Complex Langevin analysis of the finite deinsity QCD

Shoichiro Tsutsui (KEK)

In collaboration with

Yuta Ito, Hideo Matsufuru, Kanto Moritake, Jun Nishimura, Shinji Shimasaki, Asato Tsuchiya

Finite density QCD

QCD partition function

$$Z = \int dU \det M[U, \mu] e^{-S_g[U]}$$
$$M = D + m$$

The origin of the sign problem

 $\det M$ is complex when $\;\mu>0\;$

A way to resolve the sign problem: complex Langevin approach

Basic idea of complex Langevin method

$$Z = \int_{-\infty}^{\infty} dx e^{-S(x)}, \quad S(x) \in \mathbb{C}$$

Complexification

 $x \in \mathbb{R} \to z \in \mathbb{C} \quad S(x) \to S(z)$

[Parisi 83], [Klauder 84] [Aarts, Seiler, Stamatescu 09] [Aarts, James, Seiler, Stamatescu 11] [Seiler, Sexty, Stamatescu 13] [Sexty 14] [Fodor, Katz, Sexty, Torok 15] [Nishimura, Shimasaki 15] [Nagata, Nishimura, Shimasaki 15]

Complex Langevin equation

$$\frac{dz}{dt} = -\frac{\partial S(z)}{\partial z} + \eta(t) \qquad \begin{array}{l} \langle \eta(t) \rangle = 0 \\ \langle \eta(t) \eta(t') \rangle = 2\delta(t - t') \end{array}$$

 $\langle ... \rangle$:noise average

We identify the noise effect as a quantum fluctuation.

Complex Langevin eq. for QCD

$$Z = \int dU \det M[U,\mu] e^{-S_g[U]}$$

Complexification

$$U_{x\mu} \in SU(3) \to \mathcal{U}_{x\mu} \in SL(3,\mathbb{C}) \qquad S(U) \to S(\mathcal{U})$$

Gauge transformation

$$\mathcal{U}_{x\mu} \to g_x \mathcal{U}_{x\mu} g_{x+\hat{\mu}}^{-1}, \quad g_x \in SL(3,\mathbb{C})$$

The complex Langevin eq. of QCD

$$\mathcal{U}_{x\mu}(t+\epsilon) = \exp\left[i\left(-\epsilon \mathcal{D}_{x\mu}S[\mathcal{U}] + \sqrt{\epsilon}\eta_{x\mu}\right)\right]\mathcal{U}_{x\mu}(t)$$

Drift term

Criterion of correctness

Exponential falloff of the drift distribution

Complex Langevin is reliable

Power-law falloff of the drift distribution

Complex Langevin converges, but gives incorrect answer

The main causes of the power-law fall

Excursion problem: large deviation of the link variable from SU(3) \rightarrow gauge cooling

Singular drift problem: small eigenvalue of the fermion matrix \rightarrow deformation of the Dirac operator

Numerical studies

We perform numerical simulation in two different temperature regions.

(1) "Low temperature" region:

 \rightarrow silver blaze phenomenon? transition to the quark matter?

Nagata, Nishimura, Shimasaki [1805.03964] Ito, Matsufuru, Moritake, Nishimura, Shimasaki, Tsuchiya, ST (preliminary)

(2) "High temperature" region:

 \rightarrow 1st order phase transition?

Ito, Matsufuru, Moritake, Nishimura, Shimasaki, Tsuchiya, ST (preliminary)

Phase diagram of 4 flavor QCD

 1^{st} order chiral phase transition at $\mu=0$

Finite-size scaling analysis [Fukugita, Mino, Okawa, Ukawa 90]

 $T_c/\sqrt{\sigma} \sim 0.4$

[Engels, Joswig, Karsch, Laermann, Lutgemeier, Petersson 96]

We use N_f=4, staggered fermion

phase transition at finite µ

Canonical method

[de Forcrand, Kratochvila 06] [Li, Alexandru, Liu, Meng 10]

Reweighting

 μ

[Fodor, Katz, Sexty, Torok 15]

T

Setup: low temperature region

- \sim N_f = 4, staggered fermion
- \succ Lattice size: $8^3 \times 16$

cf) $4^3 \times 8$ results in J. Nishimura's talk

- \succ $\beta = 5.7$
- ➤ µa= 0.0 0.5
- > Quark mass: $m_a a = 0.01, 0.05$
- \blacktriangleright Langevin steps = $10^5 10^6$
- Computational resource: K computer

We compare the results with the RHMC results of the phase quenched (PQ) simulation.

How to extract reliable data

m = 0.05

Histogram of the drift term

m = 0.05

Baryon number density m = 0.05

Comparison with PQ simulation m = 0.05

Qualitative difference is not observed \rightarrow due to too heavy pion?

Comparison with PQ simulation m = 0.01

m = 0.01 vs 0.05 (µ<0.3)

NFQCD 201

PQ

As m=0.05 \rightarrow 0.01, critical chemical potential lowers.

m = 0.01 vs 0.05 (µ<0.3)

PQ

As m=0.05 \rightarrow 0.01, critical chemical potential lowers.

CL

Region where the singular drift problem occurs depends on mass.

m = 0.01 vs 0.05 (µ>0.3)

PQ

<n> (~ pion density) is sensitive to the change of mass. (finite size effect may arise)

CL

<n> (= baryon number density) is not sensitive.

