Can we study real time dynamics of string theory?

Masanori Hanada

Boulder → Southampton

July 2, 2018 @ YITP

QFT = Black Holography Holography Hole

QFT = Black Holography Hole

For imaginary time, lattice simulation is powerful and probably the only practical tool in generic situation. (Enrico Rinaldi's talk next week)

(Euclidean simulation is nice) but I want to know real time dynamics. Lattice gauge theory doesn't work, does it?

(Joe Polchinski \rightarrow MH, 2013)

(Euclidean simulation is nice) but I want to know real time dynamics. Lattice gauge theory doesn't work, does it?

(Joe Polchinski → MH, 2013)

Challenge accepted

(Euclidean simulation is nice) but I want to know real time dynamics. Lattice gauge theory doesn't work, does it?

(Joe Polchinski → MH, 2013)

Challenge accepted

That was (not a challenge but) a wish list :).

(Joe Polchinski \rightarrow MH, 2015)

We should consider all possibilities, not necessarily lattice gauge theory.

- Quantum simulation? 10-20 minutes
- Classical Yang-Mills? 30-40 minutes
- Classical Yang-Mills + quantum effect? 0-5 minutes
- Or better ideas?

coffee break, or tonight before **e** (3:00 am)

Quantum Simulation?

QFT = Black Holography Holography Hole

'the other world'

Our world with gravity

'Hamiltonian engineering' on optical lattice

- A kind of problem-specific quantum simulation.
- Trap cold atoms by lasers and introduce appropriate interaction.
- Then Nature takes care of quantum time evolution.
- Perform measurement.

• Physical realization of a black hole.

- Physical realization of a black hole.
- Having actual physical one is (probably) more fun.

- Physical realization of a black hole.
- Having actual physical one is (probably) more fun.

BBC Sign in

The Japanese men happy with 'virtual girlfriends'

Japanese women are having fewer babies than ever before - and if this continues, **by 2060 the population of the world's third largest economy will shrink by a third.** But are immature and commitment-averse Japanese men to blame?

©Bloomberg

- Physical realization of a black hole.
- Having actual physical one is (probably) more fun.

BBC Sign in

The Japanese men happy with 'virtual girlfriends'

Japanese women are having fewer babies than ever before - and if this continues, **by 2060 the population of the world's third largest economy will shrink by a third.** But are immature and commitment-averse Japanese men to blame?

• What I cannot create, I do not understand.

Of course, Feynman did not literally mean to 'create'.

'What I cannot create, I do not understand.' \sim derive

'Know how to solve every problem that has been solved.'

Of course, Feynman did not literally mean to 'create'.

'What I cannot create, I do not understand.' \sim derive

'Know how to solve every problem that has been solved.'

But how can we 'solve' QFT and get actual numbers?

Of course, Feynman did not literally mean to 'create'.

'What I cannot create, I do not understand.' \sim derive

'Know how to solve every problem that has been solved.'

But how can we 'solve' QFT and get actual numbers?

Unless we create, we will not understand. (Maybe.)

What do you mean, Doc? All the best stuff is made in Japan.

(Steven Spielberg, 1990)

What do you mean, Doc? All the best stuff is made in Japan.

(Steven Spielberg, 1990)

I. Danshita (Kindai U.)

B. Sundborg (Stockholm U.)

N. Wintergerst (Niels Bohr Institute)

S. Nakajima M. Tezuka

(Kyoto U.)

(1) 'In Principle' realization of SYK

(Danshita, MH, Tezuka, 2016)

(2) More realistic realization of 3d Gross-Neveu

(Danshita, MH, Nakajima, Sundborg, Tezuka, Wintergerst, at very elementary stage)

Complex SYK model

$$\hat{H} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ij,kl} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}$$
$$\{\hat{c}_{i}, \hat{c}_{j}\} = \{\hat{c}_{i}^{\dagger}, \hat{c}_{j}^{\dagger}\} = 0, \qquad \{\hat{c}_{i}^{\dagger}, \hat{c}_{j}\} = \delta_{ij}$$

$$J_{ij,kl} = -J_{ji,kl} = -J_{ij,lk}, \ J_{ij,kl} = J_{kl,ij}^*$$

Trap fermionic atoms in optical lattice and introduce appropriate interactions.

