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Motivation:

What is the basic mechanism behind AdS/CFT?

Can we “extract” geometry from CFT states?

Geometry form entanglement (RT)? Is EE sufficient? No…

Distance measures? Information Metric? Complexity? (Independent?)….

How to define “complexity” in CFT?

[Brown,Roberts,Susskind,Swingle,Zhao’15; Myers et al.; Chapman,Marrochio,Myers’16,’17,’18; 
Magan’18]

[Free Field Theory: Jefferson-Myers’17;Chapman,Heller,Marrochio,Pastawski’17…]


[Miyaji,Numasawa,Shiba,Takayanagi,Watanabe ’15]



Imagine that someone (RT) gives us a prescription for          
“holographic measure of entanglement”…

(3-2) Holographic Entanglement Entropy Formula   
[Ryu-TT 06]
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“Entanglement(A)” =
Area

4Gd+2
N

But Cardy and Calabrese or Holzhey, Wilczek, Larsen never wrote their 
papers on entanglement entropy.

Complexity: Motivation



Questions we would probably ask:

• Which entanglement measure…? 

• Does it make sense in QFTs? Divergent? 

• What does it mean/compute/measure?  

• How come it have a gravity dual? Observable? Properties? 

• Can you derive/prove it?  

• Gauge Theories? What about the S5/…/CP3… internal space?

Fortunately we had CC and HLW (timing)

Questions this would stimulate are interesting (non-standard) in QFTs…



Holographic complexity “proposals”

“Entanglement is not enough”…

Holographic complexity

What about field theory:

[Susskind,’14]

[Brown,Roberts,Susskind,Swingle,Zhao’15;

Lehner,Myers,Poisson,Sorkin; Chapman,Marrochio,Myers’16….]

C=Vol

C=Action

Pirsa: 17040050 Page 22/111

C~ GR

I. Maybe it is “too early” to make sense of this in CFT…                                  
II. Start asking questions: Is there any “natural way” to define/quantify 
complexity? Which notion of complexity… etc.                                                

[See more in Tokiro’s talk]



Motivation:

What is the basic mechanism behind AdS/CFT?

Can we extract geometry from CFT states?

How to define “complexity” in CFT?

This talk

In 2d CFT

Distance measures? Information Metric? Complexity?….

Geometry from entanglement (RT)? Is (H)RT sufficient? No…



Path Integral Optimization

[PC,N.Kundu,M.Miyaji,T.Takayanagi,K.Watanabe ’17]



Geometry from optimization

CFT wave functions and time slice of AdS?

Optimization of a Tensor Network (states) and Geometry?

[Swingle ’12….]

Can we “sharpen” this analogy in CFT and beyond free theories? 



The basic tool to “define/compute” wave functions in QFT is the Euclidean PI

How can we optimize it?                                             

 ['0(x)] =

Z

'(0,x)='0(x)
D' e�SE

Optimization of Path Integrals

How can we extract a geometry from PI for a given quantum state?

How can we quantify its “complexity”?                                             
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IDEA (PI optimization): [PC,N.Kundu,M.Miyaji,T.Takayanagi,K.Watanabe ’17]

Optimization:
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 flat
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Minimize “Path Integral Complexity”



2D CFTs and Liouville

Based on the above considerations as well as the evidence provided in the follow-

ing section, we are naturally lead to a conjecture that a computational complexity C 
of a state | i is obtained from the functional introduced before by a minimization:

C = Mingab(z,x) [I [gab(z, x)]] . (2.4)

In other words, the functional I [gab(z, x)] for any gab(z, x) estimates the amount of

complexity for that network corresponding to the (partially optimized) path-integral

on the space with the specified metric. Understanding of the properties of this

complexity functional I , which might appropriately be called “Path-integral Com-

plexity”, is the central aim of this work. As we will soon see, this functional will be

closely connected to the mechanism of emergent space in the AdS/CFT.

2.3 Optimization of Vacuum States in 2D CFTs

Let us first see how the optimization procedure works for vacuum states in 2D CFTs.

We will study more general states later in later sections.

In 2D CFTs, we can always make the general metric into the diagonal form via

a coordinate transformation. Thus the optimization is performed in the following

ansatz:

ds2 = e2�(z,x)(dz2 + dx2),

e2�(z=✏,x) = 1/✏2,
(2.5)

where the second condition specifies the boundary condition so that the discretization

is fine-grained when we read o↵ the wave function after the full path-integration. Ob-

viously this is a special example of the ansatz (2.3). Thus the metric is characterized

by the Weyl scaling function �(z, x).

Remarkably, in 2D CFTs, we know how the wave function changes under such

a local Weyl transformation. Keeping the universal UV cut o↵ ✏, the measure of the

path-integrations of quantum fields in the CFT changes under the Weyl rescaling

[47]:

[D']gab=e2��ab
= eSL[�]�SL[0] · [D']gab=�ab

, (2.6)

where SL[�] is the Liouville action6 [48] (see also [47, 49])

SL[�] =
c

24⇡

Z 1

�1
dx

Z 1

✏

dz
⇥
(@x�)

2 + (@z�)
2 + µe2�

⇤
. (2.7)

The constant c is the central charge of the 2D CFT we consider. The kinetic term

in SL represents the conformal anomaly and the potential term arises the UV regu-

larization which manifestly breaks the Weyl invariance. In our treatment, we simply

set µ = 1 below by suitable shift of �.

6Here we take the reference metric is flat ds2 = dz2 + dx2. Later in section (6), we will present
the Liouville action for a more general reference metric.
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Therefore, the wave functional  gab=e2��ab
('̃(x)) obtained from the Euclidean

path-integral for the metric (2.5) is proportional to the one  gab=�ab
('̃(x)) for the

flat metric (2.2) thanks to the conformal invariance. The proportionality coe�cient

is given by the Liouville action as follows7

 gab=e2��ab
('̃(x)) = eSL[�]�SL[0] · gab=�ab

('̃(x)). (2.8)

Let us turn to the optimization procedure. As proposed in [19], we argue that

the optimization is equivalent to minimizing the normalization factor eSL[�] of the

wave functional, or equally the complexity functional I 0 for the vacuum state | 0i

in 2D CFTs, can be identified as follows8

I 0 [�(z, x)] = SL[�(z, x)]. (2.9)

The intuitive reason is that this factor is expected to be proportional to the number

of repetition of the same operation (i.e. the path-integral in one site). In 2D CFTs,

we believe this is only one quantity which we can come up with to measure the size of

path-integration. Indeed it is proportional to the central charge, which characterizes

the degrees of freedom.

Thus the optimization can be completed by requiring the equation of motion of

Liouville action SL and this reads

4@w@w̄� = e2�, (2.10)

where we introduced w = z + ix and w̄ = z � ix.

With the boundary condition e2�(z=✏,x) = ✏�2, we can easily find the suitable

solution to (2.10):

e2� =
4

(w + w̄)2
= z�2, (2.11)

which leads to the hyperbolic plane metric

ds2 =
dz2 + dx2

z2
. (2.12)

This justifies the heuristic argument to derive a hyperbolic plane H2 in Fig.1.

Indeed, this hyperbolic metric is the minimum of SL with the boundary condi-

tion. To see this, we rewrite

SL =
c

24⇡

Z
dxdz

⇥
(@x�)

2 + (@z�+ e�)2
⇤
�

c

12⇡

Z
dx[e�]z=1

z=✏
�

cL

12⇡✏
, (2.13)

7 Here we compare the optimized metric gab = e2��ab with gab = �ab. To be exact we need to
take the latter to be the original one (2.2) i.e. gab = ✏�2�ab. However the di↵erent is just a constant
factor multiplication and does not a↵ect our arguments. So we simply ignore this.

8In two dimensional CFTs, as we will explain in section 6, due to the conformal anomaly we
actually need to define a relative complexity by the di↵erence of the Liouville action between two
di↵erent metrics. However this does not change out argument in this section.
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Once we introduce the background metric

Background metric for path integral
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z = �⌧

 Path Integral Complexity given by the Liouville action 

[PC,N.Kundu,M.Miyaji,T.Takayanagi,K.Watanabe ’17]

[Polyakov’81]

The wave functional is

c - central charge

SL[�] =
c

24⇡

Z
dxdz

h
(@z�)

2 + (@x�)
2 + e2�

i



Optimization  <=>  Minimizing PI complexity
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Optimized metric satisfies Liouville equation with the appropriate b.c.

cut-off

Equivalently

9 Liouville equation

Recall that given the Liouville action for the diagonal reference metric

SL =
c

24⇡

Z
dwdw̄

�
4@w�@w̄�+ µe2�

�
(9.1)

we have the Liouville equation of motion

4@w@w̄� = µe2� (9.2)

where w = i⌧ + �, w̄ = �i⌧ + �. We can always shift � such that we absorb the constant µ

or equivalently µ = 1. The equation is equivalent to two linear ones
✓
@2
w
+

1

2
T (w)

◆
e��(w,w̄) = 0,

✓
@2
w̄
+

1

2
T̄ (w̄)

◆
e��(w,w̄) = 0 (9.3)

where

T (w) = 2
�
@2
w
�� (@w�)

2
�
, T̄ (w̄) = 2

�
@2
w̄
�� (@w̄�)

2
�

(9.4)

Up to now this is just a mathematical identity but if we impose the chirality condition

@w̄T (w) = 0 (9.5)

then it requires

@w̄T (w) = 2
�
@w̄@

2
w
�� 2@w�@w̄@w�

�
=

1

2
(@w � 2@w�) 4@w@w̄� (9.6)

which vanishes when � solve the Liouville equation (similar argument applies to the equation

for T̄ ).

Note that for the most general solution of the Liouville equation

e2� =
4f 0(w)g0(w̄)

(1� f(w)g(w̄))2
, (9.7)

gives rise to

T (w) = {f(w), w}, T̄ (w̄) = {g(w̄), w̄}. (9.8)

Given a our second order linear di↵erential equations and the fact that T and T̄ are expressed

as Schwarzian derivatives, it is useful to write the two linearly independent solutions of
✓
@2
w
+

1

2
T (w)

◆
ui(w) = 0 (9.9)

as

u1(w) =
1p
f 0(w)

, u2(w) =
f(w)p
f 0(w)

(9.10)
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Optimized metrics and AdS/CFT solutions!

