

On ρ meson generalized parton distributions (GPDs)

Yubing Dong

Institute of High Energy Physics(IHEP)

Chinese Academy of Sciences(CAS)

Collaborator: (Baodong Sun)

PRD 96 (2017) 036019 Chin.Phys. C 42 (2018) 063104 Outline

- 1, Introduction
- 2, Spin 1 particle and basic properties
- 3, Approach: Light-front constituent quark model
- 4, Impact parameter space
- 5, Summary

1, Introduction

Electromagnetic probe

- Electric and magnetic proton form factors
- Proton and Neutron charge distributions
- Nucleon spin structure
- Nucleon-Delta transition (other resonances)
- Quark-hadron duality in structure functions
- Generalized parton distributions
- Pion and deuteron form factors

GPDs (generalized parton distributions)

GPDs $H_q(x,\xi,Q^2)$ naturally embody the information of both PDFs and FFs, and therefore display the unique properties to present a "3D" description for a system.

GPDs allow for a unified description of a number of hadronic properties; for example:

(1) In the forward limit they reduce to conventional PDFs

$$\begin{split} H_q(x,0,0) &= q(x)\,,\\ \tilde{H}_q(x,0,0) &= \Delta q(x)\,. \end{split}$$

(2) When one integrates GPDs over x they reduce to the usual form factors, e.g. the Dirac form factors^a

$$\sum_{q} e_q \int dx \, H_q(x,\xi,t) = F_1(t) \,,$$

 $\sum_{q} e_q \int dx \, E_q(x,\xi,t) = F_2(t) \,.$ 4

GPDs (generalized parton distributions

GPDs for pion,

Broniowski, PLB 574, PRD78; Choi et al., PRD64; Fanelli, EPJC76;

for nucleon (proton and neutron)

Diehl et al., EPJC 73; Kroll, EPJA53; Pire et al., PRD79; Selyugin, PRD91;..... Light Nuclei: He-3,...

Rinaldi et al., PRC87.....

Deuteron

Cano et al., PRL87, YBD et al., JPG19,.....

Generalized Parton distributions for pion

Covariant amplitude with a reduced photon vertex for pion GPD (left diagram) and its nonvalence $x < \zeta$ part (right diagram).

Broniowski, PLB574,In the limit

Fig. 1. The diagram for the evaluation of the generalized parton distribution of the pion in chiral quark models.

GPDs (generalized parton distributions)

Deep virtual Compton Scattering

[Chueng-Ryong Ji '06, Diehl '16]

A GPD factorization formula:

Parton correlation function:

$$\mathcal{A}(\xi, \Delta^2, Q^2) = \underbrace{\mathsf{DVCS, TCS, meson production}}_{\sum_i \int_{-1}^1 \mathrm{d}x \, C_i \left(x, \xi; \log(Q/\mu)\right) H_i(x, \xi, \Delta^2; \mu)} \qquad H(k, P, \Delta) = (2\pi)^{-4} \int d^4z \, e^{izk} \underbrace{\mathsf{flavor by}}_{\mathsf{flavor}} \times \left\langle p(P + \frac{1}{2}\Delta) | \bar{q}(-\frac{1}{2}z) \Gamma q(\frac{1}{2}z) | p(P - \frac{1}{2}\Delta) \right\rangle}_{\mathsf{Gauge A^+=0}}$$

It may be measured by **Deeply virtual Compton scattering** Or **Deeply virtual meson electro-productions**

The Dirac matrix Γ selects the twist and the parton spin degrees of freedom.

$$\Gamma^{\mu} o \gamma^{\mu}$$

Scheme [Diehl '16] parton correlation function $\Delta = 0$ $H(k, P, \Delta)$ forward limit $\int dk^{-}$ f(k, P)parton correlation function $\xi = 0$ $H(x, \boldsymbol{k}, \boldsymbol{\xi}, \boldsymbol{b}) \stackrel{\mathrm{FT}}{\longleftrightarrow} H(x, \boldsymbol{k}, \boldsymbol{\xi}, \boldsymbol{\Delta})$ GTMD $W(x, \boldsymbol{k}, \boldsymbol{b})$ Wigner distribution $\int dk^{-}$ $\int d^2 oldsymbol{k}$ $\int d^2 \mathbf{k} \qquad \xi = 0$ $H(x,\xi,\boldsymbol{b}) \stackrel{\mathrm{FT}}{\longleftrightarrow} H(x,\xi,\Delta^2) \text{ GPD}$ $f(x, z) \stackrel{\text{FT}}{\longleftrightarrow} f(x, k) \qquad \qquad f(x, b) \text{ impact parameter}$ distribution TMD $\int d^2 \mathbf{k}$ $\xi = 0$ $dx x^{n-1}$ $\sum_{k=0}^{n} A_{nk}(\Delta^2) (2\xi)^k$ $\int d^2 \boldsymbol{b}$ \mathbf{FT} GFFs $F_n(\boldsymbol{b})$ \leftarrow $F_n(\Delta^2)$ f(x)PDF form factor