 $J_{ij,kl}\hat{c}_i^{\dagger}\hat{c}_j^{\dagger}\hat{c}_k\hat{c}_l$

 $J_{ij,kl}\hat{c}_i^{\dagger}\hat{c}_j^{\dagger}\hat{c}_k\hat{c}_l$

- In principle doable, but in practice, too many lasers are needed.
- There are several proposals by now.

arXiv:1607.08560

arXiv:1702.04426

arXiv:1703.06890

arXiv:1802.00802

 $0.6 \\ 0.7$

L. García-Álvarez, I. L. Egusquiza, L. Lamata, A. del Campo, J. Sonner, and E. Solano, "Digital Quantum Simulation of Minimal AdS/CFT", PRL 119, 040501 (2017)

D. I. Pikulin and M. Franz, "Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System", PRX 7, 031006 (2017)

Aaron Chew, Andrew Essin, and Jason Alicea, "Approximating the Sachdev-Ye-Kitaev model with Majorana wires", PRB **96**, 121119(R) (2017) Anffany Chen, R. Ilan, F. de Juan, D.I. Pikulin, M. Franz, "Quantum holography in a graphene flake with an irregular boundary", arXiv:1802.00802

- In principle doable, but in practice, too many lasers are needed.
- There are several proposals by now.
- Higher spin gravity may be a more tractable target.

SU(N) Gross-Neveu model

$$\mathcal{L} = i\bar{\psi}_a \partial \psi_a + \left(\bar{\psi}_a \psi_a\right)^2$$

SU(N) Hubbard model

$$\hat{H} = -t \sum_{\langle i,j \rangle} \sum_{a=1}^{N} \left(\hat{c}_{ia}^{\dagger} \hat{c}_{ja} + \hat{c}_{ja}^{\dagger} \hat{c}_{ia} \right) + U \sum_{i} \left(\sum_{a=1}^{N} \hat{c}_{ia}^{\dagger} \hat{c}_{ia} \right)^{2}$$

Hubbard on honeycomb lattice is believed to be 3d Gross-Neveu.

SU(N) Gross-Neveu model

$$\mathcal{L} = i\bar{\psi}_a \partial \!\!\!/ \psi_a + \left(\bar{\psi}_a \psi_a\right)^2$$

SU(N) Hubbard model

tunable by changing the depth of potential

Hubbard on honeycomb lattice is believed to be 3d Gross-Neveu.

$$\hat{H} = -t \sum_{\langle i,j \rangle} \sum_{a=1}^{N} \left(\hat{c}_{ia}^{\dagger} \hat{c}_{ja} + \hat{c}_{ja}^{\dagger} \hat{c}_{ia} \right) + U \sum_{i} \left(\sum_{a=1}^{N} \hat{c}_{ia}^{\dagger} \hat{c}_{ia} \right)^{2}$$

potential deep \rightarrow less tunneling \rightarrow small *t* potential shallow \rightarrow more tunneling \rightarrow large *t*

potential deep \rightarrow wave function more peaked \rightarrow more overlap on the same site \rightarrow large U

potential shallow \rightarrow wave function spreads \rightarrow less overlap on the same site \rightarrow small U

U/t is tunable

large U/t

anti-ferromagnet spins cannot move

critical point = Gross-Neveu spins can move easily

'half-filling': $\#(c_1) = ... = \#(c_N) = \#(site)/2$

large U/t

anti-ferromagnet spins cannot move

critical point = Gross-Neveu spins can move easily

- SU(N) Hubbard Model is experimentally realized by now.
- Honeycomb optical lattice is also realized.

