lambda)}$

Ez YM

Ez restricted

restricted

φYΜ

λ

ž, y

0.3

0.25

0.2

0.1

0.05

0

9

8

Using U(1) model and Ansatz for scalar field.

Nishino's talk (June 13) for improved method.

q

Induced magnetic current (monopole)

The magnetic current *k must* be *zero* for regular function F due Bianchi Identity.

Non zero k suggests the monopole condensation

Yang-Mills equation (Maxell equation) fo rrestricted field V_{μ} , the magnetic current (monopole) can be calculated as

$$k = \delta^* F[V] = {}^* dF[V],$$

where F[V] is the field strength of V, d exterior derivative, * the Hodge dual and δ the coderivative $\delta := *d^*$, respectively.

comparison magnetic monople current

June 11-15 2018

DUAL SUPERCONDUCTIVITY AT FINITE TEMPERATURE

- Plyakov loops and ristriced field at finite temperature
 - Distribution of Plyakov loop values
 - Plyakov loop average and center symmetry breaking/restoration
- Static potential of quark and antiquark
 - correlation function of Plyakov loops
 - ➢ Wilson loop average
- dual Meissner effect and confiment/deconfinement phase transition
 - Appearance/disappearance of chromoelectric flux tube
 - Induced magnetic current (monopole)

Polyakov loop

$$P_U(x) = \operatorname{tr}\left(\prod_{t=1}^{Nt} U_{(x,t),4}\right) \text{ for original Yang-Mills filed}$$
$$P_V(x) = \operatorname{tr}\left(\prod_{t=1}^{Nt} V_{(x,t),4}\right) \text{ for restricted field}$$

- Distribution of Plyakov loop values
- Plyakov loop average and center symmetry breaking/restoration

Distribution of Polyakov loop values

YKIS2018b Symposium, YITP Kyoto

Δ

ò

Polyakov loop average and center symmetry

Polyakov loop average

Polyakov loop susceptibility

Magnitude of Polyakov-loop average is different, but gives the same phase transition temperature (β).

June 11-15 2018

YKIS2018b Symposium, YITP Kyoto

Static potential of quark and antiquark

Wilson loop

Correlation function of Plyakov loop

 $\widetilde{V}(R; U) := -T \log \langle P_U(\vec{x}) P_U^*(\vec{y}) \rangle,$ $\widetilde{V}(R; V) := -T \log \langle P_V(\vec{x}) P_V^*(\vec{y}) \rangle,$

$$\langle P_U(\vec{x}) P_U^*(\vec{y}) \rangle$$

 $\simeq e^{-F_{q\bar{q}}/T} = \frac{1}{N_c^2} e^{-F^{(S)}/T} + \frac{N_c^2 - 1}{N_c^2} e^{-F^{(A)}/T}$

$$V(R; U) \coloneqq -T\log\langle W_U
angle, \ V(R; V) \coloneqq -T\log\langle W_V
angle$$

static potential (correlation function of Plyakov loops)

Static potential by Wilson loop

Measurement of chromo flux at finite temperature

$$\rho_{W} = \frac{\langle \operatorname{tr}(WLU_{p}L^{\dagger}) \rangle}{\langle \operatorname{tr}(W) \rangle} - \frac{1}{N} \frac{\langle \operatorname{tr}(W) \operatorname{tr}(U_{p}) \rangle}{\langle \operatorname{tr}(W) \rangle}$$
$$F_{\mu\nu}(x) = \sqrt{\frac{\beta}{2N}} \rho_{W}(x)$$

$$tr(U_p L W L^{\dagger})$$

□ Using the same operator with that of zero temperature.

 $\Box \quad \text{Size of Wilson loop T-direction} = \text{Nt}$

→ The source of quark and antiquark are given by **Plyakov loops** connecting by Wilson line.

□ The three types of probes and compare them.

$O^{[YM]} = L[U]U_pL[U]^{-1}$:: original YM
$O^{[\min]} = L[V^{[\min]}]V_p^{[\min]}L[V^{[\min]}]^{-1}$:: V field in minimal option
$O^{[\max]} = L[V^{[\max]}]V_p^{[\max]}L[V^{[\max]}]^{-1}$:: V field in maximal option
VKIC2010b Currence Surren VITD Kuste	20

Chromo flux in confining phase

YKIS2018b Symposium, YITP Kyoto

Chromo flux in deconfining phase

Induced magnetic current (monopole) at finite temperature

Yang-Mills equation (Maxell equation) fo rrestricted field V_{μ} , the magnetic current (monopole) can be calculated as

$$k = \delta^* F[V] = *dF[V],$$

where F[V] is the field strength of V, d exterior derivative, * the Hodge dual and δ the coderivative $\delta := *d^*$, respectively.

Summary

- We investigate dual superconductivity applying our new formulation of Yang-Mills theory on the lattice, i.e., in the minimal and maximal options as well as Yang-Mills field at finite temperature.
- □ In both options we have found that
- The Polyakov loop averages, the conventional order parameter, gives the same critical temperature of confinement/deconfinement phase transition with both options and the YM field
- the restricted field (V-field) dominance in the string tension, and the string tension is almost same.

Summary(cont')

□ Confinement/deconfinement phase transition

- In confining phase
- ➤ we observe the dual Meissner effect.
- The induced magnetic (monopole) currents appear around chromo-electro flux tube between a pair of quark and antiquark.
- In deconfining phase
- ➢ we find no more the dual Meissner effect
- i.e., the induced magnetic (monopole) currents disappear or becomes very small

THANK YOU FOR YOUR ATTENTION

June 11-15 2018

YKIS2018b Symposium, YITP Kyoto