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Motivation

The Schwarzian theory is defined on the thermal circle by the
following action:

S [f ] = −C
∫ β

0
dτ

{
tan

π

β
f , τ

}
. (1)

A reasonable question to ask is: why would you care about
Schwarzian correlators?

Well, because the Schwarzian is the
boundary dual of a one-sided JT gravity black hole, and because
JT gravity is a nice toy model for 2d quantum gravity. This is
because we can explicitly calculate the path integral over metrics in
JT, with a finite result. Unfortunately the spectrum is continuous
and as such arguably JT gravity is not a genuine theory of quantum
gravity. It does capture the universal low-energy behavior of 2d
quantum gravity though, similar to the role played by Liouville in
3d gravity. Two examples of possible microscopic realizations of 2d
quantum gravity are the SYK model and the spin-glass systems
(Berkooz), which indeed both reduce to the Schwarzian in the IR.
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Schwarzian correlators have been calculated before by several
groups. The first example e.g. used dimensional reduction of
Liouville theory. Note: more precisely using the dimensional
reduction of Liouville between ZZ vacuum branes.

A good
question at this point would be: what is then the purpose of
this paper? Well, the goal is to identify the bulk operators in JT
gravity that are dual to operators in the Schwarzian, providing the
latter with a geometric interpretation. The summary of the
relevant theories for gravity in 3d / 2d is in the following picture.
The focus here is on the bottom track.

2d Liouville

1d Schwarzian

3d Gravity

2d JT Gravity

Holography

Dim. Red.

We will derive the dual of Schwarzian operators directly from the
path integral, and then as a consistency check calculate the
relevant bulk amplitudes, and match these with the Schwarzian
ones.
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Approach

Note that everything we will do here is exact in the Newton
constant G .

Now, unlike others before us, we will tackle this
problem from a gauge theoretic point of view, by embedding the
above square of gravitational theories in various topological
SL(2,R) gauge theories.

For example, it is well known that 3d Λ < 0 gravity is just SL(2,R)
CS with some constraints on the connection stemming from
constraining the asymptotic metric. Similarly is has since long been
understood that Liouville theory is just SL(2,R) WZW with related
constraints on the currents.
Now, as we will point out, a similar story holds in 2d gravity and it
is this that we will explore. In particular we will identify the JT
gravity spectrum of states and operators as a subsector of the
spectrum of SL(2,R) BF, which is the dimensional reduction of
SL(2,R) CS.
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The plan of attack is to first illuminate the bulk dual of boundary
operators in gauge theories for generic compact Lie groups. Then
we will extend the construction to noncompact groups and
pinpoint how precisely JT gravity is embedded in SL(2,R)
BF.

The summary of the relevant gauge theories is in the following
picture.

Dim. Red.

2d WZW

1d particle on group

3d Chern-Simons

2d BF Theory

Holography

The focus here is again on the bottom track. Note: BF is just the
topological e → 0 of 2d YM, destroying the Hamiltonian
contribution of YM scaling with the area
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The gauge theory perspective on gravity is particularly useful since
we all know the bulk operator content of CS theory.

In
particular these are Wilson lines in knotted configurations
representing topological observables, think Jones polynomial; as
well as boundary-anchored Wilson lines representing dynamical
observables, think for example the boundary-anchored Wilson line
networks in 3d CS which compute conformal blocks or n-point
functions in the boundary 2d CFT.

Now, the operator content of BF is just the dimensional reduction
of the CS operator content.
In this talk I choose to focus on boundary-anchored Wilson
lines, describing boundary dynamics. Note: knots are discussed
in one of our appendices.
In what follows I will first derive the precise boundary dual of a
boundary-anchored Wilson line. Afterwards I will calculate bulk
amplitudes directly and match these to the boundary amplitudes
explicitly, confirming the mapping. Note: the bulk calculations an
sich are also new material.
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Holography

The starting point is BF theory on disk with the following action:

S ∼
∫

Tr(χF ) +

∫
∂

Tr(χA). (2)

The boundary conditions are chosen as χ ∼ A.

Performing the
path integral over χ forces F = 0 and hence renders A flat:
A = g−1dg . The action reduces as such to a particle-on-a-group
on the thermal circle:

S ∼
∫
∂
dτ Tr

(
g−1∂τg

)2
. (3)

We choose gττ = 1. Again, correlators of particle-on-a-group have
been calculated before, using dimensional reduction of WZW.
Note: more precisely using the dimensional reduction of WZW
between vacuum branes. We will discuss the bulk dual of these
correlators.
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Considered therefore BA Wilson lines.

