Mitsutoshi Fujita (Sun Yat-Sen University) Collaborators: R. Meyer, S. Pujari, and M. Tezuka

arXiv: 1805.12584 [hep-th] References: MF-Harrison-Karch-Meyer-Paquette, JHEP04(2015)068

A holographic defect lattice in the probe limit

Dictionary of the holographic lattice in the probe limit

Impurity in a lattice site

D5 branes on an AdS_2 slice

An interesting lattice formulation such as the dimerization transition in the probe limit
 Kachru-Karch-Yaida ``09, 10

 A holographic Kondo model:
 A holographic AdS₂ superconductor coupled to an AdS₃ metallic state

Picture taken from Kachru-Karch-Yaida

Erdmenger-Hoyos-O'Bannon-Wu ``13

 A holographic Kondo model with two impurities (RKKY interactions) O'Bannon-Papadimitriou-Probst ``15

- A holographic dual to the Bose-Hubbard model
- Effective hopping in a holographic Bose-Hubbard model on 2-site
- A top-down Hubbard model
- Effective hopping in the large N Bose-Hubbard model on 2-site

A holographic dual to the Bose-Hubbard Model

- Bose-Hubbard model as the effective theory on an optical lattice, including the hopping term + Short-range repulsive interactions U
 - \diamond The extension to the *SU(N)* Bose-Hubbard model

Conjecture of *MF-Harrison-Karch-Meyer-Paquette*, `14

$H = -w \sum_{\langle ij \rangle} (b_{ai}^{\ \dagger} b_{aj} + b_{aj}^{\ \dagger} b_{ai})$
$-\mu \sum_{j} n_{j} + \frac{U}{2} \sum_{j} n_{j} (n_{j} - 1), n_{i} = b_{ai}^{\dagger} b_{ai}$

Dual Gravity Side	Large N Bose-Hubbard model
$A_{t,i}$	μ (chemical potential) & $b_i^{a\dagger}b_{ia}$ (occupation number)
$\phi_{i,j}$	$t_{\rm hop}$ (hopping amplitude) & $b_i^{a\dagger}b_{ja}$ (hopping operator)
hard wall cut-off $u_{\rm h}$	U (on-site Coulomb interaction)

♦ Realization of the lobe-shaped
 phase structure, zero modes, etc..

A motivation: computation of the effective hopping

To compute the VEV of the hopping term in both sides of the duality concretely and compare them on 2-site

A top-down Holographic Hubbard model and the effective hopping?

 The effective hopping and the Jordan-Wigner transformation

- A holographic dual to the Bose-Hubbard model
- Effective hopping in a holographic Bose-Hubbard model on 2-site
- A top-down Hubbard model
- Effective hopping in the large N Bose-Hubbard model on 2-site

Effective hopping in the homogeneous phase

- ★ The effective hopping VEV= dF/dt_{hop} (F is free energy) with the IR boundary condition (Dirichlet b.c. on φ)
 ♦ fixed even occupation numbers & fixed IR parameters
- Results and features:
 - ♦ Bi-local's VEV approaches zero as $\sim -4\rho^2 t_{hop}/U \text{ at large } U/t_{hop}$
 - ρ : charge density

- ♦ The VEVs do not coincide at large t_{hop}/U (the transition to superfluidity?)
- \Rightarrow *M* corresponds to the anomalous dimension. The hopping term becomes relevant or irrelevant depending on *M*.

Effective hopping in the nonhomogeneous phase

- The more relevant VEV in the non-homogeneous phase
 - ♦ Fixed odd occupation numbers
 - ♦ Dirichlet (or Neumann) boundary condition
- Results and features: Smaller VEV in the non-homogeneous phase & Neumann b.c.
 - ♦ Dirichlet b.c. suits the actual Bose-Hubbard model

- A holographic dual to the Bose-Hubbard model
- Effective hopping in a holographic Bose-Hubbard model on 2-site
- A top-down Hubbard model
- Effective hopping in the large N Bose-Hubbard model on 2-site

A top-down holographic Hubbard model on 2-site

- ★ A previous approach of the holographic Hubbard model: the D3 and non-Abelian D5 system Kachru-Karch-Yaida `10
- $\label{eq:adds} \texttt{A} \ \texttt{D3-D7} \ \texttt{system} \Leftrightarrow AdS_5 \ \texttt{soliton} \times S^5 \ \texttt{and} \ \texttt{D7-brane} \ \texttt{at the tip}$
- * Inserting defect $n_F = 2$ non-Abelian D5 branes in this D3-D7 system
 - ♦ The induced hard wall metric arised in the solitonic geometry
 - ♦ No D5-anti D5 unlike a previous approach

	x^{0}	x^1	x^2	$x^3 = \tau$	$x^4 = u$	x^5	x ⁶	x^7	x^8	x^9
N_c D3	×	×	×	×	•	•	•	•	•	•
$k \mathrm{D7}$	×	×	×	•	•	×	×	×	×	×
n_F D5	×	•			×	×	×	×	×	

