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{ Motivation }

° Structure of entanglement

o Useful characterization of a state (& dynamics) of a quantum system
o May play a fundamental role in dualities, e.g. holography

° Entanglement entropy (EE)

o Natural measure of entanglement
e But can be infinite (e.g. in local QFT)

e | inear combinations of EEs

o Interesting quantities (e.g. mutual information, tripartite information, ...)
o [hese can be finite, and their positivity/negativity is meaningful

* Relations (equalities & inequalities) between EEs

o Saturation gives Insight to entanglement structure
o Useful, but only a handful of classes of these are known

Q: How do we find / generate further entanglement relations?
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Examples of entanglement relations

° Universal:
o Sub-additivity (SA) S(A)+ S(B) > S(AB)
o Araki-Lieb (AL) SHUABTEE S AUB] = Ol U5)
o Strong sub-additivity (SSA) S(AB) + S(BC) = 5(B) + S(ABC)
» Weak monotonicity (WM) S(AB) + S(BC) > S5(A4) + S(C)

° [rue in holography:
o Monogamy of mutual information (MMI)
S(AB)+ S5(BC)+ S(CA) > S(A)+ S(B) + S(C) + S(ABC)
o S-region cyclic inequality (C5)
S(ABC')+ S(BCD)+ S(CDE)+ S(DEA)+ S(FAB)
> S(AB)+ S(BC)+ S(CD) + S(DE) = S{(EA =SS EHNa

o k-region cyclic inequality (Ck) for k=odd is obvious..
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{ -xamples of entanglement relations }

—

° Universal:
- Sub-additivity (SA) S(A) + S(B) > S(AB) )
o Araki-Lieb (AL) S(A)+ S(AB) > S(B)
o Strong sub-additivity (SSA) S(AB) + S(BC) = 5(B) + S(ABC) = SA+MMI
» Weak monotonicity (WM) S(AB) + S(BC) = S(4) + S(C) )

° [rue in holography:
o Monogamy of mutual information (MMI)

SN (BE) L S(CA) = S(A) L S(B)E s(@)Ns s e)

» Not all of these are independent = obtained by purification & relabeling
= redundant

(but also obtain more by relabeling...)
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QI interpretation

° Universal:
. Sub-additivity (SA) S(A) + S(B) > S(AB)
= Mutual Information I(A:B)=S(A)+S(B)—S(AB) >0

o Strong sub-additivity (SSA) S(AB) + S(BC) = 5(B) + S(ABC)
> Conditional mutual information I(A:C|B)=1(A: BC)—1(A:B) >0

° [rue in holography:
o Monogamy of mutual information (MMI)
S(AB) + S(BC)+ S(CA) > S(A)+ S(B)+ S(C)+ S(ABC)
= Tripartite information  I3(A: B:C)=I1(A:B)+I(A:C)—I(A: BC) <0

~ gives Interesting structure information on nature of entanglement in holography
cf. [Hayden, Headrick, Maloney]
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Proposal [RT=Ryu &Takayanagi,'06] for static configurations:

In the bulk, entanglement entropy S 4 for

a boundary region A is captured by the o

area of a minimal co-dimension-2 bulk A 0A

surface m at constant t anchored on M

entangling surface 9.4 & homologous to A —— /
Area(m) oAl m

P min
Z di—=aA 4GN

In time-dependent situations, R1T prescription needs to be covariantized:

I:HRT = VH, Rangamani, Takayanagi ‘O7:| minimal surface m N extremal surface ¢
at constant time in the full bulk

This gives a well-defined quantity

¢
In any (arbitrarily time-dependent e &= ==

asymptotically AdS) spacetime.
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Proof of Strong Subadditivity

° strong subaddrtivity:

W, = SA,u4, + Saina,

* proof In static configurations [Headrick & Takayanagi]

bdy

bulk

iy S =R S S DTG 1 A AL

° proof In time-dependent configurations also relatively easy — [Wall] using maximin;

cf. [Headrick, Hubeny, Lawrence, Rangamani]

* MMI proof is essentially identical... [Hayden, Headrick, Maloney]



Other holographic relations

° More inequalities were obtained In [Bao, Nezami, Ooguri, Stoica, Sully, Walter], e.g:

o 25(ABC)+S(ABD)+S(ABE)+S(ACD)+S(ADE)+S(BCE)+S(BDE) > S(AB)+
S(ABCD) + S(ABCE) + S(ABDE) + S(AC) + S(AD) + S(BC) + S(BE) + S(DE)