A closed Wilson line in an
irrep R evaluated on a connection A is just a character
χR(Pe i

∫
A). Writing out the character using its definition:

χR(VW ) = Tr(R(V ) · R(W )), (4)

identifies an open Wilson line as a representation matrix
element, with the endpoints of the line each associated with a
state |R,m〉 in the group Hilbert space:

WR,mn(A, τi , τf ) = Rmn

(
Pe i

∫ τf
τi

A
)

= 〈R, n| Pe i
∫ τf
τi

A |R,m〉 . (5)

Insertions of these operators in the BF path integral do not affect
the χ-integral and hence A is still flat. As such the Wilson line
becomes:

WR,mn(g , τi , τf ) = Rmn

(
g(τf )g−1(τi )

)
. (6)

Proof uses path ordering. These are precisely the bilocal operators
calculated in particle-on-a-group from WZW. This proves that
BA Wilson lines are dual to boundary bilocals.
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BF theory

I will now show how to calculate bulk amplitudes, to substantiate
this statement.

The first step to solving BF theory is identifying its
Hilbert space. The state spectrum of BF is by construction
identical to that of 2d YM: there is a orthonormal ’position’ and
’momentum’ basis for the Hilbert space consisting of group
elements |g〉 and ’irrep matrix elements’ |R,mn〉, and the
associated ON wavefunctions are the overlap 〈g |R,mn〉. In terms
of particle on group this is just the Peter-Weyl theorem that any
square integrable function on G decomposes into irrep matrix
elements Rmn(g). The boundary supported Hamiltonian is just the
quadratic Casimir of the group and diagonalized by the irrep states.

The relative normalization of the wavefunctions is fixed by the
defining properties of irrep matrices: Rmn(1) = 〈R, n|R,m〉 = δmn,
and we obtain:

〈g |R,mn〉 =
√

dimRRmn(g). (7)
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In terms
of particle on group this is just the Peter-Weyl theorem that any
square integrable function on G decomposes into irrep matrix
elements Rmn(g). The boundary supported Hamiltonian is just the
quadratic Casimir of the group and diagonalized by the irrep states.

The relative normalization of the wavefunctions is fixed by the
defining properties of irrep matrices: Rmn(1) = 〈R, n|R,m〉 = δmn,
and we obtain:

〈g |R,mn〉 =
√

dimRRmn(g). (7)
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Disk amplitudes can now be calculated by evolving intervals
(associated with states) through each patch of a given disk as
shown here:

hg hg

The theory is topological and hence the result is the same for any
open interval slicing.

The boundary states |g〉 and |h〉 or initial and final states
denoted in these figures correspond to possible local holonomy
defects or punctures. These stem from Wilson lines in CS: see one
of our appendices. As shown by the path integral arguments above
though, we are led to consider disks with only BA Wilson lines and
no punctures. In the above pictures this corresponds to both an
initial and a final vacuum state |0〉.
Note: this corresponds to considering the vacuum Kac-Moody
coadjoint orbit (or WZW between vacuum branes) in 3d / 2d.
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Using this evolution picture, together with the here shown defining
property of the CG coefficients or 3j symbols of a generic compact
Lie group∫

dg 〈g |R11,m1n1〉Rmn(g) 〈R2,m2n2|g〉 ∼(
R1 R R2

m1 m m2

)(
R1 R R2

n1 n n2

)
, (8)

one obtains a set of diagrammatic rules for calculating the relevant
bulk amplitudes.

Let me spell these out quickly without further ado.BA Wilson lines
divide a generic disk into tinier patches or regions, each with the
topology of a disk.
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Each of these region i is weighed by a suitable Hamiltonian
propagation factor from propagation along the boundary, and is
labeled by an irrep Ri that is to be summed over.

Next, each
Wilson line crossing with the boundary contributes a 3j symbol.
Finally, a Wilson line crossing in the bulk as shown below
contributes a 6j-symbol. See for example Witten on 2d YM.

RA RB

g1 g2

g3g4

(9)

Such a crossing appears for example in the calculation of an
OTOC in the boundary (Thomas). Now, the resulting
amplitudes precisely match those of the dual bilocals in
particle-on-a-group, confirming the proposed operator mapping.
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JT gravity

This concludes my discussion of gauge theories and from hereon
we shall focus on gravity. There are two open questions.

