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Figure 1: The dashed line represents one among the oscillating vacuum solutions and the double arrows represent symbolically the pair creations and annihilations that

occur to periodically compensate for the conservation of the total energy when τ varies. So the “inertial force” due to the second order terms maintains the vacuum

away from the absolute minima of the potential for a while and the processes is reminiscent of a turbulent phenomenon. Because of the friction terms in the second

order Langevin equation, the angular velocity decreases as τ → ∞ and the vacuum will fall in one of the absolute minima of the potential. Then, either the ordinary

quantisation or the classical behaviour will prevail with the damping of the τ dependence.

To be shown later
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1)There is some logics for the existence of the strong fluctuation that triggers the exit of inflation (EI).

- Before EI, gravity is in its quantum phase (QG), with Euclidean correlations functions that presumably

cannot be Wick rotated, so there is perhaps no Minkowski time and no particles. There is only the

stochastic time to order the phenomena in this primordial phase with no particles, no scattering, and

no clock that can possibly exist.

-The regime is like having a discrete time : a strong coherent state of dark energy oscillates with cre-

ations and absorptions of bound states by Schwinger (black holes). Physics is governed by fluctuations.

(Cargèse 2016).

- After EI, gravity is in its classical phase (CG), meaning that the Wick rotation is possible, and the

space is big enough to contain particles, which can be used to build clocks.

- So, in QG there is no Minkowski time and the analyticity properties in the Euclidean correlators of

gµν(τ, x) are very different before and after the exit of inflation.

There must be a phase transition between the two phases QG and CG, and thus a microscopic theory

with new parameters.
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To explain the exit of the universe inflation the suggestive picture of 2016 was : at very early periods

the time variable is discrete instead of smooth.

The idea was that having discrete time is formally like an embedding the early universe in a non-

singular and intense gravitational coherent state with very fast oscillations (like a gravitational laser

beam bouncing back and forth between the boundary of the universe), giving a new time scale ∆T .

What triggers inflation (≡ sharp and fast decrease of the cosmological constant) is an abundance of pair

creations and annihilations of black holes, by a generalisation to gravity of the Schwinger mechanism,

in presence of the rapidly oscillating gravitational field (ie the vacuum). In this phase, the cosmological

constant oscillates very quickly.

This introduces a time scale ∼ 10−15τPlanck ∼ 10−60 seconds that is a physical UV cutoff, via a Markov

process with a discrete time equation (without invoking stochastic quantisation)

∆gµν(T, x)

∆T
= f(gµν(T, x)) + ~η(T, x)

The drift force of the metrics is a combination of the metrics gµν, the Riemann curvature Rµν plus

maybe the energy momentum tensor Tµν ∼ F 2 of p-form gauge fields. This was a 2016 attempt.

- 4 -



Kyoto, June 2018

2) A close inspection of Stochastic quantisation suggests a unifying picture, where QG effects can only

exist before EI . After EI, gravity is in its classical phase.

Stochastic time τ is the universal parameter for ordering all phenomena before the exit of inflation.

with the Euclidean gµν(x)→ gµν(x, τ) solution of the Langevin equation with noise η(τ, x) :

∆T 2∂
2gµν(τ, x)

∂2τ
+ α

∂gµν(τ, x)

∂τ
=

δS[gρσ]

δgµν(τ, x)
+ ~η(τ, x)

with << f(η) >>=

∫
[dη]f(η) exp− 1

α

∫
dτdx η(τ, x)2 ===> << O(gµν(x, τ) >>= well− defined

Minkowski time can emerge by analytic continuation. It is just a convenient parameter to order

phenomena when gravity is classical.

In CG gµν(x) = limτ→∞ g(µν, τ) satisfies the Einstein equation of motion.

In QG gµν(x, τ) oscillates in τ and never reaches an equilibrium because
∫

[dgµν ] exp− 1
2~
∫
R is not defined.