1. Vacuum: PI on u.h.p 

Therefore, the wave functional  gab=e2��ab
('̃(x)) obtained from the Euclidean

path-integral for the metric (2.5) is proportional to the one  gab=�ab
('̃(x)) for the

flat metric (2.2) thanks to the conformal invariance. The proportionality coe�cient

is given by the Liouville action as follows7

 gab=e2��ab
('̃(x)) = eSL[�]�SL[0] · gab=�ab

('̃(x)). (2.8)

Let us turn to the optimization procedure. As proposed in [19], we argue that

the optimization is equivalent to minimizing the normalization factor eSL[�] of the

wave functional, or equally the complexity functional I 0 for the vacuum state | 0i

in 2D CFTs, can be identified as follows8

I 0 [�(z, x)] = SL[�(z, x)]. (2.9)

The intuitive reason is that this factor is expected to be proportional to the number

of repetition of the same operation (i.e. the path-integral in one site). In 2D CFTs,

we believe this is only one quantity which we can come up with to measure the size of

path-integration. Indeed it is proportional to the central charge, which characterizes

the degrees of freedom.

Thus the optimization can be completed by requiring the equation of motion of

Liouville action SL and this reads

4@w@w̄� = e2�, (2.10)

where we introduced w = z + ix and w̄ = z � ix.

With the boundary condition e2�(z=✏,x) = ✏�2, we can easily find the suitable

solution to (2.10):

e2� =
4

(w + w̄)2
= z�2, (2.11)

which leads to the hyperbolic plane metric

ds2 =
dz2 + dx2

z2
. (2.12)

This justifies the heuristic argument to derive a hyperbolic plane H2 in Fig.1.

Indeed, this hyperbolic metric is the minimum of SL with the boundary condi-

tion. To see this, we rewrite

SL =
c

24⇡

Z
dxdz

⇥
(@x�)

2 + (@z�+ e�)2
⇤
�

c

12⇡

Z
dx[e�]z=1

z=✏
�

cL

12⇡✏
, (2.13)

7 Here we compare the optimized metric gab = e2��ab with gab = �ab. To be exact we need to
take the latter to be the original one (2.2) i.e. gab = ✏�2�ab. However the di↵erent is just a constant
factor multiplication and does not a↵ect our arguments. So we simply ignore this.

8In two dimensional CFTs, as we will explain in section 6, due to the conformal anomaly we
actually need to define a relative complexity by the di↵erence of the Liouville action between two
di↵erent metrics. However this does not change out argument in this section.

– 8 –

H2 !

2. TFD

This network corresponds to the metric

e2� =
n (2k✏)�2 (z � 2k✏).

z�2 (z < 2k✏).
(2.18)

Obviously, the first and third term in (2.17) are approximated by the Liouville po-

tential integral
R
e2� [19]. The second term arises because of the non-zero gradient

of � and is estimated by the kinetic term
R
(@�)2 [51].

3 Optimizing Various States in 2D CFTs

Here we would like to explore optimizations in 2D CFTs for more general quantum

states. First it is useful to remember that the general solutions to the Liouville

equation (2.10) is well-known (see e.g.[47, 52]):

e2� =
4A0(w)B0(w̄)

(1� A(w)B(w̄))2
. (3.1)

Note that functions A(w) and B(w̄) describe the degrees of freedom of conformal

mappings. For example, if we choose

A(w) = w, B(w̄) = �1/w̄, (3.2)

then we reproduce the solution for vacuums states (2.11).

3.1 Finite Temperature States

Consider a 2D CFT state at a finite temperature T = 1/�. In the thermofield double

description [53], the wave functional is expressed by an Euclidean path-integral on

a strip defined by �
�

4 (⌘ z1) < z < �

4 (⌘ z2) in the Euclidean time direction, more

explicitly

 ['̃1(x), '̃2(x)] =

Z 0

@
Y

x

Y

��
4<z<

�
4

D'(z, x)

1

A e�SCFT (')

⇥

Y

�1<x<1
�
�
' (z1, x)�'̃1(x)

�
�
�
' (z2, x)�'̃2(x)

�
.

(3.3)

where '̃1(x) and '̃2(x) are the boundary values for the fields of the CFT (i.e. '̃(x))

at z = ⌥
�

4 respectively.

Minimizing the Liouville action SL leads to the solution in (3.2) given by:

A(w) = e
2⇡iw
� , B(w̄) = �e

2⇡iw̄
� . (3.4)

This leads to

e2� =
16⇡2

�2

e
2⇡i
� (w+w̄)

⇣
1 + e

2⇡i
� (w+w̄)

⌘2 =
4⇡2

�2
sec2

✓
2⇡z

�

◆
. (3.5)
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PI on a strip

Time slice of eternal BH

3. Primary  PI on a disc with      
                      insertionwhich leads to the expression:

e2� =
4a2

|w|2(1�a)(1� |w|2a)2
. (3.15)

Since the angle of w coordinate is 2⇡ periodic, this geometry has the deficit angle

2⇡(1� a).

Now we compare this geometry with the time slice of the gravity dual predicted

from AdS3/CFT2. It is given by the conical deficit angle geometry (3.15) with the

identification

a =

r
1�

24h↵

c
. (3.16)

Thus, the geometry from our optimization (3.13) agrees with the gravity dual (3.16)

up to the first order correction when h↵ ⌧ c, i.e. the case where the back-reaction

due to the point particle is very small.

It is intriguing to note that if we consider the quantum Liouville theory rather

than the classical one, we find the perfect matching. In the quantum Liouville

theory, we introduce a parameter � such that c = 1+3Q2 and Q ⌘
2
�
+�. The chiral

conformal dimension of the primary operator e
2�
� � is given by �(Q��)

2 . If the central

charge is very large so that the 2D CFT has a classical gravity dual, we find

a ' 1� �� '

r
1�

24h↵

c
, (3.17)

which indeed agrees with the gravity dual (3.16) even when h↵/c is finite.

This agreement may suggest that the actual optimized wave functional is given

by a ‘quantum’ optimization defined as follows:

 opt['̃] =

Z
D�(x, z)e�SL[�] ( gab=�ab

['̃])�1

��1

. (3.18)

If we take the semi-classical approximation when c is large, we reproduce our classical

optimization. It is an important future problem to understand the exact for of the

proposal at the quantum level.

3.3 Liouville Equation and 3D AdS Gravity

In the above we have seen that the minimizations of Liouville action, which corre-

sponds to the optimization of Euclidean path-integrals in CFTs, lead to hyperbolic

metrics which fit nicely with canonical time slices of bulk AdS in various setups

of AdS3/CFT2. If this derivation of time slice metric in AdS3 really explains the

mechanism of emergence of AdS in AdS/CFT, it should fit nicely with the dynamics

of AdS gravity for the whole 3D space-time. One natural coordinate system in 3D

gravity for our argument is as follows

ds2 = R2
AdS

�
d⇢2 + cosh2 ⇢ · e2�dydȳ

�
. (3.19)
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Time slice of con. sing.

e2� =
4⇡2

�2
sec2

✓
2⇡z

�

◆

a = 1� 12h

c

Perturbations of CFTs with position dep. coupling  => Time slice of AdS3 + scalar

[PC,Bhattacharyya,Das,Kundu,Miyaji,Takayanagi,’18]
[PC,Kundu,Miyaji,Takayanagi,Watanabe ’17]

[Hung,Myers,Smolkin’11]



(-) Complaints: Non-Unitarity… e��H What kind of Complexity,Gates,Costs? Time dep.?

 (+) Continuous TN “interpretation” (for free theories)

VolumeCurvature
(~Number of tensors)(~Number of Isometries [Czech’17])

Great: Based on “universal” features of the CFT (arbitrary c!) and computable

SL[�] =
c

24⇡

Z
dxdz

h
(@z�)

2 + (@x�)
2 + e2�

i

~“Replica trick” for complexity, ~ c log(L/a)

(+) PI complexity = 2d Gravity ! (Eucl.)   

Let us also compute the stress tensor one-point function between the following states for

k � 2

h0|T (z)|ki = h0|T (z)L�k|0i =
1X

n=�1
z�(n+2)

h0|LnL�k|0i =
1X

n=2

z�(n+2)
h0|[Ln, L�k]|0i (3.5)

which, after using the Virasoro algebra becomes

h0|T (z)|ki =
1X

n=2

z�(n+2) c

12
m(m2

� 1)�n,k =
c

12
k(k2

� 1)z�(k+2) (3.6)

Note also the following identity

h0|Q✏Q✏|0i =
1X

n,m=�1
✏n✏mh0|L�nL�m|0i =

1X

n,m=�1
✏�n✏mh0|LnL�m|0i = �h0|Q†

✏
Q✏|0i (3.7)

4 2d Gravity and Polyakov action

Consider the following action in two dimensions [4]

SP [g] =
c

24⇡

Z
d2x

p
g

✓
�
1

4
R
1

⇤R + ⇤

◆
, (4.1)

where R is the Ricci scalar curvature1, 1/⇤ is the inverse of the Laplace-Beltrami operator

⇤f =
1
p
g
@µ (

p
ggµ⌫@⌫f) , (4.2)

and ⇤ represents the cosmological constant.

In general, we will be interested in metrics of the type

ds2 = e2�ĝµ⌫dx
µdx⌫ (4.3)

where the indices run over two-dimensional coordinates (⌧, �) or (z, z̄). The metric determi-

nant, the Ricci scalar and the Laplace-Beltrami operator in this class of metrics are given

by
p
g = e2�

p
ĝ, R = e�2�

⇣
R̂� 2⇤̂�

⌘
, ⇤ = e�2�⇤̂, (4.4)

where ˆ refers to quantities computed in the reference metric ĝ.