1. Does
the above story survives for non-compact groups and in
particular does it survive for SL(2,R)? Note:SL(2,R) YM and
SL(2,R) BF were to our knowledge not investigated previously.
And 2. How are the states and operators of JT gravity
embedded in the states and operators of SL(2,R) BF?
To 1 the answer is short: yes it does. To the doubters, in the
particular example of SL(2,R) we have explicit checks on this,
namely by matching the group theoretic bulk JT calculations with
the Schwarzian boundary amplitudes. The answer to 2 has been
addressed in detail in the 3d / 2d literature. In particular it is well
established how precisely Liouville (gravity) is embedded in
SL(2,R) WZW, and this shows us how to proceed in 2d / 1d.
Note: we could address this directly in 2d / 1d, but I find it
instructive / fun at this point to link with 3d / 2d.
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States

To be more explicit, one goes from SL(2,R) WZW to Liouville
basically by constraining a single component of the two SL(2,R)
currents as follows:

J −1 =
√
µ , J +

2 =
√
µ. (10)

Remember that there is a SL(2,R) × SL(2,R) Kac-Moody algebra.
This was for example discussed in detail in a paper by Dijkgraaf
and Verlinde2.

Now, upon dimensional reduction only the zero grade sector
survives. For SL(2,R) BF in particular on recovers states in the
diagonal SL(2,R) × SL(2,R) Hilbert space i.e. SL(2,R) irrep
matrix elements.
Using the above constraint one sees that the JT gravity states
are obtained by diagonalizing the generator J − in the first
copy of SL(2,R) and the generator J + in the second copy
and projecting both on the eigenvalue

√
µ.
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Again using the Peter-Weyl theorem, this identifies JT gravity
wavefunctions as specific SL(2,R) irrep matrix elements in the
mixed parabolic ONB specified as follows:

R j√
µ
√
µ(g) =

〈
j ,J − =

√
µ
∣∣ g ∣∣j ,J + =

√
µ
〉
. (11)

Note: they are not irrep matrices in a technical sense; the latter
are expectation values between states in one and the same ONB.

From the SL(2,R) BF Hilbertspace, only the continuous series
irreps j = −1

2 + ik survive as normalizable solutions.
In particular these matrix elements turn out to be Bessel K
functions, and the normalized wavefunctions are as follows:

〈g |k〉 =
√
k sinh 2πkRk√

µ
√
µ(g). (12)

Note here that the normalization prefactor is pivotal for what
follows. The normalization of (11) was checked in detail (see one
of the appendices): the normalization is fixed because we consider
two ONB in (11). Crucially this is not the square root of the
SL(2,R) Plancherel measure obtained when working with genuine
irrep matrices. Next up is the operator spectrum.
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Operators

Remember that the interesting not-knot related observables in
SL(2,R) BF are BA SL(2,R) Wilson lines. Only a subset of
these survive as operators in JT gravity. There are two ways to
understand precisely which ones.

First, resorting again to the interval-evolution-calculations as in the
previous section, it becomes clear that factors like this∫

dg 〈g |k1〉R j
mn(g) 〈k2|g〉 ∼(
k1 R j k1√
µ m

√
µ

)(
k1 R j k1√
µ n

√
µ

)
, (13)

will appear. Technical comment: invariance of the measure can be
used to switch bases to obtain a product of three genuine irrep
matrices on the LHS.
Now crucially it turns out that the integral on the LHS is
only well-defined for discrete series irreps j = `. Moreover it
has support only on m = n = 0.
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This severely limits the set of Wilson line observables in JT
gravity to the discrete ’primaries’:

W(g) = R`00(g). (14)

Explicitly evaluating the relevant matrix element in the mixed
parabolic basis we obtain the following:

W(φ) = e2`φ, (15)

which only depends on one of the three coordinates of the SL(2,R)
group manifold. This should ring a bell for those of you familiar
with Liouville. Note: these are the zero mode of the well known
array of Liouville operators, confirming that we have constraints
the SL(2,R) operator spectrum correctly. This direct dimensional
reduction of the 3d / 2d operator spectrum is the second way to
obtain the operator spectrum of JT gravity.
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Amplitudes

Now that we understand the details of the embedding of gravity in
SL(2,R), all the pieces are in place to calculate bulk JT gravity
amplitudes using the ’evolution of intervals’, as we did for gauge
theories earlier.

Notice first though crucially that in the mixed
parabolic basis, the SL(2,R) group element that corresponds with
the absence of a local holonomy defect is obtained by taking
φ→∞ and not g = 1 for all initial and final states. In effect
this takes the ket to the same eigenstate of J − as the bra (see an
appendix), such that

lim
φ→∞

Rk√
µ
√
µ(φ) =

〈
k ,J − =

√
µ
∣∣k ,J − =

√
µ
〉
∼ 1, (16)

showing that this corresponds with inserting a trivial defect g = 1
between states in the same basis. Note: this corresponds again to
considering the vacuum Virasoro coadjoint orbit, or Liouville
between ZZ vacuum branes one dimension up (Thomas).
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Without going through the details of the (easy) calculation let me
mention that for the partition function of the disk with no
punctures the bulk calculation results in the following formula:

Z =

∫
dkk sinh 2πk exp

{
−βk2

}
, (17)

which precisely reproduces the Schwarzian DOS from this group
theoretic perspective. Note that this is a nontrivial result and a
good check on our methods.