3d Gross-Neveu is within reach?

Quantum Optics Group Research Research 我々は希土類のイッテルビウム (Ytterbium,Yb) 原子に世界 に先駆けて注目し、そのレーザー冷却・量子縮退に成功しま した。現在は得られた低温、高密度の原子気体を用いて様々 な物理現象の観測、研究を行っています。 研究室内ではいくつかのテーマに沿ってグループを組み、 実験を行っています。現在は次のような研究グループに分か れ日々研究に励んでいます。 Quantum NonDemolition Quantum Anderson Kyoto University Back Simulation Localization Measurement **Department of Physics** 光格子による量子シミュレーション ― 光の結晶に原子を閉じ込めた仮想固体 Quantum Optics Group

SU(N) 🖌

honeycomb not yet
Ytterbium, 70Yb

Isotopes of Ytterbium

Nuclide symbol	Z(p)	N(n)	Isotopic mass (u)	Half-life	Decay mode(s) ^{[3][n 1]}	Daughter isotope(s) ^[n 2]	Nuclear spin and	Representative isotopic composition	Range of natural variation
	Excitation energy						parity	(mole fraction)	(mole fraction)
¹⁴⁸ Yb	70	78	147.96742(64)#	250# ms	β+	¹⁴⁸ Tm	0+		
¹⁴⁹ Yb	70	79	148.96404(54)#	0.7(2) s	β+	¹⁴⁹ Tm	(1/2+,3/2+)		
¹⁵⁰ Yb	70	80	149.95842(43)#	700# ms [>200 ns]	β+	¹⁵⁰ Tm	0+		
¹⁵¹ Yb	70	81	150.95540(32)	1.6(5) s	β+	¹⁵¹ Tm	(1/2+)		
					β ⁺ , p (rare)	¹⁵⁰ Er			
151m1vb	^{151m1} Yb 750(100)# keV		0 $\#$ k_0 $/$	1.6(5) s	β+	¹⁵¹ Tm	(11/2–)		
TD			U)# KeV		β ⁺ , p (rare)	¹⁵⁰ Er			
^{151m2} Yb	1790(500)# keV			2.6(7) µs			19/2#		
^{151m3} Yb	2450(500)# keV			20(1) µs			27/2-#		
¹⁵² Yb			151.95029(22)	3.04(6) s	β+	¹⁵² Tm	0+		
	70	82			β+, p (rare)	¹⁵¹ Er			
¹⁵³ Yb	70	83	152.94948(21)#	4.2(2) s	a (50%)	¹⁴⁹ Er	7/2-#		
					β+ (50%)	¹⁵³ Tm			
					β+, p (.008%)	¹⁵² Er			
^{153m} Yb	2700(100) keV			15(1) μs			(27/2–)		
¹⁵⁴ Yb	70	84	153.946394(19)	0.409(2) s	a (92.8%)	¹⁵⁰ Er	0+		
					β+ (7.119%)	¹⁵⁴ Tm			
¹⁵⁵ Yb	70	85	154.945782(18)	1.793(19) s	a (89%)	¹⁵¹ Er	(7/2–)		
					β+ (11%)	¹⁵⁵ Tm			
¹⁵⁶ Yb	70	86	155.942818(12)	26.1(7) s	β+ (90%)	¹⁵⁶ Tm	0+		
					a (10%)	¹⁵² Er			
¹⁵⁷ Yb	70	87	156.942628(11)	38.6(10) s	β+ (99.5%)	¹⁵⁷ Tm	7/2-		
					α (.5%)	¹⁵³ Er			
¹⁵⁸ Yb	70	88	157.939866(9)	1.49(13) min	β+ (99.99%)	¹⁵⁸ Tm	0+		
					a (.0021%)	¹⁵⁴ Er			
¹⁵⁹ Yb	70	89	158.94005(2)	1.67(9) min	β+	¹⁵⁹ Tm	5/2(-)		