7

2, Spin-1 particle and basic properties

Definition of GPDs (spin -1)

[PRL: Berger '01, for the deuteron]

G

$$egin{aligned} V_{\lambda'\lambda} &= rac{1}{2} \int rac{d\omega}{2\pi} \, e^{ix(Pz)} \langle p',\lambda' | \, ar{q}(-rac{1}{2}z) \, n q(rac{1}{2}z) \mid p,\lambda
angle \Big|_{z=\omega n} \ &= \sum_i \epsilon'^{*
u} V^{(i)}_{
u\mu} \epsilon^{\mu} H^q_i(x,\xi,t) \end{aligned}$$

• Polarized

Unpolarized

$$\begin{split} A_{\lambda'\lambda} &= \frac{1}{2} \int \frac{d\omega}{2\pi} \, e^{ix(Pz)} \langle p', \lambda' | \, \bar{q}(-\frac{1}{2}z) \, \not\!\!\!/ \gamma_5 \, q(\frac{1}{2}z) \, | p, \lambda \rangle \Big|_{z=\omega n} \\ &= \sum_i \epsilon'^{*\nu} A^{(i)}_{\nu\mu} \epsilon^{\mu} \tilde{H}^q_i(x,\xi,t) \end{split}$$

$$P = \frac{p'+p}{2}, \quad t = \Delta^2 = (p'-p)^2,$$

 $n^2 = 0$, (lightlike four-vector)

$$\xi = (n \cdot \Delta)/(n \cdot P)$$
, skewness parameter,

$$\epsilon = \epsilon(p,\lambda), \epsilon' = \epsilon'(p',\lambda')$$
, polarizations,

$$V_{\mu\nu}: \{g_{\mu\nu}, P_{\mu}n_{\nu}, P_{\nu}n_{\mu}, P_{\mu}P_{\nu}, n_{\mu}n_{\nu}\}$$

$$A : Levi - civita \in (n^{\alpha}n^{\beta}, ..., n_{\mu})$$

Symmetry properties:

$$H_{i}(x,\xi,t) = H_{i}(x,-\xi,t) \quad (I = 1, 2, 3, 5)$$

$$H_{4}(x,\xi,t) = -H_{4}(x,-\xi,t)$$

$$\tilde{H}_{i}(x,\xi,t) = \tilde{H}_{i}(x,-\xi,t) \quad (I = 1, 2, 4)$$

$$\tilde{H}_{3}(x,\xi,t) = -\tilde{H}_{3}(x,-\xi,t)$$

$$H_{\rho^{+}}^{d}(x,\xi,t) = -H_{\rho^{+}}^{u}(x,-\xi,t) \qquad 8$$

Sum rules

• Form factor decomposition of Local current

$$\begin{split} I^{\mu}_{\lambda'\lambda} &= \langle p', \lambda' | \, \bar{q}(0) \, \gamma^{\mu} \, q(0) \, | p, \lambda \rangle \\ &= \epsilon'^{*\beta} \epsilon^{\alpha} \bigg[- \Big(G^{q}_{1}(t) g_{\beta\alpha} + G^{q}_{3}(t) \frac{P_{\beta} P_{\alpha}}{2M^{2}} \Big) P^{\mu} + G^{q}_{2}(t) \, \Big(g^{\mu}_{\alpha} P_{\beta} + g^{\mu}_{\beta} P_{\alpha} \Big) \bigg] \end{split}$$

• Sum rules

Conventional Form factors

$$\begin{split} &\int_{-1}^{1} dx H_{i}^{q}(x,\xi,t) = G_{i}^{q}(t) \quad (i=1,2,3) \ , G_{C}(t) = G_{1}(t) + \frac{2}{3}\eta G_{Q}(t) \ , \\ &\int_{-1}^{1} dx H_{i}^{q}(x,\xi,t) = 0 \quad (i=4,5) \ . \qquad \begin{array}{l} G_{M}(t) = G_{2}(t) \ , \\ &G_{Q}(t) = G_{1}(t) - G_{2}(t) + (1+\eta)G_{3}(t) \ , \end{array} \end{split}$$