New Frontiers in String Theory 2018

Homogeneous and non-homogeneous phase (non-Abelian generalization)

$$A_b = \operatorname{diag}(a_b^{(1)}, a_b^{(2)}), \quad \theta = \operatorname{diag}(\theta_{11}, \theta_{22}), \quad \Phi^{x_1} = \begin{pmatrix} 0 & w^{x_1} \\ \bar{w}^{x_1} & 0 \end{pmatrix}$$

- ♦ The homogeneous phase: $a_b^{(1)} = a_b^{(2)}$, $\theta_{11} = \theta_{22}$
 - ♦ The eigenvalues of Φ^{x1} are $\pm |w^{x1}|$, which is the separation
- ♦ The inhomogeneous phase: $a_b^{(1)} ≠ a_b^{(2)}$, $θ_{11} ≠ θ_{22}$
 - ♦ The eigenvalues of Φ^{x1} are $\pm |w^{x1}|$

New Frontiers in String Theory 2018

12

Homogeneous and non-homogeneous phase (non-Abelian generalization)

Symmetry breaking: $U(2) \rightarrow U(1)_b$

- ♦ The homogeneous phase: $a_b^{(1)} = a_b^{(2)}$, $\theta_{11} = \theta_{22}$
 - ♦ The eigenvalues of Φ^{x1} are $\pm |w^{x1}|$, which is the separation
- ♦ The inhomogeneous phase: $a_b^{(1)} ≠ a_b^{(2)}$, $θ_{11} ≠ θ_{22}$
 - ♦ The eigenvalues of Φ^{x_1} are $\pm |w^{x_1}|$

Features of the top-down Fermi Hubbard model

Te	op-E	lown	Fermi	Hub	bard
				IIUN	Julu

 $n_F U(1)$ fields and bi-fundamentals w_i

Bi-fundamental's mass $(ML)^{2=2}$

Quantized number of F1 sting n_i , Camino-Paredes-Ramallo `01

Near half filling state $(n_i = N/2)$

Brane tension O(N) close to equator

- * Similar to a holographic large N Bose-Hubbard model: In the large spin N limit, statistics of bosons and fermions are the same.
- * Free energy at the half filling realizes on-site interaction term with $U \sim u_h / N$.
 - \diamond Hopping term generated from the bi-fundamental w_i
 - $\diamond \text{ Large } N \text{ scaling: } F \sim O(N), n_j \sim O(N), \langle c_{1,\alpha}^{\dagger} c_{2,\alpha} + c. c. \rangle \sim O(N)$

- A holographic dual to the Bose-Hubbard model
- Effective hopping in a holographic Bose-Hubbard model on 2-site
- A top-down Hubbard model

2018/07/12

• Effective hopping in the large N Bose-Hubbard model on 2-site

Effective hopping in the large N Bose-Hubbard model on 2-site

Numerical result of VEV of hopping term fixing the particle number

Left (2N particles): Mott insulator phase in even # of particles system at large U (VEV $\sim 1/U$)

Right (*3N* particles): VEV non-zero at large U in the system of odd # of particles \Leftrightarrow Dirichlet b.c. gravity?

Quantum Mechanics for N particles

- * For *N* distinguished particles, the Hilbert space for the fermionic Hubbard model is same as the one of the Bose Hubbard model.
 - The Jordan-Wigner transformation: The hopping VEV for two cases are equal each other
 - ♦ The hopping VEV : -(m+1)t for odd N=2m+1 and t<<1: $-m(m+1)t^2/U$ for even N=2m and t<<1

Discussion

 Comparison of ⟨c[†]_{1,α}c_{2,α}+c_{1,α}c[†]_{2,α}⟩: The gravity dual realizes the second order perturbation theory of the Bose-Hubbard model (large U/t_{hop})

- Smaller VEV in the non-homogeneous phase & Neumann b.c.
 A Dirichlet b.c. suits the actual Bose-Hubbard model
- ✤ A top down D3/D5/D7 system
 - ♦ Symmetry breaking: $U(2) \rightarrow U(1)_b$
 - Identification between Fermi-Hubbard at half filling and topdown model in the homogeneous phase

Thank you!