¹⁶⁰ Yb	70	90	159.937552(18)	4.8(2) min	β+	¹⁶⁰ Tm	0+	
¹⁶¹ Yb	70	91	160.937902(17)	4.2(2) min	β+	¹⁶¹ Tm	3/2-	
¹⁶² Yb	70	92	161.935768(17)	18.87(19) min	β+	¹⁶² Tm	0+	
¹⁶³ Yb	70	93	162.936334(17)	11.05(25) min	β+	¹⁶³ Tm	3/2-	
¹⁶⁴ Yb	70	94	163.934489(17)	75.8(17) min	EC	¹⁶⁴ Tm	0+	
¹⁶⁵ Yb	70	95	164.93528(3)	9.9(3) min	β+	¹⁶⁵ Tm	5/2-	
¹⁶⁶ Yb	70	96	165.933882(9)	56.7(1) h	EC	¹⁶⁶ Tm	0+	
¹⁶⁷ Yb	70	97	166.934950(5)	17.5(2) min	β+	¹⁶⁷ Tm	5/2-	
¹⁶⁸ Yb	70	98	167.933897(5)	Observationally Stable ^[n 3]		0+	0.0013(1)	
¹⁶⁹ Yb	70	99	168.935190(5)	32.026(5) d	EC	¹⁶⁹ Tm	7/2+	
^{169m} Yb	2	4.199	(3) keV	46(2) s	п	¹⁶⁹ Yb	1/2-	
¹⁷⁰ Yb	70	100	169.9347618(26)	Observationally Stable ^[n 4]		e ^[n 4]	0+	0.0304(15)
^{170m} Yb	1	258.4	6(14) keV	370(15) ns			4–	
¹⁷¹ Yb	70	101	170.9363258(26)	Observ	ationally Stabl	e ^[n 5]	1/2-	0.1428(57)
^{171m1} Yb	95.282(2) keV		(2) keV	5.25(24) ms	IT	¹⁷¹ Yb	7/2+	
^{171m2} Yb	122.416(2) keV		6(2) keV	265(20) ns			5/2-	
¹⁷² Yb	70 102 171.9363815(26)		171.9363815(26)	Observationally Stable ^[n 6]			0+	0.2183(67)
¹⁷³ Yb	70 103 172.9382108(26)		172.9382108(26)	Observationally Stable ^[n 7]			5/2-	0.1613(27)
^{173m} Yb	3	98.9(5	ō) keV	2.9(1) µs			1/2-	
¹⁷⁴ Yb	70	104	173.9388621(26)	Observationally Stable ^[n 8]		e ^[n 8]	0+	0.3183(92)
¹⁷⁵ Yb	70	105	174.9412765(26)	4.185(1) d	β-	¹⁷⁵ Lu	7/2-	
^{175m} Yb	5	14.86	5(4) keV	68.2(3) ms			1/2-	
¹⁷⁶ Yb	70	106	175.9425717(28)	Observ	ationally Stabl	e ^[n 9]	0+	0.1276(41)
^{176m} Yb	1050.0(3) keV		(3) keV	11.4(3) s			(8)-	
¹⁷⁷ Yb	70	107	176.9452608(28)	1.911(3) h	β-	¹⁷⁷ Lu	(9/2+)	
^{177m} Yb	331.5(3) keV		3) keV	6.41(2) s	IT	¹⁷⁷ Yb	(1/2–)	
¹⁷⁸ Yb	70	108	177.946647(11)	74(3) min	β-	¹⁷⁸ Lu	0+	
¹⁷⁹ Yb	70	109	178.95017(32)#	8.0(4) min	β-	¹⁷⁹ Lu	(1/2–)	
¹⁸⁰ Yb	70	110	179.95233(43)#	2.4(5) min	β-	¹⁸⁰ Lu	0+	
¹⁸¹ Yb	70	111	180 95615(43)#	1# min	ß-	181	3/2-#	
	70		100.00010(40)#		P	20		

(Wikipedia)

stable, spin $5/2 \longrightarrow SU(6)$

• SU(2), SU(4), SU(6), SU(8), SU(10) are doable with Strontium etc

Lattice gauge theory on optical lattice?