Forward limit

• GPDs in forward limit

$$H_1(x,0,0) = \frac{q^1(x) + q^{-1}(x) + q^0(x)}{3},$$
$$H_1(x,0,0) = q^0(x) - \frac{q^1(x) + q^{-1}(x)}{3}$$

$$H_5(x,0,0) = q^0(x) - \frac{1}{2}$$

for x > 0 $\tilde{H}_1(x, 0, 0) = q_{\uparrow}^1(x) - q_{\uparrow}^{-1}(x)$

• DIS structure functions

$$F_{1}(x) = \frac{1}{2} \sum_{q} e_{q}^{2} \frac{q^{1}(x) + q^{-1}(x) + q^{0}(x)}{3} + \{q \rightarrow \bar{q}\},$$

$$b_{1}(x) = \frac{1}{2} \sum_{q} e_{q}^{2} \left[q^{0}(x) - \frac{q^{1}(x) + q^{-1}(x)}{2} \right] + \{q \rightarrow \bar{q}\} -$$

$$g_{1}(x) = \frac{1}{2} \sum_{q} e_{q}^{2} \left[q_{\uparrow}^{1}(x) - q_{\uparrow}^{-1}(x) \right] + \{q \rightarrow \bar{q}\}.$$

• Single-flavor $F_{1}^{q\uparrow(\downarrow)}, b_{1}^{q\uparrow(\downarrow)}$

[Hoodbhoy '89, Berger '01, Cosyn'17]

Quark densities:

$$q^{\lambda}(x) = q^{\lambda}_{\uparrow}(x) + q^{\lambda}_{\downarrow}(x)$$
$$q^{\lambda}_{\uparrow} = q^{-\lambda}_{\downarrow}$$

-H1 and -H5 for x < 0, antiquark

$$W^{\mu\nu} \sim F_1, F_2, g_1, g_2$$

 b_1, b_2, b_3, b_4

3, Approach: Light-front constituent quark model

Isospin combinations

[Berger '01, Frederico '09, Bronioski'03]

11

• Effective Chiral Lagrangian:

$$\mathcal{L}_{\rho \to q\bar{q}} = -i(M/f_{\rho})\bar{q}S^{\mu}\tau q \cdot \rho_{\mu} = -i(M/f_{\rho})\left[\bar{u}S^{\mu}u\rho_{\mu}^{0} + \sqrt{2}\bar{u}S^{\mu}d\rho_{\mu}^{+} + \sqrt{2}\bar{d}S^{\mu}u\rho_{\mu}^{-} + \bar{d}S^{\mu}d\rho_{\mu}^{0}\right]$$

Quark field doublets:

$$q(x) = \begin{pmatrix} u(x) \\ d(x) \end{pmatrix}, \quad \tau_3 q(x) = \begin{pmatrix} u(x) \\ -d(x) \end{pmatrix} \xrightarrow{p_i - h_i}$$

5 un-polarized GPDs: Isospin combinations

$$\begin{aligned} \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix(Pz)} \langle \rho^{b}(p',\lambda') | \bar{q}(-\frac{1}{2}z) \not\!\!/ \tau_{3}q(\frac{1}{2}z) | \rho^{a}(p,\lambda) \rangle \Big|_{z=\lambda n} &= i\epsilon_{3ab} \begin{cases} -\left(\epsilon'^{*} \cdot \epsilon\right) H_{1,\rho^{b}}^{I=1} \\ +\left(\frac{(\epsilon \cdot n)(\epsilon'^{*} \cdot P) + (\epsilon'^{*} \cdot n)(\epsilon \cdot P)}{P \cdot n} H_{2,\rho^{b}}^{I=1} - \frac{2(\epsilon \cdot P)(\epsilon'^{*} \cdot P)}{m^{2}} H_{3,\rho^{b}}^{I=1} \\ +\frac{(\epsilon \cdot n)(\epsilon'^{*} \cdot P) - (\epsilon'^{*} \cdot n)(\epsilon \cdot P)}{P \cdot n} H_{4,\rho^{b}}^{I=1} + \left[m^{2} \frac{(\epsilon \cdot n)(\epsilon'^{*} \cdot n)}{(P \cdot n)^{2}} + \frac{1}{3}(\epsilon'^{*} \cdot \epsilon) \right] H_{5,\rho^{b}}^{I=1} \end{cases} \end{aligned}$$