The most general 2d metric on a Riemann surface can be parametrized by2

ds2 = e2�(z,z̄) (dz + µ̄dz̄) (dz̄ + µdz) = e2�(z,z̄)ĝµ⌫dx
µdx⌫ , (4.5)

1In 2 dimensions it is proportional to Gaussian curvature R = 2K.
2Sometimes in the literature people define µ and µ̄ in the opposite way
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Quantum Computation as Geometry

[Nielsen + et al. 05]



Geometric approach to circuit complexity [Nielsen + et al. 05]

Cost functions chosen such that they define a geometry on the space of U

| T i = U(t) | Ri
Quantum circuit

Where the unitary operator is

Liouville and Polyakov actions from Nielsen complexity geometry
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In this work we formulate a geometric measure of complexity a la Nielsen in the context of
the Virasoro group and two dimensional conformal field theory. The main starting observation is
that the complexity geometry of a symmetry group is a non-linear sigma model in one dimension.
When applied to the Virasoro group, we recover Polyakov action of two dimensional gravity plus
a cosmological constant, which is shown to be equivalent to Liouville action. For two dimensional
conformal field theories, we need to combine two such Virasoro sectors, and we obtain the complex
generalization of Liouville action, which describe the phase space of three dimensional gravity plus a
cosmological constant. From the present perspective, complexity extremization is naturally obtained
in the semiclasical limit, since the central charge is the e↵ective coupling of the non-linear sigma
model. Moreover, the classical (geodesic) equations ensure that constant gate protocols extremize
the action. This is a more refined geometric version of Lloyd’s bound.

I. INTRODUCTION

Thanks to AdS/CFT correspondence [1], during the
past two decades we have been learning how General
Relativity describes many non-trivial quantum aspects
of Quantum Field Theory and viceversa. In this work we
continue building up on such correspondence by study-
ing aspects of the geometry of the manifold of unitaries
of the theory. These type of questions are inspired by
the geometric approach to quantum complexity devel-
oped by Nielsen and collaborators [3–5], which we review
below, and by recent ideas relating gravity and complex-
ity [11, 12].

In the AdS/CFT context, the main entry of the dic-
ctionary is the field-operator correspondence [2]. Such
correspondence instructs us to consider a dual quantum
field in the higher dimensional gravitational description
for every given primary operator in the CFT:

'AdS $ O
CFT
� (1)

The boundary values of 'AdS are the sources of the oper-
ators OCFT

� in the CFT action, and the statement of the
correpondence is an equivalence between the generating
functions at each side of the duality. The duality can
thus be seen as a trade of variables between operators
and sources in the CFT. Gravity appears inevitably be-
cause the source of the energy momentum tensor is the
metric. A step towards understanding the posed question
is to understand what type of actions can be naturally
defined for the sources, given the correlation functions of
the CFT opertors. A successful output of this concrete
question would be to derive the field-operator correspon-
dence from a direct CFT computation.

One natural route, inspired by Nielsen geometric ap-
proach to quantum complexity, is to notice that a given
source '(x, t) defines a path in the unitary manifold of
the theory:

U(t) = e
i
R
dxdt'(x,t)OCFT

� (x,t)
. (2)

A natural action for the source arises when we define a
geometry for the manifold of unitaries. Indeed, for such
geometry, the length of the trajectory U(t) becomes an
action, which is a functional of the source. As usual, to
compute a distance we need to find the tangent vector
at each point of the trajectory. Physically, this tangent
vector defines the infinitesimal unitary U✏(t) that needs
to be applied to U(t) to take us to U(t + dt). In other
words:

U(t+ dt) = U✏(t)U(t) , (3)

Having solved for U✏(t) at each point, we can express the
previous unitary as a ‘continuous protocol’:

U(t) = U✏(t)U✏(t�dt) · · ·U✏(dt)1 , (4)

whose poupose is to drive us from the identity to the tar-
get unitary U(t), and whose length is given by integrating
a norm on the infinitesimal ‘gates’ U✏:

D(U(t)) =

tZ
C(U✏(t0))dt

0
. (5)

Such distances were called computational costs in [3–5]
and, under suitable conditions, the path minimizing such
length functional between the identity and the target
U(t), the minimal geodesic in the complexity manifold,
was shown to provide lower bounds to the computational
complexity of the target unitary U(t).
Completing this program for a generic operator

O
CFT
� (x, t) seems a challenging task, for reasons we com-

ment in the next section. Obvioulsy, even more chal-
lenging is the generic case in which we consider several
operators and several sources. There is a case though,
in which we can proceed. Luckily, this case is arguably
the most important case in CFT’s and even more impor-
tant in the case of holographic (large-N) CFT’s. This is
the case in which the operator is the energy momentum
tensor, and the source is the metric. In two dimensions,

1

U(t)

IIIIIII I

II

I I
II

I

U✏(t0)

C(t) = d[U(t)] =

Z t

0
dt0F

⇣
U✏(t0), U̇✏(t0)

⌘

Complexity of implementing U <=> geodesic distance on this manifold.
Optimal circuit <=> Free fall between 1 and U.

Decompose it into infinitesimal (instantaneous) gates (Key!) 

where
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dence from a direct CFT computation.

One natural route, inspired by Nielsen geometric ap-
proach to quantum complexity, is to notice that a given
source '(x, t) defines a path in the unitary manifold of
the theory:

U(t) = e
i
R
dxdt'(x,t)OCFT

� (x,t)
. (2)

A natural action for the source arises when we define a
geometry for the manifold of unitaries. Indeed, for such
geometry, the length of the trajectory U(t) becomes an
action, which is a functional of the source. As usual, to
compute a distance we need to find the tangent vector
at each point of the trajectory. Physically, this tangent
vector defines the infinitesimal unitary U✏(t) that needs
to be applied to U(t) to take us to U(t + dt). In other
words:

U(t+ dt) = U✏(t)U(t) , (3)

Having solved for U✏(t) at each point, we can express the
previous unitary as a ‘continuous protocol’:

U(t) = U✏(t)U✏(t�dt) · · ·U✏(dt)1 , (4)

whose poupose is to drive us from the identity to the tar-
get unitary U(t), and whose length is given by integrating
a norm on the infinitesimal ‘gates’ U✏:

D(U(t)) =

tZ
C(U✏(t0))dt

0
. (5)

Such distances were called computational costs in [3–5]
and, under suitable conditions, the path minimizing such
length functional between the identity and the target
U(t), the minimal geodesic in the complexity manifold,
was shown to provide lower bounds to the computational
complexity of the target unitary U(t).
Completing this program for a generic operator

O
CFT
� (x, t) seems a challenging task, for reasons we com-

ment in the next section. Obvioulsy, even more chal-
lenging is the generic case in which we consider several
operators and several sources. There is a case though,
in which we can proceed. Luckily, this case is arguably
the most important case in CFT’s and even more impor-
tant in the case of holographic (large-N) CFT’s. This is
the case in which the operator is the energy momentum
tensor, and the source is the metric. In two dimensions,

U(t) = P exp

✓Z t

0
d⌧H(⌧)

◆



Geometric approach to circuit complexity [Nielsen +et al. 05]

These (local!) costs functions can be expressed as expectation values of the  
infinitesimal gate operator (MC and with some projectors) and also penalty factors.

H(t) =
X

I

Y I(t)MI

Generally we expand the instantaneous gate operator in algebra generators

And then define cost(s) (a lot of freedom)

these four properties come very close to defining a class of geometries known as Finsler

manifolds. In particular, if we replace the first condition above with

10. Smoothness: F should be smooth, i.e., F 2 C1,

then eq. (1.8) defines length functional for a Finsler manifold, a particular class of di↵erential

manifolds equipped with a quasimetric structure in which the length of any curve is measured

by a length functional of the form (1.8), with a Finsler metric F satisfying the four properties

enumerated above, see e.g., [44, 45]. While the familiar notion of Riemannian manifolds would

fall within this definition, Finsler geometry provides a generalization to a broader class of

manifolds where the norm on the tangent space is not (generally) induced by a metric tensor.

Hence Neilsen has identified the problem of finding an optimal circuit with the problem of

finding extremal curves, i.e., geodesics, in a Finsler geometry, and the complexity is then

identified with the length of the geodesic.2

Of course, this still leaves open the question of the precise form of the cost function, and

various possibilities are examined in [37]:3

F1(U, Y ) =
X

I

��Y I
�� , Fp(U, Y ) =

X

I

pI
��Y I

�� ,

F2(U, Y ) =

sX

I

(Y I)2 , Fq(U, Y ) =

sX

I

qI (Y I)2 .
(1.9)

In the two measures on the right, pI and qI are penalty factors which can be chosen to favour

certain directions in the circuit space over others, i.e., to give a higher cost to certain classes

of gates. We do not include such factors in most of our analysis, but we return to this issue

in section 5. Of course, the F2 measure yields a standard Riemannian geometry — and in

fact, it will be the focus of much of our discussion.

The preceding exposition of Nielsen’s approach is of course very incomplete, and the

interested reader is referred to [37–39] for more details. The key feature of this approach is

that it enables one to bring the full power of di↵erential geometry to bear on the problem

of constructing the optimal quantum circuit, and this provides an objective manner in which

to measure the complexity as the length of extremal paths in the geometry. However, at

many points our approach will necessarily di↵er from that of Nielsen since we are studying

a di↵erent problem, namely complexity in a quantum field theory. The primary purpose of

the above presentation was to provide motivation for our geometrical analysis, but we should

add that the details of Finsler geometry will not play any role in the following. Rather, a

simpler physics-oriented perspective is to view the problem of finding the optimal circuit as a

trajectory in the space of all possible circuits, as a classical mechanics problem for the motion

of particle governed by the usual Lagrangian in eq. (1.8).

2For future reference, when referring to general paths or circuits, we will use “size,” “length,” “cost,” and

“depth” interchangeably; however, “complexity” will be reserved for the length of the optimal path or circuit.
3The functions F1 and Fp are not technically Finsler metrics, since both fail to meet the smoothness

requirement. However, as explained in [37], they can be approximated arbitrarily well by metrics which are

Finsler. This subtlety will not be important for our analysis.
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Ideally we would like to have them fixed by some underlying principle (symmetry) 
[J.M.Magan ‘18]

In general we can think of Nielsen’s approach as “particle on a group”

MAIN ADVANTAGE: Purely classical problem! (Nielsen: SU(2^n), Ro&Rob: GL(2,R)…)



Quantum Computation as Gravity

[PC, J.Magan ’18]



Main Idea: [PC, J.Magan ’18]

Since Nielsen’s approach is based on group theory let us see how it could  
be applied for the Virasoro group (Diff(S^1)xR). CFT=two copies on the LC coords.