Cirac (Max Planck), Zoller (Innsbruck), Wiese (Bern), Reznik (Tel Aviv), ...

(try to) construct Kogut-Susskind Hamiltonian

Kogut-Susskind, 1974

- hard to implement matrix d.o.f.
- but let's stay tuned.

- Quantum simulation?
- Classical Yang-Mills?

Aoki-MH-Iizuka, JHEP 2015 Gur Ari-MH-Shenker, JHEP 2016 Berkowitz-MH-Maltz, PRD 2016 MH-Romatschke, in preparation

R

- Classical Yang-Mills + quantum effect?
- Or better ideas?

- In AdS/CFT, weak and strong couplings are often very similar.
- D0, D1, D2: weak coupling \sim high temperature;

classical simulation can be useful.

• Studies of classical D0-brane matrix model suggested it is

useful at least for thermalization and equilibrium physics.

Asplund, Berenstein, Trancanelli,..., 2011-

D0-brane quantum mechanics

$$\begin{split} S &= \frac{N}{\lambda} \int_0^{\beta = 1/\mathrm{T}} dt \ Tr \Big\{ \frac{1}{2} (D_t X_i)^2 - \frac{1}{4} [X_i, X_j]^2 \\ &+ \frac{1}{2} \bar{\psi} D_t \psi - \frac{1}{2} \bar{\psi} \gamma^i [X_i, \psi] \Big\} \overset{\text{negligible}}{\xrightarrow{}} \overset{\text{negligible}}{\xrightarrow{} \overset{\text{negligible}}{\xrightarrow{}} \overset{\text{negligib$$

(dimensional reduction of 4d N=4 SYM)

effective dimensionless temperature $T_{eff} = \lambda^{-1/3}T$

($\lambda^{-1/2}T$ for DI, $\lambda^{-1}T$ for D2)

high-T = weak coupling = stringy (large α ' correction)

string

$$L = \frac{1}{2g_{YM}^2} \operatorname{Tr}\left(\sum_{i} (D_t X^i)^2 + \frac{1}{2} \sum_{i \neq j} [X_i, X_j]^2\right)$$
$$\longrightarrow \begin{cases} \frac{d^2 X^i}{dt^2} - \sum_{j} [X^j, [X^i, X^j]] = 0\\ \sum_{i} \left[X^i, \frac{dX^i}{dt}\right] = 0 \quad (A=0 \text{ gauge}) \end{cases}$$

discretize & solve it numerically.

black p-brane solution (Horowitz-Strominger 1991)

$$ds^{2} = \alpha' \left\{ \frac{U^{\frac{7-p}{2}}}{g_{YM}\sqrt{d_{p}N}} \left[-\left(1 - \frac{U_{0}^{7-p}}{U^{7-p}}\right) dt^{2} + \sum_{i=1}^{p} dy_{i}^{2} \right] \right. \\ \left. + \frac{g_{YM}\sqrt{d_{p}N}}{U^{\frac{7-p}{2}} \left(1 - \frac{U_{0}^{7-p}}{U^{7-p}}\right)} dU^{2} + g_{YM}\sqrt{d_{p}N}U^{\frac{p-3}{2}} d\Omega_{8-p}^{2} \right\}, \\ e^{\phi} = (2\pi)^{2-p}g_{YM}^{2} \left(\frac{g_{YM}^{2}d_{p}N}{U^{7-p}}\right)^{\frac{3-p}{4}}, \qquad d_{p} = 2^{7-2p}\pi^{\frac{9-3p}{2}}\Gamma\left(\frac{7-p}{2}\right),$$

$$T_{D0} = \frac{7}{4\pi\sqrt{d_0\lambda}} U_0^{\frac{5}{2}}$$

black p-brane solution

(Horowitz-Strominger 1991)