Isospin combinations:

$$H^{I=1}_{i,
ho^{\pm}}(x,\xi,t) = rac{1}{2} [H^u_{i,
ho^{\pm}}(x,\xi,t) - H^d_{i,
ho^{\pm}}(x,\xi,t)]$$

G parity: $H^d_{
ho^+}(x,\xi,t)=-H^u_{
ho^+}(x,-\xi,t)$

Phenomenological vertex p meson

[Choi '04, Frederico '09]

 $x' = \frac{-k_s^+}{p_i^+}$ $\kappa_{\perp} = k_{s\perp} - \frac{k_s^+}{n^+} p_{i\perp}$ k_s p_i S^{μ} $S^{\mu} = \Gamma^{\mu} \Lambda(k_s, p)$ **Phenomenal vertex: Bethe-Salpeter** $\Lambda(k_{s},p) = \frac{c}{[k_{s}^{2} - m_{P}^{2} + i\epsilon][(p - k_{s})^{2} - m_{P}^{2} + i\epsilon]}$ amplitude(BSA): S-wave Meson vertex: $\Gamma^{\mu} = \gamma^{\mu} - \frac{(k_q + k_{\bar{q}})^{\mu}}{M_c + 2m}$ **Dispersion relation Kinematic invariant** mass: $M_0^2 = \frac{\kappa_{\perp}^2 + m^2}{1 m'} + \frac{\kappa_{\perp}^2 + m^2}{m'}$

12

 $x = \frac{n \cdot k}{n \cdot P} = \frac{k^+}{P^+}$ $M_{0i(v)}^{2} = \frac{\kappa_{\perp}^{2} + m^{2}}{1 - r'} + \frac{\kappa_{\perp}^{2} + m^{2}}{r'}$ $\rightarrow \frac{\kappa_{\perp}^2 + m^2}{x' - 1} + \frac{\kappa_{\perp}^2 + m^2}{x'} = M_{0i(nv)}^2 \left(\begin{array}{c} x' = \frac{1 - x}{1 - |\xi|} \\ \end{array} \right)$

intrinsic momentum go infinite!

 $x \rightarrow 0.1$

Non-valance

pair production

 $p' = P + \frac{\Delta}{P}$ $k + \frac{\Delta}{2}$

The struck *u* quark in the nonvalence regime, yielded by the off-diagonal terms in the Fock space. The black blob represents the non-wave-function vertex. The red line has the negative sign in this regime.

Results: Form factors G_{C,M,Q}

Form factors

-t (GeV²)

[Melo '97, Gudino '14]

• low-energy observables $G_C(0) = 1$, $G_M(0) = 2M\mu$, $G_Q(0) = M^2 Q_\rho$, $< r^2 > = \lim_{t \to 0} \frac{6 [G_C(t) - 1]}{t}$.

	This work	Melo19 97	Exp. [Gudino20 14]
$\langle r^2 \rangle$ (fm ²)	0.52	0.37	
μ	2.06	2.19	2.1(5)
$Q_2(\mathrm{fm}^2)$	0.021	0.050	

m (constituent	mR (regulator
mass)	mass)
0.403GeV	1.61GeV ₁₄

Model	μ	
This work, mIF RHD	2.16 ± 0.03	
Cardarelly, LF RHD [1]	2.26	
Melo, LF RHD [2]	2.14	
Bakker, LF RHD [3]	2.1	
Jaus, LF RHD [4]	1.83	
Choi, LF RHD [5]	1.92	
He, LF, IF RHD [6]	1.5	
He, PF RHD [6]	0.9	
Biernat, PF RHD [7]	2.20	
Sun, LF CQM [8]	2.06	
Hawes, Dyson-Schwinger equation (DSE) [9]	2.69	
Ivanov, DSE [10]	2.44	[Krutov, Polezhaev, and Troitsky,
Bhagwat, DSE [11]	2.01	PRD97 0330071
Roberts, DSE [12]	2.11	11057,055007]
Pitschmann, DSE [13]	2.11	
Carrillo-Serrano, Nambu-Jona-Lasinio	2.59	
model (NJL) [14]		
Luan, NJL [15]	2.1	
Samsonov, QCD sum rules [16]	2.0 ± 0.3	
Aliev, QCD sum rules [17]	2.4 ± 0.4	
Melikhov, LF triangle [18]	2.35	
Šimonis, bag model [19]	2.06	
Bagdasaryan, relativistic CQM [20]	2.3	
Badalian, relativistic Hamiltonian [21]	1.96	
Djukanovic, effective field theory [22]	2.24	
Andersen, lattice [23]	2.25 ± 0.34	
Hedditch, lattice [24]	2.02	
Lee, lattice [25]	2.39 ± 0.01	
Owen, lattice [26]	2.21 ± 0.08	
Lushevskaya, lattice [27]	2.11 ± 0.10	
Gudinő, experiment [28]	2.1 ± 0.5	15