Is there a natural/universal way to define “gates” and “cost functions”?

Could we derive Liouville action that way? How can Length=Area (Volume)?

Results:

We can consider a subset of “symmetry gates” that implement Diffs.
A natural generalization of Nielsen’s costs leads to the Alexeev-Shatashvili geometric 
action on the coadjoint orbits = Complexity functional for f(t,z)
In this formulation, complexity action is the Polyakov action  
of induced gravity in 2d

“Quantum Computation as Gravity”

For two copies, we can write the answer as the sum of two  
chiral SL(2,R) WZW=Liouville Action                                                 
(so far we don’t know the precise relation with PI complexity)



Plan for the second part:

• “CFT gates” 

• “CFT circuit” 

• “Cost Functions” 

• Complexity and 2d Gravity



CFT gates:
Consider reparam. of the unit circle ( z =        )  Diff(S1)xRei�

It is an eigenstate of the hamiltonian

H = L0 + L̃0, (2.22)

with eigenvalue � = h+ h̄

H
��h, h̄

↵
= L0O�h,�h̄ |0i+ L̃0O�h,�h̄ |0i = (h+ h̄)

��h, h̄
↵

(2.23)

where we used the special case of (2.16) [L0,O�h] = hO�h.

From (2.20) and (2.16) we also have

Ln

��h, h̄
↵
= L̃n

��h, h̄
↵
= 0, for n > 0 (2.24)

Similarly we define the bra-state

⌦
h, h̄

�� = lim
z,z̄!1

h0| z2hz̄2h̄O(z, z̄) = h0| Oh,h̄ (2.25)

From this algebra, we can derive

hh|LnL�n |hi = 2nh+
c

12
n(n2

� 1) (2.26)

2.3 Conformal maps and unitary transformations

Let us consider an infinitesimal conformal map (for simplicity we work in the holomorphic

coordinates)

f(z) = z + ✏(z) (2.27)

where

✏(z) =
1X

n=�1
✏nz

�n+1, ✏†
m
= �✏�n. (2.28)

Now we would like to find an infinitesimal Unitary operator that implements the transfor-

mation of the stress tensor

T (z) ! U †
f
T (z)Uf = (f 0(z))2 T (f(z)) +

c

12
{f(z), z}. (2.29)

Remember that sometimes people define the stress tensor in a di↵erent convention which is

related to our by

T̃ = �
1

2⇡
T (2.30)

in which the transformation rule is

T̃ (z) ! U †
f
T̃ (z)Uf = (f 0(z))2 T̃ (f(z))�

c

24⇡
{f(z), z}. (2.31)

Infinitesimally, we have

T (z) ! T (z) + �T (z) (2.32)

4

Group action is a composition f · g = f � g

✏(z) =
X

n2Z
✏nz

�n

UO

✏ = exp

✓
�

Z 2⇡

0

d�

2⇡
✏(z)O(z)

◆
= exp

�
�QO

✏

�
QO

✏ =
X

n2Z
✏nO�n

Then generally we can consider

Where the integrated operator can be

T (z),W (z), O�(z)...

Eventually also
O(z)O(z̄)....



“CFT gates” in this talk: “Symmetry gates”

Unitary gates (reps.) that implement Diff on states (or operators)

U
†
fO�(z)Uf = f

0(z)�O�(f(z))U †
fT (z)Uf = f 0(z)2T (f(z)) +

c

12
{f(z), z}

UfUg = Uf�gwhich by definition

Q✏ = �
X

n2Z
✏nL�n

U✏ = exp

✓
�
Z 2⇡

0

d�

2⇡
✏(z)T (z)

◆
= exp (�Q✏)

T (z) =
X

n2Z

⇣
Ln � c

24
�n,0

⌘
z�n

where

[Lm, Ln] = (m� n)Lm+n +
c

12
m(m2

� 1)�m+n,0 (2.2)

and similarly

[L̃m, L̃n] = (m� n)L̃m+n +
c̄

12
m(m2

� 1)�m+n,0 (2.3)

whereas [Ln, L̃m] = 0.

Under the Hermitian conjugation we have

L†
n
= L�n, L̃†

n
= L̃�n. (2.4)

The stress-tensors satisfy OPE

T (z)T (w) ⇠
c/2

(z � w)4
+

2T (w)

(z � w)2
+

@T (w)

z � w
(2.5)

and similarly for T̄ (z̄).

We can also define primary operators O(zi, z̄i) with dimension (h, h̄), that have the following

OPE with the stress tensor

T (z)O(zi, z̄i) ⇠
hO(zi, z̄i)

(z � zi)2
+

@iO(zi, z̄i)

z � zi

T̄ (z̄)O(zi, z̄i) ⇠
h̄O(zi, z̄i)

(z̄ � z̄i)2
+

@̄iO(zi, z̄i)

z̄ � z̄i
. (2.6)

Under a conformal transformation z ! f(z) the stress tensor transforms as

T (z) ! T (z) = (f 0(z))2 T (f(z)) +
c

12
{f(z), z} (2.7)

where the Schwarzian derivative is given by

{f(z), z} =
f 000(z)

f 0(z)
�

3

2

✓
f 00(z)

f 0(z)

◆2

=

✓
f 00(z)

f 0(z)

◆0

�
1

2

✓
f 00(z)

f 0(z)

◆2

= �2
p
f 0(z)

d2

dz2
1p
f 0(z)

= @2
z
log [@zf(z)]�

1

2
(@z log [@zf(z)])

2 (2.8)

We will also use the following composition rule for the Schwarzian derivative

{f(g(z)), z} = (g0(z))2 ({f(z), z} � g(z)) + {g(z), z}

= (g0(z))2{f(g(z)), g(z)}+ {g(z), z} (2.9)

and its consequence for the inverse funciton

{f�1(z), z} = �
{f(z), z}

(f 0(z))2
�
�
f�1(z)

�
= �

{f(f�1(z)), f�1(z)}

(f 0(f�1(z)))2
. (2.10)

2

with generators of the Virasoro algebra

(No phases in this talk)

✏⇤n = �✏�n



“CFT circuit”

Problem: Complexity (cost) of these reparametrizations?

f(0, z) = z f(T, z) = f(z)

| T i = U(t) | Rif

where
f(0, z) = z

f(T, z) = f(z)

The instantaneous infinitesimal gate is

U✏(⌧,z)(⌧) = exp

✓
�
Z 2⇡

0

d�

2⇡
✏(⌧, z)T (⌧, z)

◆

U✏(⌧,z)(⌧)

Because we are dealing with the “symmetry” gate (representation) we have

2

The main mathematical problem is to define a notion
of distance in the manifold of unitaries, providing lengths
for any given trayectory U(s). To have a simple picture
in mind it is useful to discretize the problem and con-
sider U(s) as being generated by an infinite sequence of
infinitesimal transformations:

U(s) = U✏(s)U✏(s�ds) · · ·U✏(ds)1 , (3)

In the quantum complexity argon, one says that the pre-
vious protocol sinthetizes the target unitary U(s). A
notion of computational cost of such protocol defines a
length in the unitary manifold and viceversa. The in-
teresting conceptual and technical breakthrough of this
formulation of problems in quantum complexity is that
minimizing computational costs becomes the problem of
finding minimal geodesics. This converts a global min-
imization problem on a discrete space (minimizing the
cost on the space of protocols) into a local di↵erential
equation (the geodesic equation).

As usual in di↵erential geometry, given a trayectory
U(s) its length is obtained by integrating a norm on the
tangent space. For the unitary manifold we can write the
infinitesimal gates as U✏(s) ⌘ e

�iH̃(s)ds, for some hermi-

tian operator H̃(s), and the cost will take the following
form:

C(U(s)) =

sZ
F (H̃(s0)) ds0 , (4)

where F is some norm on the (hermitian) operator alge-
bra of the theory.

Before we define F let us expand on the protagonist
of this whole story, which is H̃(s). We use the tilde no-
tation to explicitly avoid confussion with a putative real
Hamiltonian.

A. The instantaneous gate

Below we will call H̃(s) ‘the instantaneous gate’. This
is the most important object in this context. It performs
the transition from U(s) to U(s + ds) and It is defined
by the following (equivalent) equations:

U(s+ ds) = e
�iH̃(s)ds

U(s)

H̃(s) = i
dU(s)
ds

U
†(s) . (5)

In the manifold of unitaries, such instantaneous gates
should be thought as instantaneous velocities. This rig-
orous analogy explains why the lengths are computed by
integrating a norm on H̃(s).

Although the previous equations are conceptually sim-
ple, the actual computation of H̃(s) turns out to be very
complicated. An important physical example appears
when computing the length of U(s) = e

iO(s). To obtain
H̃(s) as a function of O(s), we notice that at linear order
in ds we can write:

U(s+ ds) = e
�iH̃(s)ds

U(s) = e
iO(s)+i

dO(s)
ds ds

, (6)

By means of the BCH formula we can solve for H̃(s):

H̃(O(s),
dO(s)

ds
) =

1X

j=0

(�iadO(s))
j

(j + 1)!
(
dO(s)

ds
) , (7)

where adO(s)(
dO(s)
ds

) = [O(s), dO(s)
ds

]. Whenever the chain
of nested commutators is non-trivial, the computation of
H̃(s) and the cost seems quite challenging. Below we
show how to handle this problem when the instantaneous
gates belong to a certain symmetry group.