After EI, all experiments are such that effectively τ =∞. All fields Aµ(x, τ), ... are effectively Aµ(x,∞), ...,

with the equilibrium distribution exp−S[A] in the path integral. Clocks for x0 only exist at τ =∞.
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Changing the small distance behaviour of gravity in SQ in a controllable way :

∆T 2∂
2gµν(τ, x)

∂2τ
+ α

∂gµν(τ, x)

∂τ
=

δS[gρσ]

δgµν(τ, x)
+ ~η(τ, x)

α is a positive real number. η is a Gaussian noise. For ∆T = 0, one has the standard stochastic

quantisation. With ~ 6= 0, the process cannot converge to a stationary Fokker-Planck distribution at

τ →∞. For α = 0, oscillatory solutions occur in function of τ with no possible relaxation when τ →∞.

For ∆T 6= 0, the standard first order equation is recovered when the action of ∆T 2 ∂2

∂2τ is much smaller

than that of α ∂
∂τ .

So ∆T 6= 0 is like a physical UV cutoff for gravity, which makes a difference for the early stochastic time

effects. For standard theories, but not gravity, having ∆T = 0 or ∆T 6= 0 makes no difference, when one

reaches the limit τ =∞.

Notice that even for ~ = 0 one has a complicated flow for

δS[gρσ]

δgµν(τ, x)
= Rµν(τ, x)− gµν(τ, x)R + κgµν(τ, x)
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At any given value of τ , gµν(x, τ) can be decomposed into a classical gclµν(x, τ) and a quantum gQµν(x, τ)

proportional to ~.

Both may oscillate in function of τ .

There must be a compensating mechanism for the quantum oscillations depending on τ around a certain

value of gclµν(x, τ) that also oscillates.

The stronger gclµν is, the stronger can be the quantum effect that this vacuum emits and absorbs pairs

of bound states gQµν through the ”Schwinger type effects”, that is creations and annihilations of black

holes. The analogy is the Schwinger effect for electron-positron pairs in an electromagnetic laser beam.

This phase can perdure until one has a fluctuation where the energy carried by gclµν becomes so low

that gravity becomes purely classical, very diluted, and one relaxes to the standard model in a classical

gravitational background. The microscopic scale of time is ∆T that can as small as one wishes.
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- Defining a second order Langevin equation with a drift force that is the Einstein equation is a new

idea. It is a natural generalisation (as Schrodinger → Klein–Gordon equation).

∆T 2∂
2gµν(τ, x)

∂2τ
+ α

∂gµν(τ, x)

∂τ
=

δS[gρσ]

δgµν(τ, x)
+ ~η(τ, x)

Not surprisingly, it gives more room for finite stochastic time phenomenon.

In fact, if one looks at the stochastic time Hamiltonian, one finds a double Hilbert space structure, one

for the vacuum, and one for the quantum oscillations
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It is in fact a very stimulating exercise to examine the meaning of a second order Langevin equation

in zero dimensions, to define precisely what is second order stochastic quantisation in a soluble case.

(A forthcoming paper by L.B. and S. Wu.)

Once this example is understood, it gives more precise ideas about the further information one can

learn by computing the correlators of a given QFT at finite stochastic time.
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The zero dimensional case

Consider the zero dimensional case QFT of two real variables x and y with an action

S(x, y) = 1
2M

2x2 + 1
2m

2y2 + λ
2xy

2

What’s the behaviour of the stochastic correlators

<< xp(τ)yq(τ) >>=?????

and what is their limits for τ =∞, with both α and ∆T non zero ?

