Towards Entanglement of Purification for Conformal Field Theories

Hayato Hirai (Osaka Univ.)

Based on 1803.10539 (PTEP 2018 (2018) no.6, 063B03)

joint work with Kotaro Tamaoka, Tsuyoshi Yokoya

New Frontiers in String Theory 2018 July,12, 2018 @YITP, Kyoto

Entanglement of Purification (EoP)

Optimized solution is hard to find...

Optimized purification ?

Object having the information of EoP in CFT ?

Our proposal for holographic CFT₂ : $E_P = - \left. \frac{\partial}{\partial n} \mathcal{F}_{\sigma_n} \right|_{n \to 1}$, where \mathcal{F}_{σ_n} is conformal block of twist operator.

This proposal is based on "**some heuristic arguments using the tensor network model of holography**". We did **not** drive this formula from the def of EoP.

This formula agree with the **EoP=EWC (Entanglement Wedge Cross-section)** conjecture in holographic CFT₂. [Umemoto, Takayanagi '17] [Nguyen, Devakul, Halbasch, Zaletel, Swingle '17]

"Holographic code model"

[Pastawski, Yoshida, Harlow, Preskill '15]

duality map = Isometry map

$$\mathcal{H}_{bulk}
ightarrow \mathcal{H}_{bdry}$$

"Ryu-Takayanagi formula" [Ryu, Takayanagi '06]

W "Bulk (HKLL) reconstruction" [Hamilton, Kabat, Lifschytz, Lowe '06]

Holographic code model captures the entanglement structure in AdS/CFT duality.

[Nguyen, Devakul, Halbasch, Zaletel, Swingle '17]

EoP by "replica trick" with twist op on geodesic

Assume followings (abstractly)

duality with the deformed boundary,

=bdry of EW of A and B

• optimized purification $|\Psi_{opt}\rangle$ defined on the bdry of the EW of A and B. (c.f. Miyaji, Takayanagi '15)

 ϕ_n , $\overline{\phi}_n$: "(anti-)twist operator" acting on this purified state.

$$E_P(\rho_{AB}) = -\frac{\partial}{\partial n} \left\langle \Psi_{opt} | \phi_n \overline{\phi}_n | \Psi_{opt} \right\rangle \Big|_{n \to 1}$$

 $\mathsf{Boundary} = A \cup B \cup \overline{AB}$

 $\rho_{AB} = \frac{\mathrm{Tr}}{AB} |0\rangle \langle 0|$

Boundary $= A \cup B$ $\rho_{AB} = |0\rangle \langle 0|$:pure state

"Bulk (HKLL) reconstruction"

[Hamilton, Kabat, Lifschytz, Lowe '06]

$$E_P(\rho_{AB}) = -\frac{\partial}{\partial n} \langle \phi_n \bar{\phi}_n \rangle \Big|_{n \to 1} = -\frac{\partial}{\partial n} \mathcal{F}_{\sigma_n} \Big|_{n \to 1}$$

"bulk-bulk (twist) propagator" on geodesic

[Hijano, Kraus, Perlmutter, and Snively '15]

Conformal Block in large-c CFT

in which twist op appears as internal line.

Summary & Discussion

Our proposal for holographic CFT₂:

$$E_P(A:B) = -\frac{\partial}{\partial n} \mathcal{F}_{\sigma_n}\Big|_{n \to 1}$$
,where \mathcal{F}_{σ_n} :conformal block of twist operator.
This formula agree with EoP=EWC conjecture.

• We also studied the conformal blocks which give the EWC in static BTZ geometry in large-c limit.

Summary & Discussion

Our *proposal* for holographic CFT₂ :

$$E_P(A:B) = -rac{\partial}{\partial n} {\mathcal F}_{\sigma_n} \Big|_{n o 1}$$

,where \mathcal{F}_{σ_n} :conformal block of twist operator.

This formula agree with **EoP=EWC** conjecture.

- **Direct computation of EoP on cMERA ?**
- In higer dimensional CFT ?
- For more generic QFT ?