B. Symmetry group manifolds and complexity

To complete the above discussion, we need to provide
a definition for the cost function F . This is going to be
system dependent. In [3] several metrics were proposed
for spin systems. Such proposals are based on expec-
tation values in maximally mixed states and, therefore,
they cannot be directly extended to systems with infinite
degrees of freedom. They further depend on arbitrary
parameters, the so-called penalty functions, which make
definitions problematic.
We will follow the proposals made in Ref. [15] in order

to solve both problems. The first can be solved by us-
ing expectation values in the actual state of the system.
This is a sensible approach which immediately gives fi-
nite answers, as we show below. The second is less trivial
and goes by reducing the whole complexity manifold (the
manifold of all unitaries of the theory) to the manifold
associated to a certain symmetry group of the system in
question. As we argue below this solves both the problem
of penalty functions, since the relative penalty parame-
ters are fixed by the symmetry, and allows explicit com-
putations of the instantaneous gate (7). In this section
we treat such proposal from a general standpoint, and in
the next sections we consider the Virasoro group.
Consider as the gate set the unitary represeantation

U(g) of a certain group G. In this scenario, any protocol
takes the form:

U = UgN · · ·Ug11 = UgN ···g1 , (8)

where in the last equality we have used the fact that
U(g) is a representation and therefore respects the group
product. In the continuum limit, the protocol defines a
path g(s) in the group, and the infinitesimal gates gQ(s)

are parametrized by elements of the Lie algebra of the
group. This gate choice solves the previous problems.
First, remember that the instantaneous gate Q(s) was
implicitly defined by the following equation:

g(s+ ds) = e
Q(s)ds

· g(s) , (9)

now written in abstract group theoretic terms. The so-
lution to such equation is given by:

Q(s) =
d

d⌧
(g(⌧) · g�1(s))|⌧=s , (10)

The instantaneous gate parameter (from the composition of the symmetry gates)

✏(⌧, z) = ḟ(⌧, f�1(⌧, z)) f(⌧, f�1(⌧, z)) = z

= exp
�
�Q✏(⌧)

�

=
˙f�1(⌧, z)

(f�1)0(⌧, z)

f⌧ (z) ⌘ f(⌧, z)

Protocol = Path in the group!

�



Cost functions

Pick a point on the (sub)manifold of U and define cost as expectation value of the 
instantaneous gate operator(s). (Nielsen=in maximally entangled state)

F (⌧) =
q

h�|U †
fQ✏(⌧)Q

†
✏(⌧)Uf |�i

C(t) =

Z t

0
d⌧F (⌧)

The Nielsen-type complexity is then

Liouville action suggests that a way to do that is by

2

F1(⌧) = |h�|U†
fQ✏(⌧)Uf |�i|

[J.M.Magan ‘18]



Cost functions

Our choices are fixed by the Virasoro algebra

At large central charge becomes the one-norm! 

F2(⌧) = F1(⌧)+O(1/c)

Cost of a circuit at large c (for general “heavy” state)

which becomes

F (⌧)2 =

Z 2⇡

0

d�1

2⇡
✏(⌧, z1)

⇣⇣
��

c

24

⌘
f 0(⌧, z1)

2 +
c

12
{f(⌧, z1), z1}

⌘�2

+
1X

n=1

⇣
2n�+

c

12
n(n2

� 1)
⌘
In(⌧) (6.20)

where

In(⌧) =

Z 2⇡

0

d�

2⇡
✏(⌧, z)

f 0(⌧, z)2

f(⌧, z)n

�2
,

=

"Z 2⇡

0

d�1

2⇡

ḟ(⌧, z1)f 0(⌧, z1)

fn(⌧, z1)

#2

(6.21)

So we have

F 2
2 (⌧) = F 2

1 (⌧) +
1X

n=1

⇣
2n�+

c

12
n(n2

� 1)
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0
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2⇡
✏(⌧, z)

f 0(⌧, z)2

f(⌧, z)n

�2

(6.22)
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24⇡

Z 2⇡

0

d�✏(⌧, z){tan(af(⌧, z)), z}

�2

+
1X
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12
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0
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✏(⌧, z)

f 0(⌧, z)2

f(⌧, z)n
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(6.23)

a2 =
6

c

⇣
��

c

24

⌘
(6.24)

At large c

F (⌧) =
c

24⇡

Z 2⇡

0

d�
ḟ

f 0

�
2a2f 02 + {f, z}

�
, a2 =

6

c

⇣
��

c

24

⌘
(6.25)

Or

C(t) =
c

24⇡

Z
t

0

Z 2⇡

0

d⌧d�1ḟ
�1
{tan (af) , z1}+O(1/c) (6.26)

where

a2 =
6

c

⇣
��

c

24

⌘
(6.27)

Moreover, using the identity

{exp (af(z)) , z} = {f(z), z}�
1

2
a2f 02 (6.28)
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then we have

A =

Z 2⇡

0

d'

Z 1

z=0

p
(1 + T (')z2)(1 + T̄ (')z2)

z2
dz (B.17)

Brown-Hennaux relation

c =
3R

2GN

. (B.18)

B.3 Polyakov gauge

Often in the literature people re↵er to the Polyakov Gauge

ds2 = (dz + µ̄dz̄) dz̄, µ̄ =
@̄F (z, z̄)

@F (z, z̄)
. (B.19)

In this gauge, we have
p
�g =

1

2
, ⇤ = 4@

�
@̄ � µ̄(z, z̄)@

�
(B.20)

as well as the Ricci scalar

R = 4@2µ̄(z, z̄) = 4@
�
@̄ � µ̄(z, z̄)@

�
log (@F (z, z̄)) = ⇤ log (@F (z, z̄)) . (B.21)

This way we write

�
1

4
R
1

⇤R = � log (@F ) @
�
@̄ � µ̄@

�
log (@F ) , (B.22)

what after integrating by parts give

S =
c

24⇡

1

2
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⇥
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�
log (@F ) + ⇤

⇤
,

=
c

24⇡

1

2

Z
dzdz̄
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@2F@@̄F

(@F )2
�

@̄F (@2F )2

(@F )3

◆
+ ⇤

�
(B.23)

This is the Polyakov action. Note that cosmological constant is not particularly important

here (like e.g. in the conformal gauge when it plays the role of the potential).

B.4 Formulas for my presentation
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⇣ c
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1 f 0�2
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1X
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2 hh|[Ln, L�m]|hi

=
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⌘2
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+ F 02
1 F 02

2

1X
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F�n

1 Fm

2 hh|[Ln, L�m]|hi (B.24)
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⌘2

{tan(af1), �1}{tan(af2), �2}+ f 02
1 f

02
2

1X

n,m=1

f�n

1 fm

2 hh|[Ln, L�m]|hi (B.25)
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⇣ c

12

⌘2

{tan(af1), �1}{tan(af2), �2}+ f 02
1 f

02
2

1X

n,m=1

f�n

1 fm

2 hh|[Ln, L�m]|hi (B.25)

F2(⌧)
2 =

Z 2⇡

0

d�1

2⇡

Z 2⇡

0

d�2

2⇡
✏(⌧, �1)✏(⌧, �2)h�|U †

f
T (⌧, �1)T (⌧, �2)Uf |�i (B.26)
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Complexity

Combining two (L-R) transformations as an infinitesimal gate

which becomes

F (⌧)2 =

Z 2⇡

0

d�1
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+
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where
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Moreover, using the identity

{exp (af(z)) , z} = {f(z), z}�
1

2
a2f 02 (6.22)

or

{tan (af(z)) , z} = {f(z), z}+ 2a2f 02 (6.23)

we can write

F (⌧)2 =

"Z 2⇡

0

d�1

2⇡
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what at large central charge gives

C(T ) '

Z
T

0

d⌧

Z 2⇡

0

d�1
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ḟ(⌧, z)

f 0(⌧, z)
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Note that the large c answer can be written as

C(T ) =

Z
T

0

d⌧

Z 2⇡

0

d�1

2⇡
✏(⌧, z)h�|U †

f
T (⌧, z)Uf |�i (6.27)

For two copies we have the infinitesimal gate

Q✏,✏̄(⌧) =

Z 2⇡

0

d�1

2⇡
✏(⌧, z1)T (⌧, z1) +

Z 2⇡

0

d�1

2⇡
✏̄(⌧, z̄1)T̄ (⌧, z̄1) (6.28)
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The large c cost function becomes the sum of two 
geometric actions: for f and g and is equivalent to Liouville [Henneaux,et al.’99]

Our complexity becomes the Schwarzian action <=> geometric action Vir.

C(t) =
c

24⇡

Z
d⌧d�

ḟ

f 0 {tan(af), z}+O(1/c)

(Schwarzian action f^{-1})

[Alexeev-Shatashvili’89] 
[Witten’88]

Recently: [SYK], [Mandal et al.] and closely Berry phases for Virasoro group [Oblak] 



2d Gravity

Let us also compute the stress tensor one-point function between the following states for

k � 2

h0|T (z)|ki = h0|T (z)L�k|0i =
1X

n=�1
z�(n+2)

h0|LnL�k|0i =
1X

n=2

z�(n+2)
h0|[Ln, L�k]|0i (3.5)

which, after using the Virasoro algebra becomes

h0|T (z)|ki =
1X

n=2

z�(n+2) c

12
m(m2

� 1)�n,k =
c

12
k(k2

� 1)z�(k+2) (3.6)

Note also the following identity

h0|Q✏Q✏|0i =
1X

n,m=�1
✏n✏mh0|L�nL�m|0i =

1X

n,m=�1
✏�n✏mh0|LnL�m|0i = �h0|Q†

✏
Q✏|0i (3.7)

4 2d Gravity and Polyakov action

Consider the following action in two dimensions [4]

SP [g] =
c

24⇡

Z
d2x

p
g

✓
�
1

4
R
1

⇤R + ⇤

◆
, (4.1)

where R is the Ricci scalar curvature1, 1/⇤ is the inverse of the Laplace-Beltrami operator

⇤f =
1
p
g
@µ (

p
ggµ⌫@⌫f) , (4.2)

and ⇤ represents the cosmological constant.

In general, we will be interested in metrics of the type

ds2 = e2�ĝµ⌫dx
µdx⌫ (4.3)

where the indices run over two-dimensional coordinates (⌧, �) or (z, z̄). The metric determi-

nant, the Ricci scalar and the Laplace-Beltrami operator in this class of metrics are given

by
p
g = e2�

p
ĝ, R = e�2�

⇣
R̂� 2⇤̂�

⌘
, ⇤ = e�2�⇤̂, (4.4)

where ˆ refers to quantities computed in the reference metric ĝ.