$$ds^{2} = \alpha' \left\{ \frac{U^{\frac{7-p}{2}}}{g_{YM}\sqrt{d_{p}N}} \left[-\left(1 - \frac{U_{0}^{7-p}}{U^{7-p}}\right) dt^{2} + \sum_{i=1}^{p} dy_{i}^{2} \right] >> 1 \text{ at } U = U_{0} \text{ for low-} T + \frac{g_{YM}\sqrt{d_{p}N}}{U^{\frac{7-p}{2}} \left(1 - \frac{U_{0}^{7-p}}{U^{7-p}}\right)} dU^{2} + \left[g_{YM}\sqrt{d_{p}N}U^{\frac{p-3}{2}}\right] d\Omega_{8-p}^{2} \right\},$$
$$e^{\phi} = (2\pi)^{2-p} g_{YM}^{2} \left(\frac{g_{YM}^{2}d_{p}N}{U^{7-p}}\right)^{\frac{3-p}{4}}, \qquad d_{p} = 2^{7-2p} \pi^{\frac{9-3p}{2}} \Gamma\left(\frac{7-p}{2}\right),$$

string 2

high-T

strinc

BΗ

BΗ

<< I at 't Hooft large N limit Iow-T

$$T_{D0} = \frac{7}{4\pi\sqrt{d_0\lambda}} U_0^{\frac{5}{2}}$$

Matrix Model 101

- Flat directions at classical level $[X_M, X_{M'}] = 0$
- Lifted by quantum effect (when fermion is negligible)

Matrix Model 101

- Flat directions at classical level $[X_M, X_{M'}] = 0$
- Lifted by quantum effect (when fermion is negligible)

Matrix Model 101

- Flat directions at classical level $[X_M, X_{M'}] = 0$
- Lifted by quantum effect (when fermion is negligible)

Flat direction is measure zero already in the classical theory

(Gur Ari-MH-Shenker; Berkowitz-MH-Maltz)

(also, probably D. Berenstein knew it)

Why no flat direction?

energy of *N*-th row & column ~ $\frac{1}{g^2} \sum_{i=1}^{d-1} \sum_{a=1}^{N-1} L^2 |X_{aN}^i|^2$

phase space
$$\sum_{i=1}^{d-1} \sum_{a=1}^{N-1} |X_{aN}^i|^2 \lesssim g^2 E/L^2$$
 suppression

phase space volume at $L > L_0$

$$\int_{L_0}^{\infty} \frac{L^{d-1} dL}{L^{2(d-1)(N-1)}} \sim \int_{L_0}^{\infty} \frac{dL}{L^{(d-1)(2N-3)}}$$

Finite! (exception: *d*=2, *N*=2)

smallest size of the wave packet in phase space

uncertainty grows

exponentially

 $\sim \hbar \sim N^0$

maximum uncertainty \sim size of the system $\sim \sqrt{N}$

Gur-Ari, M.H., Shenker, JHEP 2016

10

5

"scrambling time" t_s = (log N)/ λ_L ~ log N

Gur-Ari, M.H., Shenker, JHEP 2016

90

Lyapunov exponent @ large N

(D1 and D2 are similar)

1/N correction

(Gur Ari-MH-Shenker)

Quasinormal mode

(LIGO Scientific Collaboration and Virgo Collaboration, 2016)

 $\operatorname{Re}(e^{i\nu t}) \sim \cos(\nu_R t) e^{-\nu_I t}$ 4 N=6 3.5 N= 3 ****** 2.5 TrX²/N 2 1.5 1 0.5 0 2 3 5 6 7 8 9 10 4 0 1 t

 $\operatorname{Re}(e^{i\nu t}) \sim \cos(\nu_R t) e^{-\nu_I t}$ 4 N=6 N=8 3.5 N=12 3 *** +*** + **+ **+ 2.5 TrX²/N 2 1.5 slowest decaying mode 1 $\nu_R = 5.152(28) \times (\lambda T)^{1/4}$ $\frac{\nu_I}{\nu_R} = 0.0717(14)$ 0.5 0 2 3 4 5 6 7 9 8 0 1 10 t