It has to be the simple integrals

lim
τ=∞

<< xp(τ)yq(τ) >>=

∫
dxdyxpyq exp−(12M

2x2 + 1
2m

2y2 + λ
2xy

2)

modulo some renormalisations, which can be computed in perturbation theory of λ. The approach

to equilibrium exponentially damps the dependence in the initial conditions of the coupled Langevin

equation that define the τ evolution, with oscillations when ∆T 6= 0.
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Second order stochastic quantisation implies two noises ηx and ηy(
a2 d2

dτ 2 + 2b d
dτ

)
x(τ) +M2x(τ) + λ

2 y
2(τ) =

√
~ ηx(τ),(

a2 d2

dτ 2 + 2b d
dτ

)
y(τ) +m2y(τ) + λx(τ)y(τ) =

√
~ ηy(τ)

〈 ηx(τ) 〉 = 〈 ηy(τ) 〉 = 0, 〈 ηx(τ)ηx(τ ′) 〉 = 〈 ηy(τ)ηy(τ
′) 〉 = 2bδ(τ − τ ′)

For a 6= 0, we need to complete each Langevin equation with two boundary conditions, instead of one

condition in the first order case a = 0.
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We consider the approximation that x(τ), is a “coherent state’, a state that minimises maximally the

quantum fluctuations.

x(τ) is a state that is as close as possible to a solution where one neglects everywhere ηx when y behaves

quantumly around it (ηy fluctuates randomly).

This situation was roughly advocated to in 2016, to define the primordial cosmology, by separating eg

gµν in classical and quantum parts and defining their balanced evolutions.
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The above coupled Langevin equations, for the case where effectively ηx = 0, are

a2ẍ+ 2b ẋ+M2(x− xcl) + λ
2 y

2 = 0,

a2ÿ + 2b ẏ +m2y + λxy=
√
~ ηy

A perturbative resolution in λ is clearly possible, giving an exponential damping depending on b,m,M

and oscillations functions of a,M,m that define physics at finite τ and are worth to explore.

The propagators GM and Gm have a double pole structure instead of being of parabolic type for a = 0.
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The Green’s function GM (τ) of the operator DM
τ = a2∂2τ + 2b∂τ + M2 satisfying DM

τ G
M = δ(τ) can be

computed by a Laplace or Fourier transform.

The Green’s function for x is (with aM > b > 0), is (analogous for y with M → m)

GM (τ) = θ(τ)
exp(−EM

+ τ)−exp(−EM
− τ)

a2(EM
− −EM

+ )
‘
(
exp(−EM

+ τ)− exp(−EM
− τ)

)
,

EM
± = 1

a2
(
b± i

√
a2M2 − b2

)
For a, b 6= 0, the free propagator has an exponential damping factor, with a characteristic time that is

proportional to b−1 (when τ is counted in units of a2) τ-oscillations that can be of a very high frequency

(in units of a) if the mass M is large enough.

In the QFT generalisation, one replaces M2 by M2 + ~k2, where ~k stands for the momentum of the

particle. Care must be given to the possible UV divergencies when ~k2 becomes very large.

There is a forward propagation of modes with positive and negative energy in the τ evolution, and one

has insertions of the field x(τ) in addition to the insertions of ηx on the propagators of the y(τ).
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Computational techniques :

- The Feynman diagrams that one can draw to describe perturbation theory involve closed loops, which

can be computed at a any given finite order of the perturbative expansion in λ

- On the propagators of the y(τ) in the diagrams, one has insertions of the field x(τ) of ηx.

- The Feynman diagrams are finite integrals, since they are over a one dimensional momentum space,

with neither infra-red nor ultra-violet divergences, because m 6= 0 and M 6= 0.

- The loops can be interpreted as creations of a virtual pairs created by the vertex λxyy of particle and

antiparticle y and y at a given value of the stochastic time, each one propagating forwardly in τ , until

they annihilate at a further stochastic time, with possible interactions with the “classical field” x(τ).

This is a bit unfamiliar, but one gets used to it. The elementary quantum processes that build the

perturbation theory are the possible decay, annihilation and diffusion reactions

xcl → y + y, y + y → xcl, y + xcl → y + xcl, y + xcl → y + xcl

whose strength is proportionally to λ.
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This suggests that a double Fock space must be constructed. It is made of all possible states that can

occur for the τ evolution, one for the vacuum field x, for its possible oscillations, and the other one

for the ordinary possible quanta emissions of the field y. The friction term proportional to b makes

disappear the phenomena that occur during the τ evolution in the limit τ →∞, if the limit exists.
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The way to go is to diagrammatically express x(τ) and y(τ) in function of η at a given order of pertur-

bation and then to compute at the same order of perturbation theory << xp(τ)yq(τ) >> by averaging

over the ηy, wherever they are inserted, using their Gaussian distribution.
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What can be shown to all order in λ is that the dependance in the initials conditions and in a, b is

damped by terms of order O(exp−τ) ∼ exp− ∼ bτ + i ∼ aτ .The approach to equilibrium is like wise.