The most general 2d metric on a Riemann surface can be parametrized by2

ds2 = e2�(z,z̄) (dz + µ̄dz̄) (dz̄ + µdz) = e2�(z,z̄)ĝµ⌫dx
µdx⌫ , (4.5)

1In 2 dimensions it is proportional to Gaussian curvature R = 2K.
2Sometimes in the literature people define µ and µ̄ in the opposite way
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In metric:

4

defined a cost mediated by a negative sign Q = QL �

QR, we would have obtained I[f ] � I[f̄ ]. Notice that at
the level of the classical equations of motion there is no
di↵erence between both choices.
These two functionals can now be extremized and the
equations of motion determine the optimal circuit with
lowest complexity. For this classical variational problem,
it is actually su�cient to consider only the first part of
the Schwarzian, the (f 00/f 0)0 term, which (see [34] and
also below) makes this action equivalent to the geometric
action on the Virasoro co-adjoint orbits, as we discuss
now.

IV. Geometric Actions. Geometric actions, devel-
oped by Kirillov [30], play an important role in the coad-
joint orbit method in representation theory and geomet-
ric quantization. The framework starts with a group G
and a path in the group g(⌧). As described in sec I, as-
sociated to such path we have the instantaneous gate (8)
and the Maurer-Cartan form (9), objects that belong to
the Lie algebra g of G . Also, associated to g, we have
its dual space g⇤, the space of linear functionals from g
to the reals. We denote the map by hv,Qi 2 R, where
v 2 g⇤ and Q 2 g.

As it is well known, there exists a natural group action
on the Lie algebra, the adjoint representation Adgg:

Adg(Q) =
d

d⌧
(g · e⌧Q · g�1)|⌧=0 , (23)

which in turn induces another one on the dual space g⇤,
the coadjoint representation Ad⇤

g
g⇤, implicitly defined by:

hAd⇤
g
g⇤, gi ⌘ hg⇤, Adg�1gi , (24)

Having defined the instantaneous gate (8) and the MC
form (9), and given an element v 2 g⇤, the geometric
action is:

IGeometric = p

Z
d⌧ hAd⇤

g(⌧)
v,Q(⌧)i = p

Z
d⌧ hv, Q̃(⌧)i .

(25)
The intuition is that v defines a state, as in (10). We can
evolve it by a coadjoint transformation and compute Q
or transform Q to Q̃ and compute the expectation value
in the original state.

A deeper and more physical origin goes as follows. The
coadjoint representation defines orbits in the dual space.
Each orbit, represented by some v 2 g⇤, contains all ele-
ments that can be reached by a coadjoint transformation
of v. If the stabilizer of v is H ⇢ G, the fundamental
observation, see [30] and [33], is that each orbit G/H is
a symplectic manifold, in which an invariant and non-
degenerate symplectic form can be defined, the Kirillov-
Konstant form:

⌦ =
1

2
hv, dQi . (26)

This form is closed, and locally it can written as ⌦ = d↵,
with ↵ = hv,Qi. Therefore, the coadjoint orbit G/H

defines a phase space, and the natural action is the line
element:

IG[g, v] = p

Z

�

↵ = p

Z
d⌧ hAd⇤

g(⌧)
v,Q(⌧)i , (27)

where � is a path on the coadjoint orbit.
Kirilov orbit method can be applied to the Virasoro

group [28, 32]. The Maurer-Cartan form is given by:

Q̃ =

 
ḟ

f 0
@�,

1

48⇡

Z
d�

ḟ

f 0

✓
f 00

f 0

◆0
!
, (28)

and the geometric action reads:

IVirasoro =
1

2⇡

Z
d⌧ d�

ḟ

f 0

 
b(�) +

c

24

✓
f 00

f 0

◆0
!
. (29)

The b(�) labels the orbit and we can identify it with the
expectation value of T : b(�) = hh|T (�)|hi = h � c/24 .
The second contribution can be identified with the first
term of the Schwarzian derivative and, as functional for
f , this action is equivalent to (21) (see also next section).
Some aspects of these actions were used recently in
connection SYK holography in [35–37] and Virasoro
Berry phases [38].

V. 2d Gravity. Finally, let us finish with gravity
perspective on the above discussions. The important ob-
ject for us will be the action of (induced) gravity in two
dimension introduced by Polyakov [29]

SP [g] =
c

24⇡

Z
d2x

p
g

✓
�
1

4
R

1

⇤R+ ⇤

◆
, (30)

where R is the Ricci scalar curvature of the local metric
g on any two dimensional Riemann surface with coordi-
nates xi, 1/⇤ is the inverse of the Laplace-Beltrami oper-
ator and ⇤ represents the cosmological constant. This ac-
tion arises universally whenever we couple a 1+1 d CFT
to gravity and then integrate out ”matter” fields hence
c in front of the action is the central charge of the CFT.
This action has a long history but here we will only re-
call some of its classical features that are important in
our complexity story.
Firstly, consider the following (Polyakov’s [29]) choice

of the metric (gauge)

ds2 = d⌧ (d�̃ + µ(⌧, �̃) d⌧) = G0(⌧,�)d⌧d�, (31)

with µ = ġ/g0 and inverse functions g(⌧, G(⌧,�)) = �. In
Beltrami parameter µ, (30) plays a very elegant and im-
portant role, namely it becomes the generating functional
of the correlation functions of the energy momentum ten-
sor T (in any CFT with central charge c)

e�SP [µ]
⌘ he�

1
2⇡

R
d⌧d� µT

i. (32)

Such that its variation gives

�

�µ
SP [µ] =

1

2⇡
hTi =

c

24⇡
{g(⌧,�),�}. (33)

The action is a generating functional for the correlates of T in any CFT

µ = ġ/g0 G(⌧, g(⌧,�)) = �
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with µ = ġ/g0 and inverse functions g(⌧, G(⌧,�)) = �. In
Beltrami parameter µ, (30) plays a very elegant and im-
portant role, namely it becomes the generating functional
of the correlation functions of the energy momentum ten-
sor T (in any CFT with central charge c)

e�SP [µ]
⌘ he�

1
2⇡

R
d⌧d� µT

i. (32)

Such that its variation gives

�

�µ
SP [µ] =

1

2⇡
hTi =

c

24⇡
{g(⌧,�),�}. (33)

More explicitly, the action SP [µ] that, due to above rela-
tion, is also a solution of the conformal ward identity, is
given by (the ⇤ term that in this gauge is just a constant)

SP [µ] =
c

24⇡

Z
d⌧

Z
d�

ġ

2g0

✓
g00

g0

◆0

. (34)

Importantly, as proved in [34] (and in fact first derived
in [39]), this action is equivalent to the one with full
Schwarzian derivative SP [µ] ⇠

R
µ{g,�}. One way to see

it intuitively in our case is the following large-c identity

e�SP [µ]
' e�

1
2⇡

R
d⌧d�µhTi +O(1/c), (35)

where we used the definition (32) and the fact that at
large-c correlators of T are just products of its one-point
functions. This is almost our large-c complexity func-
tional.

Next, note that in terms of the inverse function G,
this action becomes the original Virasoro coadjoint orbit
action of [28] for their b0 = 0

SP [G] =
c

24⇡

Z
d⌧

Z
d�

Ġ

2G0

✓
G000

G0
� 2

G002

G02

◆
. (36)

Nevertheless, one can rewrite the action in terms of func-
tion G = exp(

p
2aF ) (see [40, 41]) such that the action

expressed in terms of the inverse function f(⌧, F (⌧,�)) =
�, becomes (29). This makes a precise connection with
the Di↵(S1) functions F and f (and parameter a) in pre-
vious sections, as well as our large-c complexity action.
Summarizing, we have argued that for a single copy of
the Virasoro group, at large central charge, the complex-
ity functional (via the geometric action on the coadjoint
orbit for which this connection is well known) can be writ-
ten as the Polyakov’s two-dimensional gravity action.

A few comments are in order. Firstly, formula (32)
relates the geometric action to the overlap between a
vacuum of a given CFT and its variation computed in
a theory deformed by the stress-tensor. This object nat-
urally appears in the quantum information metric [11]
(see also [42] for recent discussion). It is just the overlap
between nearby coherent states.
Secondly, the change of variables between F and G for-
mally generalizes coadjoint orbit construction to the so-
called ”model space” (see [40] for detailed explanation),

however, for complexity and purely classical aspects this
change of names is not very important.
Finally, note that metric (31) in variable G is in stan-

dard conformal gauge and writing exp(2�) = G0 allows
us to write the geometric/Polyakov action as chiral bo-
son [28]. This becomes useful when we want to actually
solve a concrete circuit problem with particular bound-
ary conditions for G (inherited form F ). More details
will be presented in [43].
Moreover, it is clear that, at large-c, for two copies

of the Virasoro circuits we get two geometric actions for
each, which can be written as two chiral bosons. It is
well known [44, 45] that such pairs of chiral actions can be
combined into a single non-chiral theory which can be de-
fined in terms of a non-chiral Liouville action. This sheds
new light on the proposal for Path Integral Complexity
[15] defined via Euclidean Path Integrals. In particular,
we may think of the above discussion (with definition of
circuit of unitary gates and costs) as a more conventional
notion of complexity that leads to Liouville actions. It
is an important future problem to compare the details
of the two proposals [43] and geometries from Euclidean
Path Integrals (see also [46–48] for related constructions)
and our complexity.
VI. Generalizations and Discussion. One interest-

ing generalization of our results is based on the connec-
tion between complexity actions and geometric actions.
It turns out that geometric actions do not only appear
through symmetry groups, but also appear ubiquitously
through the notion of generalized coherent states, see
[49–52]. Basically, for any quantum theory one can define
a ‘coherence group’ G. This group has two purposes. The
first is to generate a continuous and normalizable basis
of the Hilbert space, the so-called generalized coherent
states |gvi = U(g)|vi, where |vi defines the coherent or-
bit. The second is to provide a classical phase space for
the theory. In the semiclassical limit, the dynamics is
determined by:

I = Igeometric + IH = �

Z

�

↵�

Z
d⌧ H(�(⌧)) , (37)

where H(�(⌧)), a function on the coadjoint orbit of the
coherence group (the phase space), is the Hamiltonian
governing the semiclassical limit. In this generic con-
text, and paralleling the symmetry group approach de-
scribed above, we could choose as computational gates
the infinitesimal elements of the coherence group. Pro-
tocols become paths in the coherence group, which in
turn define paths in phase space. Using the same notion
of infinitesimal cost (10), in the semiclassical limit the
complexity is again given by the coadjoint orbit action:

IComplexity =

Z

�

↵ (38)

There are two observations to be made here. The first
is that, as opposed to the symmetry group scenario, in

[Polyakov’87]
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with µ = ġ/g0 and inverse functions g(⌧, G(⌧,�)) = �. In
Beltrami parameter µ, (30) plays a very elegant and im-
portant role, namely it becomes the generating functional
of the correlation functions of the energy momentum ten-
sor T (in any CFT with central charge c)
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⌘ he�

1
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d⌧d� µT

i. (32)

Such that its variation gives

�

�µ
SP [µ] =

1

2⇡
hTi =

c

24⇡
{g(⌧,�),�}. (33)

More explicitly, the action SP [µ] that, due to above rela-
tion, is also a solution of the conformal ward identity, is
given by (the ⇤ term that in this gauge is just a constant)

SP [µ] =
c

24⇡

Z
d⌧

Z
d�

ġ

2g0

✓
g00

g0

◆0

. (34)

Importantly, as proved in [34] (and in fact first derived
in [39]), this action is equivalent to the one with full
Schwarzian derivative SP [µ] ⇠

R
µ{g,�}. One way to see

it intuitively in our case is the following large-c identity

e�SP [µ]
' e�

1
2⇡

R
d⌧d�µhTi +O(1/c), (35)

where we used the definition (32) and the fact that at
large-c correlators of T are just products of its one-point
functions. This is almost our large-c complexity func-
tional.

Next, note that in terms of the inverse function G,
this action becomes the original Virasoro coadjoint orbit
action of [28] for their b0 = 0

SP [G] =
c

24⇡

Z
d⌧

Z
d�

Ġ

2G0

✓
G000

G0
� 2

G002

G02

◆
. (36)

Nevertheless, one can rewrite the action in terms of func-
tion G = exp(

p
2aF ) (see [40, 41]) such that the action

expressed in terms of the inverse function f(⌧, F (⌧,�)) =
�, becomes (29). This makes a precise connection with
the Di↵(S1) functions F and f (and parameter a) in pre-
vious sections, as well as our large-c complexity action.
Summarizing, we have argued that for a single copy of
the Virasoro group, at large central charge, the complex-
ity functional (via the geometric action on the coadjoint
orbit for which this connection is well known) can be writ-
ten as the Polyakov’s two-dimensional gravity action.

A few comments are in order. Firstly, formula (32)
relates the geometric action to the overlap between a
vacuum of a given CFT and its variation computed in
a theory deformed by the stress-tensor. This object nat-
urally appears in the quantum information metric [11]
(see also [42] for recent discussion). It is just the overlap
between nearby coherent states.
Secondly, the change of variables between F and G for-
mally generalizes coadjoint orbit construction to the so-
called ”model space” (see [40] for detailed explanation),

however, for complexity and purely classical aspects this
change of names is not very important.
Finally, note that metric (31) in variable G is in stan-

dard conformal gauge and writing exp(2�) = G0 allows
us to write the geometric/Polyakov action as chiral bo-
son [28]. This becomes useful when we want to actually
solve a concrete circuit problem with particular bound-
ary conditions for G (inherited form F ). More details
will be presented in [43].
Moreover, it is clear that, at large-c, for two copies

of the Virasoro circuits we get two geometric actions for
each, which can be written as two chiral bosons. It is
well known [44, 45] that such pairs of chiral actions can be
combined into a single non-chiral theory which can be de-
fined in terms of a non-chiral Liouville action. This sheds
new light on the proposal for Path Integral Complexity
[15] defined via Euclidean Path Integrals. In particular,
we may think of the above discussion (with definition of
circuit of unitary gates and costs) as a more conventional
notion of complexity that leads to Liouville actions. It
is an important future problem to compare the details
of the two proposals [43] and geometries from Euclidean
Path Integrals (see also [46–48] for related constructions)
and our complexity.
VI. Generalizations and Discussion. One interest-

ing generalization of our results is based on the connec-
tion between complexity actions and geometric actions.
It turns out that geometric actions do not only appear
through symmetry groups, but also appear ubiquitously
through the notion of generalized coherent states, see
[49–52]. Basically, for any quantum theory one can define
a ‘coherence group’ G. This group has two purposes. The
first is to generate a continuous and normalizable basis
of the Hilbert space, the so-called generalized coherent
states |gvi = U(g)|vi, where |vi defines the coherent or-
bit. The second is to provide a classical phase space for
the theory. In the semiclassical limit, the dynamics is
determined by:

I = Igeometric + IH = �

Z

�

↵�

Z
d⌧ H(�(⌧)) , (37)

where H(�(⌧)), a function on the coadjoint orbit of the
coherence group (the phase space), is the Hamiltonian
governing the semiclassical limit. In this generic con-
text, and paralleling the symmetry group approach de-
scribed above, we could choose as computational gates
the infinitesimal elements of the coherence group. Pro-
tocols become paths in the coherence group, which in
turn define paths in phase space. Using the same notion
of infinitesimal cost (10), in the semiclassical limit the
complexity is again given by the coadjoint orbit action:

IComplexity =

Z

�

↵ (38)

There are two observations to be made here. The first
is that, as opposed to the symmetry group scenario, in
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with µ = ġ/g0 and inverse functions g(⌧, G(⌧,�)) = �. In
Beltrami parameter µ, (30) plays a very elegant and im-
portant role, namely it becomes the generating functional
of the correlation functions of the energy momentum ten-
sor T (in any CFT with central charge c)
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24⇡
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More explicitly, the action SP [µ] that, due to above rela-
tion, is also a solution of the conformal ward identity, is
given by (the ⇤ term that in this gauge is just a constant)
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Importantly, as proved in [34] (and in fact first derived
in [39]), this action is equivalent to the one with full
Schwarzian derivative SP [µ] ⇠

R
µ{g,�}. One way to see

it intuitively in our case is the following large-c identity
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with µ = ġ/g0 and inverse functions g(⌧, G(⌧,�)) = �. In
Beltrami parameter µ, (30) plays a very elegant and im-
portant role, namely it becomes the generating functional
of the correlation functions of the energy momentum ten-
sor T (in any CFT with central charge c)

e�SP [µ]
⌘ he�

1
2⇡

R
d⌧d� µT

i. (32)

Such that its variation gives

�

�µ
SP [µ] =

1

2⇡
hTi =

c

24⇡
{g(⌧,�),�}. (33)

More explicitly, the action SP [µ] that, due to above rela-
tion, is also a solution of the conformal ward identity, is
given by (the ⇤ term that in this gauge is just a constant)

SP [µ] =
c

24⇡

Z
d⌧

Z
d�

ġ
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circuit of unitary gates and costs) as a more conventional
notion of complexity that leads to Liouville actions. It
is an important future problem to compare the details
of the two proposals [43] and geometries from Euclidean
Path Integrals (see also [46–48] for related constructions)
and our complexity.
VI. Generalizations and Discussion. One interest-

ing generalization of our results is based on the connec-
tion between complexity actions and geometric actions.
It turns out that geometric actions do not only appear
through symmetry groups, but also appear ubiquitously
through the notion of generalized coherent states, see
[49–52]. Basically, for any quantum theory one can define
a ‘coherence group’ G. This group has two purposes. The
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of the Hilbert space, the so-called generalized coherent
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determined by:
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where H(�(⌧)), a function on the coadjoint orbit of the
coherence group (the phase space), is the Hamiltonian
governing the semiclassical limit. In this generic con-
text, and paralleling the symmetry group approach de-
scribed above, we could choose as computational gates
the infinitesimal elements of the coherence group. Pro-
tocols become paths in the coherence group, which in
turn define paths in phase space. Using the same notion
of infinitesimal cost (10), in the semiclassical limit the
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There are two observations to be made here. The first
is that, as opposed to the symmetry group scenario, in
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Geometric actions for 3d gravity 5

direct product groups in order to be able to treat three-dimensional flat gravity.

In this section, we provide novel isop2, 1q WZW models and BMS3 invariant field

theories in two dimensions. In the last section, we relate our considerations to re-

cent developments in the field and discuss future prospects, both for three and four

dimensional gravity.

2 Review of geometric actions

2.1 Kinetic term

The adjoint action of a Lie group G on its Lie algebra g is defined as the differential

of the automorphism h ÞÑ ghg´1 at the identity

AdgX “
d

ds

`
gh psq g´1

˘ˇ̌
ˇ̌
s“0

, (2.1)

where X “ dhpsq
ds

ˇ̌
ˇ
s“0

P g. The coadjoint action of G on the dual space g˚ of g is

defined as @
Ad˚

g´1b,X
D

“ xb,AdgXy , (2.2)

where b P g˚ and x¨, ¨y is the pairing between g and g˚. For a fixed element b0 of g˚,

this action generates a coadjoint orbit Ob0 , the set of elements b P g˚ such that

b “ Ad˚
g´1b0, (2.3)

which is a manifold isomorphic to G{Hb0 , with Hb0 the isotropy group of b0 under

the coadjoint action, i.e., the subgroup of elements h P G satisfying Ad˚
hb0 “ b0.

Coadjoint orbits are particulary interesting as they are symplectic manifolds.

The Kirillov-Kostant symplectic form is the pull-back to a coadjoint orbit Ob0 of the

pre-symplectic form on G given by

Ω “
1

2
xb, adθθy , (2.4)

where b “ Ad˚
g´1b0 is a point on the orbit, θ is the left invariant Maurer-Cartan form

satisfying

dθ “ ´
1

2
adθθ, (2.5)

and ad denotes the adjoint action of g on itself. As Ω is closed, it is locally exact.