CLM succeeded to take into account the complex phase of the fermion determinant.

Transition to quark matter phase?

For μ <0.45, CLM is manifestly reliable without the deformation technique.

For μ >0.475, clear power-law tail is not formed yet. Further statistics is needed to make a conclusion.

Setup: high temperature region

- $N_{f} = 4$, staggered fermion
- \blacktriangleright Lattice size: $16^3 \times 12$, $20^3 \times 12$, $24^3 \times 12$

$$\succ$$
 $\beta = 5.0 - 5.5$

- μ/T = 1.2, 2.4
- Quark mass: $m_q a = 0.01$ Langevin steps = $10^4 10^5$
- Computational resource: K computer \geq

Physical scales

 $a \simeq 0.11 {
m fm} \ m_{\pi} \simeq 530 {
m MeV}$ (β=5.2) $150 \mathrm{MeV} \le T$ Table of lattice spacing [Fodor, Katz, Sexty, Torok 15] $0 \le \mu \lesssim 455 \mathrm{MeV}$

Previous study

Previous studies of $N_f = 4$ high density QCD:

Our claim

If the temporal lattice size is large enough, complex Langevin may be able to detect the phase transition.

For instance, when $\beta = 5.2$, $m_q a = 0.01$, the temperature becomes...

Chiral condensate

Size dependence and μ/T dependence are not observed yet.

History of chiral condensate

Our simulation is performed by the "**cold start**". History may depend on the initial condition around the 1st order transition line.

History from the hot configuration

Possible hysteresis

Summary

- Complex Langevin method (CLM) is applied to explore 4-flavor QCD phase diagram in finite density region.
- CLM is reliable in the nuclear matter phase. We confirm the qualitative difference from the phase quenched simulation.
- Transition to the quark matter phase is suggested.
- 1st order phase transition in high temperature region is under investigation.
- Hysteresis of the chiral condensate is explored.

Appendix

How to make "hot" configuration

In CLM, extremely small β (say β =0) is not allowed to ensure the stable computation.

We prepare time-series data as $\dots \rightarrow \beta=5.0 \rightarrow \beta=5.2 \sim 5.4$

Histogram of the drift term

L=24 µ=0.1

History of Polyakov loop

Our simulation is performed by the "**cold start**". History may depend on the initial condition around the 1st order transition line.

Comparison with previous study

$$\mu/T = 1.2$$

Fodor, Katz, Sexty, Torok (2015)

expectation : phase transition around β =5.2 transition temperature becomes lower as μ /T is larger

Baryon number density

expectation : phase transition around β =5.2 transition temperature becomes lower as μ/T is larger

(D+m)の固有値分布の典型的なふるまい

Singular drift problem: (D+m) の固有値分布が原点近傍に集まってしまうことで、 ドリフト項が大きくなってしまう問題

NFQCD 2018 @ YITP, Kyoto

Singular drift を回避する方法

- Generalized gauge cooling
- Deformation
- High temperature

Generalized gauge

6/5/2018

NFQCD 2018 @ YITP, Kyoto

Justification of complex Langevin method

Associated Fokker-Planck-like equation becomes,

$$\frac{\partial}{\partial t}\Phi(x,y,t) = \left[\frac{\partial}{\partial x_i}\left\{\operatorname{Re}\left(\frac{\partial S}{\partial z_i}\right) + N_R\frac{\partial}{\partial x_i}\right\} + \frac{\partial}{\partial y_i}\left\{\operatorname{Im}\left(\frac{\partial S}{\partial z_i}\right) + N_I\frac{\partial}{\partial y_i}\right\}\right]\Phi(x,y,t)$$

Under certain conditions,

$$\int dx dy O(x + iy) \Phi(x, y) = \int dx O(x) P(x)$$
$$\frac{\partial}{\partial t} P(x, t) = \frac{\partial}{\partial x} \left(\frac{\partial S}{\partial x} + \frac{\partial}{\partial x} \right) P(x, t)$$

The stationary solution reads

$$P_{\rm eq}(x) \propto e^{-S(x)} \qquad \langle O(z(t)) \rangle \rightarrow \frac{1}{Z} \int dx O(x) e^{-S(x)}, \quad t \rightarrow \infty$$

Criterion of correctness

A criterion for the correctness of the complex Langevin method

K. Nagata, J. Nishimura, S. Shimasaki [1508.02377, 1606.07627]

$$\mathcal{U}_{x\mu}(t+\epsilon) = \exp\left[i\left(-\epsilon\mathcal{D}_{x\mu}S[\mathcal{U}] + \sqrt{\epsilon\eta_{x\mu}}\right)\right]\mathcal{U}_{x\mu}(t)$$

Drift term
$$v_{x\mu}(\mathcal{U}) = -\mathcal{D}_{x\mu}S[\mathcal{U}]$$

Probability distribution of the magnitude of the drift term plays a key role.

$$p(u) = \frac{1}{4N_V} \left\langle \sum_{x\mu} \delta(u - u_{x\mu}) \right\rangle \qquad \qquad u_{x\mu} = \sqrt{\frac{1}{N_c^2 - 1} \operatorname{tr}(v_{x\nu} v_{x\nu}^{\dagger})}$$