We can check this explicitly for the two point functions 〈x(τ)x(τ ′) 〉 and 〈 y(τ)y(τ ′) 〉 to first non trivial

order in λ. To do so, one solves the coupled Langevin equations perturbatively, using their Green

functions.

x(τ) = x0(τ) + λx1(τ) + o(λ2), y(τ) = y0(τ) + λy1(τ) + o(λ2)
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The 0th and first order terms in λ give

DM
τ (x0 − xcl) = 0, Dm

τ y0 = η

DM
τ x1 + 1

2
y20 = 0, Dm

τ y1 + x0y0 = 0

One finds

x0(τ) = xcl + cM+ exp(−EM
+ τ) + cM− exp(−EM

− τ) = xcl + o(e−τ )

where cM± are constants that are determined by the chosen values of x0 at some τ1 and τ2. o(e
−τ ) stands

for terms dominated by e−ετ for some ε > 0 as τ →∞, times some oscillations. Thus

〈x0(τ) 〉 = xcl + o(e−τ )

y0(τ) = (Gm ∗ η)(τ) + cm+ exp(−Em
+ τ) + cm− exp(−Em

− τ) = (Gm ∗ η)(τ) + o(e−τ )

For 0 < τ1 ≤ τ2:

<< y0(τ1)y0(τ2) >> =
∫ τ1

0
dτ ′1

∫ τ2

0
dτ ′2 G

m(τ1 − τ ′1)Gm(τ2 − τ ′2) 〈 η(τ ′1)η(τ ′2) 〉+ o(e−τ1)

For τ2 = τ1 = τ , << y0(τ)2 >>= b
a4(Em

++Em
− )Em

−E
m
+

+ o(e−τ ) = 1
2m2 + o(e−τ ).
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We now go to the the next order

x1(τ) = −1
2

∫ τ

0
dτ ′GM (τ − τ ′)y0(τ ′)2 + o(e−τ ).

<< x1(τ) >>=− 1
4m2

∫ τ

0
dτ ′GM (τ − τ ′) + o(e−τ )

=− 1
4m2 · 1

a2(EM
− −EM

+ )

(
1
EM

+
− 1
EM

−

)
+ o(e−τ ) = − 1

4m2M2 + o(e−τ )

Finally

lim
τ→∞

<< x(τ) >>= xcl − λ
4m2M2 + o(λ2)

lim
τ→∞

<< y(τ)2 >>= limτ→∞ << y0(τ)2 + 2λy0(τ)y1(τ) >> +o(λ2)

= 1
2m2 + 2λ ·

(
− xcl

4m4

)
+ o(λ2)

= 1
2(m2+λxcl)

+ o(λ2)

This is a check of the general result for computing << xpyq >> and its limit.
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The final result is in fact

lim
T→∞

〈xp(T )yq(T ) 〉 =∫
dxdy xpyq δ(x− xcl + o(λ)) exp−

(
(M2(x− xcl)2 +m2y2 + 1

2
λxy2)(1 + o(λ2))

)
= xpcl

∫
dy yq exp

(
−m2y + 1

2
λxcl y

2
)
(1 + o(λ2))

The figure at the beginning of these slides explains the process, with the oscillating damping
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Supersymmetric representation

For the second order stochastic evolution, we have a ”Fokker-Planck” Hamiltonian HFP for the τ

evolution. It is defined form the supersymmetric Lagrangian Lsusy associated to the Langevin equation.