TABLE I. The comparison of the results for the magnetic moment μ_{ρ} (in natural magnetons $e/2M_{\rho}$) in different approaches.

Form factors $G_{1,2,3}$: (non-)valence contributions

Form factors $G_{1,2,3}$: Nonvalence contributions

-2

-1

0

0.0

-7

-6

-5

-4

t (GeV²)

-3

Results: unpolarized GPDs $H_{1,2,3}(x,\xi_0,t)$ -**0.4** $H_{2}^{l=1}(x,\xi=0,t)/G_{2}(t)$ $\left|\xi\right| < \frac{1}{\sqrt{1 - 4M^2/t}}$ $H_1^{l=1}$ (x, $\xi=0, t$)/G₁ (t) $H_{3}^{l=1}$ (x, $\xi=0, t$)/G₃ (t) 1.0 1.0 0.5 0.5 1.0 0.0 0.5 -0.5 0.0 -1.0 -1.0 0.0 t (GeV²) t (GeV²) -1.0 t (GeV²) -0.5 -0.5 -0.5 0.0 0.0 x 0.0 х 0.5 x 0.5 0.5 -10 -10 1.0 1.0 1.0 x = 0, 1 $H_3^{l=1}(x,\xi=-0.4,t)/G_3(t)$ 4 ,t)/G₂ (t) $H_1^{l=1}$ (x, $\xi = -0.4$, t)/G₁ (t) 1.0 1.0 0.5 0.5 0.0 0.0 -5 -1.0 t (GeV²) -1.0 -1.0 t (GeV²) t (GeV²) -0.5 -0.5 -0.5 0.0 x 0.0 0.0 0.5 x x 10 0.5 0.5 ± 0.4 1.0 1.0 1.0

Results: unpolarized GPDs $H_{1,2,3}(x, \xi_0, t_0)$

 $t = -0.5 GeV^2$ $t = -0.5 GeV^2$ $t = -0.5 GeV^2$ 1.2 1.2 1.0 $H_3^{l=1}$ (x, ξ , t=-0.5 GeV²)/G₃ (t) $H_2^{I=1}$ (x, ξ ,t=-0.5GeV²)/G₂ (t) $H_{1}^{l=1}$ (x, ξ ,t=-0.5GeV²)/G₁ (t) 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.8 0.4 0.6 0.8 04 0.6 8.0 0.2 0.6 1.0 0¦2 1.0 1.0 х х $t = -10 GeV^2$ $t = -10 GeV^2$ $t = -10 GeV^2$ 1.2 2.0 $H_1^{l=1}$ (x, ξ , t=-10GeV²)/G₁ (t) $H_2^{l=1}$ (x, ξ ,t=-10GeV²)/G₂ (t) 1.0 $H_3^{I=1}$ (x, ξ ,t=-10GeV²)/G₃ (t) 1.5 0.8 1.0 0.6 -2 -3 0.5 -5 0.0 0.0 0.0 0.8 1.0 0.2 0.4 0.8 0.4 0.6 0.6 1.0 х

 $\xi = 0$ (solid black line), -0.2 (dotted red line), -0.4 (dashed blue line), -0.6 (dot-dashed purple line)

х

х

 $\left|\xi\right| < \frac{1}{\sqrt{1 - 4M^2/t}}$

Forward limit: Single-flavor F_1^q , b_1^q

$$F_1^{q\uparrow(\downarrow)}(x) = \frac{1}{2} H_1^u(x,0,0)$$
$$b_1^{q\uparrow(\downarrow)}(x) = \frac{1}{2} H_5^u(x,0,0)$$

$$u_{\rho^+}(x) = \bar{d}_{\rho^+}(1-x)$$

[Burkardt '03, Hoodbhoy '89]