 $\operatorname{Re}(e^{i\nu t}) \sim \cos(\nu_R t) e^{-\nu_I t}$ N=6 N=8 3.5 3 2.5 ** + ** TrX²/N 2 1.5 slowest decaying mode $\nu_R = 5.152(28) \times (\lambda T)^{1/4}$ $\frac{\nu_I}{\nu_R} = 0.0717(14)$ 0.5 0 3 5 6 4 7 9 8 0 10 1 t 'contaminated' by fast decaying modes رال $\sqrt{\frac{1}{N} \operatorname{Tr} X^2} \int$ $\nu_R = 4.63(22) \times (\lambda T)^{1/4}$

 $\frac{\nu_I}{\nu_B} = 0.183(33)$

Fourier modes

Black hole/black string topology change

MH-Romatschke

(From F. Pretorius's webpage)

D1 wrapped on S¹ gauge/gravity duality (1+1)-d SYM on S¹

Wilson line phase = location of D0

(e.g. Aharony-Marsano-Minwalla-Wiseman)

Conjectured phase diagram

Aharony-Marsano-Minwalla-Wiseman, Kawahara-Nishimura-Takeuchi, Catterall-Joseph-Wiseman, ...

Conjectured phase diagram

Aharony-Marsano-Minwalla-Wiseman, Kawahara-Nishimura-Takeuchi, Catterall-Joseph-Wiseman, ...

- Strictly speaking, classical YM is not well-defined — UV catastrophe problem
- It still works at early time, as long as energy localized at IR.

(wikipedia)

Black String →Black Hole Topology Change

(From F. Pretorius's webpage)

Black String →Black Hole Topology Change

GR is not enough.

• Classical \rightarrow Large α ' correction

• Large N \rightarrow No g_s correction

Can a' alone assist the topology change?

(From F. Pretorius's webpage)

T_{BS}, T_{BH} fixed (E_{BS}/N², E_{BH}/N² fixed)

T_{BS}, T_{BH} fixed (E_{BS}/N², E_{BH}/N² fixed)

T_{BS}, T_{BH} fixed (E_{BS}/N², E_{BH}/N² fixed)

a' correction is enough.

 T_{BS} , T_{BH} fixed (E_{BS}/N^2 , E_{BH}/N^2 fixed)

Quasinormal mode can be estimated

 T_{BS} , T_{BH} fixed (E_{BS}/N^2 , E_{BH}/N^2 fixed)

Gravity side (strong coupling in YM)

$$u_R \propto T, \, rac{
u_I}{
u_R} = {
m const} \quad ext{@Uniform black string phase}$$

(lizuka-Kabat-Lifschytz-Lowe, 2003)

 $(\sim (E/N^2)^{1/4}$ can be shown analytically at low and high energy regions)

- Quantum simulation?
- Classical Yang-Mills?
- Classical Yang-Mills + quantum effect?
- Or better ideas?

Buividovich-MH-Shaefer, in progress; EPJ Web Conf. 2018 Berkowitz-MH-Maltz, PRD 2016 Rinaldi-Berkowitz-MH-Maltz-Vranas, JHEP 2018

J. Maltz

P. Vranas

Can we confirm the expected quantum corrections?

'Gaussian state approximation' supports this picture.

Can we study black hole evaporation?

- SUSY assists the emission of D-branes.
- Effective potential acting on a probe brane can be estimated from Euclidean theory by Monte Carlo simulation.

Summary

- A lot of things to do.
- Let's make a black hole in a lab!
- Classical YM is already interesting and useful.
- Quantum effects in the weak coupling region is within reach.
- 'Hawking radiation' at high temperature is within reach.
- Your ideas will be appreciated!