The path integral of exp−
∫
dτLsusy computes all correlators of the q(τ):∫

dτLsusy =

∫
dτstop

(
ψ
(
a2q̈ + 2b q̇ + ∂S

∂q
− 1

2
η
))

= −
∫
dτ 1

2
η2 + η

(
a2q̈ + 2b q̇ + ∂S

∂q

)
− ψ

(
a2ψ̈ + 2b ψ̇ + ∂2S

∂q2
ψ
)

∫
dτLsusy ∼

∫
dτ 1

2

(
a2q̈ + 2b q̇ + ∂S

∂q

)2 − ψ(a2ψ̈ + 2b ψ̇ + ∂2S
∂q2

ψ
)

This gives HFP by the appropriate Legendre transform, with the (for once good) property that it

depends on higher order derivatives.

(stop q = Ψ, stopΨ = b is the nilpotent topological BRST symmetry operator for stochastic quantisation

introduced in 1989 in L.B. and B. Grossman. )
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The double Hilbert space structure

Ostrogradsky solved the general question of writing a Lagrangian/Hamiltonian formalism for theories

with higher order derivatives, eg, L(q, q̇, q̈).

A general variation of L, for arbitrary variations δq, one has δq̇ is

δL =
(
∂L
∂q −

d
dτ

∂L
∂q̇ + d2

dτ 2
∂L
∂q̇

)
δq + d

dτ (p0δq0 + p1δq̇1)

So, the Euler-Lagrange equation of motion are generalised into

∂L
∂q = d

dτ
∂L
∂q̇ −

d2

dτ 2
∂L
∂q̈

The last term identifies the independent momenta as

q0 ≡ q, q1 ≡ q̇, p0 ≡ ∂L
∂q̇ −

d
dτ

∂L
∂q̈ , p1 ≡ ∂L

∂q̈
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The phase space is parametrised by the conjugate coordinates (q0, q1, p0, p1), so it is doubled . (as can

be simply understood because twice as many initial conditions are needed as in the standard case).

q and q̇ can be measured simultaneously in the quantum mechanics defined by replacing the (odd)coordinates

by operators and the Poisson brackets by (anti)commutators.) The uncertainty relation holds only be-

tween q0 and p0 (for a 6= 0), and between q1 and p1

As a consequence we have the non trivial oscillations of the vacuum in the τ evolution. This tells

us that we have this system of double oscillations with oscillations of the vacuum and creations and

absorptions of quantum.

It may happen that there is no possibility of getting an Euclidean time in the Euclidean QFT one gets

from enhanced stochastic quantisation. The unitarity of the theory at finite stochastic time is in fact

not needed. It will occur only in the limit, if it exists.
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The construction of the phase space must be completed for the entire supersymmetric stochastic

Lagrangian Lsusy giving a graded symplectic structure and a supersymmetric Hamiltonian.

Both the Ψ and Ψ have their own independent momenta for a 6= 0 and there is also a doubling for the

fermionic part of the phase space as compared to the case a = 0.

Eventually one gets a Fokker-Planck Hamiltonian that defines the time evolution by first order Hamil-

tonian equations.
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Conclusion

Let us summarise the rough mechanism we have imagined. When the Universe is at a scale of the order

of the Planck length or maybe much smaller, it may function as a resonant cavity for dark energy, filled

with an oscillating gravitational coherent state that defines its geometry.

The dynamics of QG is governed by the stochastic time evolution, and the limit τ = ∞ cannot be

reached in QG. This vacuum state oscillates at a frequency of the order of magnitude of τ−1Planck or much

higher. Such high frequency powerful gravitational coherent states can trigger locally strong enough

fluctuations of the vacuum, creating and destroying abundant amounts of black holes by gravitational

Schwinger giving a transition that reduces drastically the value of the cosmological constant, so the

phase of QG is sharply changed into that of CG. This gives a microscopic scenario for the sharp exit of

the inflation. It depends on a new time scale, which an adjustable parameter of the Langevin equation.