• Spin ¹/₂

$$\begin{aligned} q_{N}(x,\mathbf{b}) &= |\mathcal{N}|^{2} \int \frac{d^{2}\mathbf{p}_{\perp}}{(2\pi)^{2}} \int \frac{d^{2}\mathbf{p}'_{\perp}}{(2\pi)^{2}} & \mathcal{W}_{1/2}^{\mu\nu} \sim F_{1}, F_{2}, g_{1}, g_{2} \\ &\times \langle p^{+}, \mathbf{p}'_{\perp}, \lambda | \left[\int \frac{dz^{-}}{4\pi} \bar{q}(-\frac{z^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{z^{-}}{2}, \mathbf{b}_{\perp}) e^{-ixp^{+}z^{-}} \right] | p^{+}, \mathbf{p}_{\perp}, \lambda \rangle \\ &= |\mathcal{N}|^{2} \int \frac{d^{2}\mathbf{p}_{\perp}}{(2\pi)^{2}} \int \frac{d^{2}\mathbf{p}'_{\perp}}{(2\pi)^{2}} H_{q}(x, \xi = 0, -(\mathbf{p}_{\perp} - \mathbf{p}'_{\perp})^{2}) e^{i\mathbf{b}_{\perp} \cdot (\mathbf{p}_{\perp} - \mathbf{p}'_{\perp})} \\ &= \int \frac{d^{2}\mathbf{\Delta}_{\perp}}{(2\pi)^{2}} H_{q}(x, 0, -\mathbf{\Delta}_{\perp}^{2}) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}, \implies \end{aligned}$$

• Spin 1

Impact Parameter Distributions & Gaussian Package (Cut off)

$$\int \frac{d^{2}\mathbf{p}_{\perp}dp^{+}}{(2\pi)^{2}p^{+}}p^{+}\delta(p^{+}-p_{0}^{+})G(\mathbf{p}_{\perp},\frac{1}{\sigma^{2}})|p,\lambda\rangle \sim \int \frac{d^{2}\mathbf{p}_{\perp}}{(2\pi)^{2}}\exp\left(-\frac{\mathbf{p}_{\perp}^{2}\sigma^{2}}{2}\right)|p^{+},\mathbf{p}_{\perp},\lambda\rangle$$

$$[\text{Diehl '02]}$$

$$q_{\sigma}(x,b) = \int_{0}^{\infty} \frac{\Delta_{\perp}d\Delta_{\perp}}{2\pi}J_{0}(b\Delta_{\perp})e^{-\Delta_{\perp}^{2}\sigma^{2}/4}H_{1}(x,0,-\Delta_{\perp}^{2})$$

$$q_{\sigma}(b) = \int \frac{d^{2}\mathbf{\Delta}_{\perp}}{(2\pi)^{2}}H_{1}(x,0,-\mathbf{\Delta}_{\perp}^{2})e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}_{\perp}}$$

$$= \int_{0}^{\infty} \frac{\Delta_{\perp}d\Delta_{\perp}}{2\pi}J_{0}(b\Delta_{\perp})H_{1}(x,0,-\mathbf{\Delta}_{\perp}^{2})$$

$$Only limit value of "t" can be measured$$

$$q(x,\mathbf{b},\Delta_{0}) = \int_{0}^{\Delta_{0}} \frac{\Delta_{\perp}d\Delta_{\perp}}{2\pi}J_{0}(b\Delta_{\perp})H(x,0,-\mathbf{\Delta}_{\perp}^{2})$$

$$q(\mathbf{b},\Delta_{0}) = \int_{0}^{1}dx q(x,\mathbf{b},\Delta_{0})$$

Impact Parameter Distributions & Form factors

$$\begin{split} \int_{-1}^{1} dx H_{i}^{q}(x,\xi,t) &= G_{i}^{q}(t) \quad (i=1,2,3) ,\\ \int_{-1}^{1} dx H_{i}^{q}(x,\xi,t) &= 0 \quad (i=4,5) , \end{split}$$