In fact,

Ω “ da, a “ xb, θy , (2.6)

and therefore, a geometric action IGrg; b0s can be defined on the phase space through

IGrg; b0s “

ż

γ

a, (2.7)
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This is our large-c complexity functional for paths
f(⌧,�) between identity and a given final transformation
f(T,�) = f(�).

Finally, we could have performed analogous steps for
the second copy of the Virasoro group, and the full action
is just a sum of left and right contributions

IComplexity[f, f̄ ] = I[f ] + I[f̄ ]. (22)

where f̄ is the analogous (independent) function for the
left Virasoro group. In the previous formula we used
that instantaneous gates add up Q = QL +QR. Had we
defined a cost mediated by a negative sign Q = QL �

QR, we would have obtained I[f ] � I[f̄ ]. Notice that at
the level of the classical equations of motion there is no
di↵erence between both choices.
These two functionals can now be extremized and the
equations of motion determine the optimal circuit with
lowest complexity. For this classical variational problem,
it is actually su�cient to consider only the first part of
the Schwarzian, the (f 00/f 0)0 term, which (see [34] and
also below) makes this action equivalent to the geometric
action on the Virasoro co-adjoint orbits, as we discuss
now.

IV. Geometric Actions. Geometric actions, devel-
oped by Kirillov [30], play an important role in the coad-
joint orbit method in representation theory and geomet-
ric quantization. The framework starts with a group G
and a path in the group g(⌧). As described in sec I, as-
sociated to such path we have the instantaneous gate (8)
and the Maurer-Cartan form (9), objects that belong to
the Lie algebra g of G . Also, associated to g, we have
its dual space g⇤, the space of linear functionals from g
to the reals. We denote the map by hv,Qi 2 R, where
v 2 g⇤ and Q 2 g.

As it is well known, there exists a natural group action
on the Lie algebra, the adjoint representation Adgg:

Adg(Q) =
d

d⌧
(g · e⌧Q · g�1)|⌧=0 , (23)

which in turn induces another one on the dual space g⇤,
the coadjoint representation Ad⇤

g
g⇤, implicitly defined by:

hAd⇤
g
g⇤, gi ⌘ hg⇤, Adg�1gi , (24)

Having defined the instantaneous gate (8) and the MC
form (9), and given an element v 2 g⇤, the geometric
action is:

IGeometric = p

Z
d⌧ hAd⇤

g(⌧)
v,Q(⌧)i = p

Z
d⌧ hv, Q̃(⌧)i .

(25)
The intuition is that v defines a state, as in (10). We can
evolve it by a coadjoint transformation and compute Q
or transform Q to Q̃ and compute the expectation value
in the original state.

A deeper and more physical origin goes as follows. The
coadjoint representation defines orbits in the dual space.
Each orbit, represented by some v 2 g⇤, contains all ele-
ments that can be reached by a coadjoint transformation

of v. If the stabilizer of v is H ⇢ G, the fundamental
observation, see [30] and [33], is that each orbit G/H is
a symplectic manifold, in which an invariant and non-
degenerate symplectic form can be defined, the Kirillov-
Konstant form:

⌦ =
1

2
hv, dQi . (26)

This form is closed, and locally it can written as ⌦ = d↵,
with ↵ = hv,Qi. Therefore, the coadjoint orbit G/H
defines a phase space, and the natural action is the line
element:

IG[g, v] = p

Z

�

↵ = p

Z
d⌧ hAd⇤

g(⌧)
v,Q(⌧)i , (27)

where � is a path on the coadjoint orbit.
Kirilov orbit method can be applied to the Virasoro

group [28, 32]. The Maurer-Cartan form is given by:

Q̃ =

 
ḟ
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!
, (28)

and the geometric action reads:

IVirasoro =
1

2⇡

Z
d⌧ d�

ḟ

f 0

 
b(�) +

c

24
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!
. (29)

The b(�) labels the orbit and we can identify it with the
expectation value of T : b(�) = hh|T (�)|hi = h � c/24 .
The second contribution can be identified with the first
term of the Schwarzian derivative and, as functional for
f , this action is equivalent to (21) (see also next section).
Some aspects of these actions were used recently in
connection SYK holography in [35–37] and Virasoro
Berry phases [38].

V. 2d Gravity. Finally, let us finish with gravity
perspective on the above discussions. The important ob-
ject for us will be the action of (induced) gravity in two
dimension introduced by Polyakov [29]

SP [g] =
c

24⇡

Z
d2x

p
g

✓
�
1

4
R

1

⇤R+ ⇤

◆
, (30)

where R is the Ricci scalar curvature of the local metric
g on any two dimensional Riemann surface with coordi-
nates xi, 1/⇤ is the inverse of the Laplace-Beltrami oper-
ator and ⇤ represents the cosmological constant. This ac-
tion arises universally whenever we couple a 1+1 d CFT
to gravity and then integrate out ”matter” fields hence
c in front of the action is the central charge of the CFT.
This action has a long history but here we will only re-
call some of its classical features that are important in
our complexity story.
Firstly, consider the following (Polyakov’s [29]) choice

of the metric (gauge)

ds2 = d⌧ (d�̃ + µ(⌧, �̃) d⌧) = G0(⌧,�)d⌧d�, (31)
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This is our large-c complexity functional for paths
f(⌧,�) between identity and a given final transformation
f(T,�) = f(�).
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the level of the classical equations of motion there is no
di↵erence between both choices.
These two functionals can now be extremized and the
equations of motion determine the optimal circuit with
lowest complexity. For this classical variational problem,
it is actually su�cient to consider only the first part of
the Schwarzian, the (f 00/f 0)0 term, which (see [34] and
also below) makes this action equivalent to the geometric
action on the Virasoro co-adjoint orbits, as we discuss
now.
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ric quantization. The framework starts with a group G
and a path in the group g(⌧). As described in sec I, as-
sociated to such path we have the instantaneous gate (8)
and the Maurer-Cartan form (9), objects that belong to
the Lie algebra g of G . Also, associated to g, we have
its dual space g⇤, the space of linear functionals from g
to the reals. We denote the map by hv,Qi 2 R, where
v 2 g⇤ and Q 2 g.

As it is well known, there exists a natural group action
on the Lie algebra, the adjoint representation Adgg:

Adg(Q) =
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v,Q(⌧)i = p
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(25)
The intuition is that v defines a state, as in (10). We can
evolve it by a coadjoint transformation and compute Q
or transform Q to Q̃ and compute the expectation value
in the original state.

A deeper and more physical origin goes as follows. The
coadjoint representation defines orbits in the dual space.
Each orbit, represented by some v 2 g⇤, contains all ele-
ments that can be reached by a coadjoint transformation

of v. If the stabilizer of v is H ⇢ G, the fundamental
observation, see [30] and [33], is that each orbit G/H is
a symplectic manifold, in which an invariant and non-
degenerate symplectic form can be defined, the Kirillov-
Konstant form:

⌦ =
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hv, dQi . (26)

This form is closed, and locally it can written as ⌦ = d↵,
with ↵ = hv,Qi. Therefore, the coadjoint orbit G/H
defines a phase space, and the natural action is the line
element:

IG[g, v] = p
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d⌧ hAd⇤

g(⌧)
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where � is a path on the coadjoint orbit.
Kirilov orbit method can be applied to the Virasoro
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The b(�) labels the orbit and we can identify it with the
expectation value of T : b(�) = hh|T (�)|hi = h � c/24 .
The second contribution can be identified with the first
term of the Schwarzian derivative and, as functional for
f , this action is equivalent to (21) (see also next section).
Some aspects of these actions were used recently in
connection SYK holography in [35–37] and Virasoro
Berry phases [38].

V. 2d Gravity. Finally, let us finish with gravity
perspective on the above discussions. The important ob-
ject for us will be the action of (induced) gravity in two
dimension introduced by Polyakov [29]
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where R is the Ricci scalar curvature of the local metric
g on any two dimensional Riemann surface with coordi-
nates xi, 1/⇤ is the inverse of the Laplace-Beltrami oper-
ator and ⇤ represents the cosmological constant. This ac-
tion arises universally whenever we couple a 1+1 d CFT
to gravity and then integrate out ”matter” fields hence
c in front of the action is the central charge of the CFT.
This action has a long history but here we will only re-
call some of its classical features that are important in
our complexity story.
Firstly, consider the following (Polyakov’s [29]) choice

of the metric (gauge)

ds2 = d⌧ (d�̃ + µ(⌧, �̃) d⌧) = G0(⌧,�)d⌧d�, (31)

And the geometric action

A

Where b = h�|T |�i = �� c/24

As shown by AS, this action can be written as SL(2,R) WZW and also as 
Polyakov action where

G = exp(
p
2aF )

Nielsen action=Polyakov action!



Summary:

• We formulated Nielsen Complexity for Virasoro symmetry gates 

• With “natural" choices of “gates and costs” we can show that the complexity function is 
equivalent to the geometric action on the Virasoro coadjoint orbits and also the Polakov 
action for 2d gravity  

• Alt: We propose to think about complexity in terms of geometric actions on coadjoint orb. 

• For CFT we have two copies which can be written as Liouville action. 

• Many possible generalizations and still a lot to explore/understand. 

• A first steps towards circuit “complexity” for 2d CFTs at arbitrary c 

• Relations with other proposals? 



Conclusions

• A new proposal for AdS/(c)TN and “PI Complexity” at any c! 

• Classical geometries from Minimization of PI Complexity.  

• Applications to TN ([A.Milsted,G.Vidal…]) 

• Complexity <=> Dynamics of Geometry (Gravity) 

• Universal gates in CFT implement conformal transformations 

• Liouville -> Cost in terms of the symplectic form on diff(S1)/S1 or /SL(2,R) 

• Cost ~ Schwarzian type action -> Liouville 

• Natural generalizations: Kac-Moody,W3 (Toda), BMS, Coherence groups 

• CS-language, 3d Gravity, Banados geometries?
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