Independently of this proposition , an interesting physics shows up for the correlators at finite stochastic

time, especially in the (existing) cases such that the limit τ → ∞ is not defined for ~ 6= 0. Because of

oscillations, instabilities can occur on the way, and the phase of the system can change. Our Standard

Physics, with a Minkowski time, with its limitations, occurs in the limit τ →∞.
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A summary, for separating the questions

- Standard quantisation of Quantum Gravity tells us that one cannot handle Minkowski time consis-

tently. In the canonical quantisation of gravity, the Wheeler–deWitt equation implies that the action

of the Hamiltonian on physical states is zero, and therefore there cannot be evolution in time.

- Standard QFT methodology is by defining first the Euclidean theory, and then one computes all

Euclidean correlators of fields and prove that there is an analytic continuation of e.g. x4.

- Then one computes S matrix elements (doing something quite refined for the IR questions), and

understand what is a physical clock. In this way t ≡ iX0 can be used to describe the evolution of

possible experiments for standard theories coupled to classical gravity. Causality follows. The question

is : can we always do the Wick rotation ? (the answer is no).

- Simple QM examples exist such that he path integral cannot be defined : 1d conformal quantum

mechanics with S =
∫
dt(ẋ2 + g/x2), t etc....

-I The same with Euclidean quantum gravity : t cannot be defined in this way for d=4 because the

Euclidean weight
∫
d4xR

√
g is not positive, and its Euclidean path is generally meaningless.
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- A non-trivial question is : do we really need a time when the Universe is so small that it cannot

contain a single elementary particle ? (Only quantum gravity prevails, particles cannot be generated

from the vacuum).

- That the Minkowski time t is an emerging quantity is not an absurd idea.

- The Wick rotation of x4 → it, with t for ordering phenomena (scattering and decays) could be relevant

only in the phase where the Universe is very dilute, when gravity can be treated classically. Then one ca

compute and check all interactions with renormalisable actions coupled to the gravitational background.

- QG describes a phase where only gravity is manifest, with none of the xµ ’s as a parameter for defining

the evolution. Minkowski time can only emerge by a transition where gravity becomes classical, and

for all processes we can let τ →∞.

- Is their a microscopic theory with a mechanism that describes the transition between both phases,

QG and CG? It is tempting enough to say that the transition is marked by the exit of the inflation.

Before the exit, particles and time may not exist, as free particles don’t exist in solid Helium.
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What’s the general idea ?

The stochastic time τ , that is often thought of as a formal entity, could makes it’s way as the the right

parameter to describe universally the evolution of the correlators that describe the Universes.

The scale for the damping in τ is so small in mass−1 units that it cannot be observed in our phase.

In primordial cosmology none of the Euclidian coordinates can be Wick rotated, no clock can be

constructed, etc... it may happen that one will never reach an equilibrium at τ =∞.

The universe cannot then be described as made of of particles, till one gets till a a huge fluctuation,

materialised by the exit of the inflation.

After the exit of the inflation, we are effectively always in the shell τ =∞. Quantum gravity is ”in the

stochastic time bulk”, and we cannot explore it with our experiments.

The intuition is that when quantum gravity prevails, we have strong oscillations in τ . We assume that

the (physical) scale of their period, is say 10−15TPlanck ∼ 10−60s.

- 29 -



Kyoto, June 2018

The idea of SQ is that for all fields (φ = gµν , Aµ, ....), the correlators are defined by equilibrium distri-

bution, are the consequence of a random process with an extra (stochastic) time parameter τ

< φ(x1, ....φ(xn, ) >

∫
d[φ]xφ(x1)....φ(xn)exp− 1

~S[φ] = limτp→∞ << φ(x1, τ1)....φ(xn, τn) >>

Analogous to statistical physics, where the Boltzmann partition function uses the weight exp−βE, and

is the result of microscopic interactions.

The approach to the equilibrium is described by a Langevin equation with an exponential pace in

function of a (not detectable) time.

We are talking of a suggestive generalisation of the Brownian motion to QFT, suggested by Parisi and

Wu in 1981.
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