Sum rules

$$G_C(t) = G_1(t) + \frac{2}{3}\eta G_Q(t) ,$$

$$G_M(t) = G_2(t) ,$$

$$G_Q(t) = G_1(t) - G_2(t) + (1+\eta)G_3(t) ,$$

FFs

3

$$G_{C}(t) = \int_{-1}^{1} dx \Big[H_{1}(x,\xi,t) + \frac{2}{3} \eta \left[H_{1}(x,\xi,t) - H_{2}(x,\xi,t) + (1+\eta) H_{3}(x,\xi,t) \right] \Big],$$

$$G_{M}(t) = \int_{-1}^{1} dx H_{2}(x,\xi,t),$$

$$G_{Q}(t) = \int_{-1}^{1} dx \Big[H_{1}(x,\xi,t) - H_{2}(x,\xi,t) + (1+\eta) H_{3}(x,\xi,t) \Big].$$

$$IPDs of FFs$$

$$q_{\sigma}^{C,M,Q}(\mathbf{b}) = \int_{0}^{1} dx \ q_{\sigma}^{C,M,Q}(x,\mathbf{b}) = \int_{0}^{1} d$$

4

$$\begin{aligned} q_{\sigma}^{C}(x,\mathbf{b}) &= \frac{1}{G_{C}(0)} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp} - \mathbf{\Delta}_{\perp}^{2} \sigma^{2}} \\ &\times \left[H_{1}(x,0,-\mathbf{\Delta}_{\perp}^{2}) + \frac{2}{3} \frac{\mathbf{\Delta}_{\perp}^{2}}{4M^{2}} \Big[H_{1}(x,0,-\mathbf{\Delta}_{\perp}^{2}) - H_{2}(x,0,-\mathbf{\Delta}_{\perp}^{2}) + (1 + \frac{\mathbf{\Delta}_{\perp}^{2}}{4M^{2}}) H_{3}(x,0,-\mathbf{\Delta}_{\perp}^{2}) \Big] \right], \end{aligned}$$

$$q_{\sigma}^{M}(x,\mathbf{b}) = \frac{1}{G_{M}(0)} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp} - \mathbf{\Delta}_{\perp}^{2} \sigma^{2}} H_{2}(x,0,-\mathbf{\Delta}_{\perp}^{2}) ,$$

$$q_{\sigma}^{Q}(x,\mathbf{b}) = \frac{1}{G_{Q}(0)} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp} - \mathbf{\Delta}_{\perp}^{2} \sigma^{2}} \left[H_{1}(x,0,-\mathbf{\Delta}_{\perp}^{2}) - H_{2}(x,0,-\mathbf{\Delta}_{\perp}^{2}) + (1+\frac{\mathbf{\Delta}_{\perp}^{2}}{4M^{2}}) H_{3}(x,0,-\mathbf{\Delta}_{\perp}^{2}) \right]$$

(color online) The impact parameter dependent FFs $q_{\sigma}^{M,Q,QC}(x,b)$ with $\sigma=1$ GeV⁻¹ and x=1/10, 3/10 and 1/2.

Impact Parameter Distributions & Form factors

- GPDs for ρ meson (spin-1)
- Phenomenological approach for ρ meson
- p meson FFs / GPDs

Impact parameter Distribution

\circ GDAs & $\rho\rho$ production

L3 Collaboration

Exp:

PLUTO/ TASSO/ CELLO/ ARGUS @ DESY, '82-'91 L3 @ LEP, '03-'06 STAR @ RHIC, '07-'09 Babar @ PEP-II, '08 LHCb, '12 (TeV, double charm)

ARGUS Collaboration etc.

[Albrecht '90, '91]

 $\sigma(e^+e^- \rightarrow
ho^+
ho^-) = 8.3 \pm 0.7 (\mathrm{stat}) \pm 0.8 (\mathrm{syst}) \; \mathrm{fb}$

 $\gamma^*\gamma \rightarrow \rho\rho$

Full reaction: [Anikin '04, '05]

$$2e \rightarrow 2e + \rho^0 \rho^0 (\rho^+ \rho^-)$$

- @LO (twsit-2), I = 0
- charged/neutral cross sec. NOT independent (CG coefs)
- but charged has bremsstrahlung
- Also related to: [García '15, Kłusek-Gawenda '17, Kumano '17, '18]

GDA (Generalized Distribution Amplitude)

- Polarized case
- Double parton distributions (DPDs)
- Deuteron

BACKUP

 $\frac{d\sigma_{ee \to ee\rho^0 \rho^0}}{dW^2} \text{ (only GDA)}$

- GDA: without $\mathbf{\rho}$ width ($W_{min} = 2m_{\mathbf{\rho}}$)
- Exp: Phys.Lett. B568 (2003) 11-22

GDA & Hadronic Tensor @ LO