Also, for Wilson lines touching the
boundary one obtains again a specific SL(2,R) 3j symbol which is
directly identified with a factor in the known Schwarzian
amplitudes: (

k1 ` k2√
µ 0

√
µ

)
=

(
Γ(`± ik1 ± ik2)

Γ(2`)

) 1
2

. (18)

Crossing Wilson lines come with a 6j symbol of SL(2,R), and are
associated on the boundary with OTOC (as is geometrically
obvious). Note: this shows that Wilson line crossings are
isomorphic to shock-wave interactions in classical gravity.
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Holography

Finally let me mention briefly a direct proof that Wilson lines in
JT gravity compute bilocals in the Schwarzian.

The boundary
value of the SL(2,R) BF gauge connection is identical to the
SL(2,R) current in the boundary by the holographic dictionary.
Path integrating out χ as per usual in the SL(2,R) BF with Wilson
lines inserted one obtains bilocals amplitudes in particle-on-the
SL(2,R) group manifold. In gravity the components of the
SL(2,R) current are constrained as before e.g. as J − =

√
µ.

This constrains the connection A or likewise the group elements g
appearing in the solutions A = g−1dg . These constraints turn the
action into the Schwarzian action and the bilocals precisely
into Schwarzian bilocals:

W`(τ1, τ2) =

(
f ′1f
′
2

(f1 − f2)2

)`
. (19)

Note: this formula can also be obtained as the dim. reduction of
formula for Wilson lines in 3d gravity by Fitzpatrick et al.
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Conclusion

So... What’s new?

We have calculated BA Wilson lines in gauge theories.

It was shown that BA Wilson lines in JT are dual to bilocal
operators in the Schwarzian. This provides the Schwarzian
correlators with a geometric interpretation in the bulk. Note that
generic real time dynamics of JT gravity can be studied using the
resulting formulas (Thomas).

We found a group theoretic explanation for the Schwarzian DOS.

Finally, by turning on a bulk Hamiltonian, our calculations present
the solution of 2d YM for noncompact groups. In particular,
matching bulk SL(2,R) BF amplitudes with Schwarzian amplitudes
can be considered a proof of this, at least for the group SL(2,R).
See out April paper for more on this link with 2d YM.
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Speculative Outlook

Where to go from here? Four applications / extensions.

1. Consider JT gravity on a euclidean cone (two boundaries) ,
this describes a two-sides JT BH, and is the dimensional
reduction of Liouville (without any branes). There is a Schwarzian
on each boundary but they are maximally entangled (spectrum is
diagonal). Note: the calculation is identical on a cylinder as on a
cone. Inserting a ’coherent state’ of Wilson lines stretching
between the two boundaries adds an interaction term to the
action, coupling the two boundary theories, but alternatively
its expectation value can just be evaluated explicitly. As recently
shown my Maldacena this coupling opens up a wormhole: the
Lorentzian geometry jumps from a two-sided JT BH to an eternal
wormhole, precisely by inserting a ’coherent state’ of Wilson lines.
We are in principle able to calculate correlators in this geometry.
What can the Wilson line perspective teach us on the wormhole?
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2. The BA chord diagrams calculating correlators in the
spin-glass system (a microscopic model reducing to the
Schwarzian in the IR) in a recent paper by Berkooz look strikingly
similar to the BA Wilson line diagrams we discussed, that is in the
limit where the ’background chords’ turn into a smooth
background (at least this is what happens if I interpret their paper
correctly).

Intuitively I would expect that it should be possible to
proof that these chords reduce to Wilson lines in the IR, and
that the ’backgrounds chords’ transition to a smooth background.
In the results for the amplitudes this is established, but what I
would be interested in is taking some limit of the setup before
doing the actual calculation. If this works I think it would
substantiate their statement that these open-chord diagrams are
the bulk duals to spin-glass systems, and that they represent one
possible non-perturbative way to go beyond geometry in 2d
quantum gravity.
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3. Let me mention that a related group theoretic story can be
made for flat space Λ = 0 gravity, with a different group. In
particular it is possible again to embed the square of flat gravity
theories in a square of topological gauge theories, though I am still
working out the specifics. The Wilson line perspective might
present some new insight here.

4. Finally, it is possible (and we have done this) to calculate
networks of Wilson lines in the bulk dual to n-point Schwarzian
correlators. These are the dimensional reduction of the networks in
3d / 2d calculating conformal blocks in the boundary 2d CFT. Is
there some story here?

Thank You for your attention.
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