S(ABE)+S(ABC)+S(ABD)+S(ACD)+S(ACE)+S(ADE)+S(BCE)+S(BDE)+
(CDE) > S(AB) + S(ABCE) + S(ABDE) + S(AC) + S(ACDE) + S(AD) +
(BCD) + S(BE) + S(CE) + S(DE)
(

s
S

o S(ABC)+ S(ABD)+ S(ABE)+ S(ACD) + S(ACE) + S(BC) + S(DE) > S(AB) +
S(ABCD) + S(ABCE) + S(AC) + S(ADE) + S(B) + S(C) + S(D) + S(E)

o 3S(ABC) + 3S(ABD) + 3S(ACE) + S(ABE) + S(ACD) + S(ADE) + S(BCD) +
S(BCE) + S(BDE) + S(CDE) > 25(AB) + 2S(ABCD) + 2S(ABCE) + 25(AC) +
9S(BD) + 28(CE) + S(ABDE) + S(ACDE) + S(AD) + S(AE) + S(BC) + S(DE)

° But not proved by the above method (though found to be valid). ..
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* Define all entanglement entropies
o Consider partitioning of Hilbert space 7t = Ha @ Hp ©H 15

* Independent EEs ~ entropy vector S = {S(A),S(B),S(AB)}
o Lives in entropy space R*

° Entanglement Relations
sReclvity ot EEs - S(X) =0
B (B S (4B)
AL  S(A)+ S(AB) > S(B)

Q e ALy S(B)+ S(4AB) > S(A)
o positivity of EE Is redundant. ..
e SA+ALI+AL, form entropy cone

o specified by ‘extreme rays’
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* Partition Hilbert space
H=HaQHpHc

* Entropy space is R”:
e Entropy vector:
S ={S(A),S(B),S(C),S(AB),S(AC), S(BC), S(ABC)}
* (General form of information quantity (= entanglement entropy relation)
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-ntropy space for N parties

Partrtion Hilbert space into N factors
Entropy space is BRY with D =2"% —1
EHJEI”OPY vector 5 = {S(X)} where X is any collection of parties

General form of information quantity

Q(g) :qu S(X) (D terms)
X

Entropy relations specified by hyperplanes in entropy space:

-

Q(5) =0



{ Set of Information quantities }

° Mathematical framework to study information quantities
describing interesting EE relations

= arrangement of hyperplanes

» But In the present case all hyperplanes pass through the origin

o Allowed region forms a convex (polyhedral) cone Iin entropy space
 In holography studied by [Bao, Nezami, Ooguri, Stoica, Sully, Walter ' 5]



i

» Natural decomposition of Hilbert space = spatial regions
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[ ~ntanglement in QFT }

» Natural decomposition of Hilbert space = spatial regions

()

0A
0B

o bounded by entangling surfaces (later denoted by dA = aand JB =b)

° Entanglement entropy has a UV divergence

e ~ area of entangling surface
o can regulate by UV cutoft
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* Jwo options to ‘localize’ a configuration in entropy space:

|) Introduce a UV regulator:

bulk

/\ flh finite area ‘above’ &

[ \ .

bdy A B

o But position (& even direction) In entropy space Is cutoff-dependent:

cf:
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* Jwo options to ‘localize’ a configuration in entropy space:

|) Introduce a UV regulator:

bulk
/\ SRS 1o [{SRET e ElDcis £
[ \ :
bdy A B

o But position (& even direction) In entropy space Is cutoff-dependent:

AN

£1 (Qj) 1 e I 52(:5)

l ; 5

S(B) increases at const. S(A) S(A) increases at const. S(B)
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2) Consider multi-boundary wormholes:
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Position In entropy space

° [wo options to ‘localize’ a configuration in entropy space:

2) Consider multi-boundary wormholes:

Elo

Fig. from [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

Fach region covers one entire bdy (so # entangling surfs)

o But requires multiple CFTs...
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{ Hyperplanes }

° However, certain combinations of EEs (information quantities)

are UV-finite
o e.g for disjoint regions, any “balanced” 1Q i1s UV-finite

» Ex. saturation of SA: S(A)+ S(B) = S(AB)

i) 10

same parts of surfaces appear on both sides of the equality
= cancel out independently of the cutoff

= under varying cutoff, vectors gs(x) span lower-dimensional subspace of entropy space.

° Suggests hyperplanes are the natural / fundamental constructs
o [hink of RT for relations as operation on surfaces, not their areas...
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o 3 entangling surfaces: a,b,c

» 3 bulk surfaces, called correspondingly a, b, ¢

» (Construct entropy vector

SO)| A | B | C|AB|AC]|BC|ABC
a | |

b

C

K-y S(A) : Areala]

T
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» Consider simplest configuration w/ 3 uncorrelated regions
o 3 entangling surfaces: a,b,c

» 3 bulk surfaces, called correspondingly a, b, ¢

» (Construct entropy vector & read off corresponding ¢ relations:
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Why ¢ Recall:

Q(g) =qaS(A)+qg S(B) + qc S(C) + gqap S(AB) 4+ qac S(AC) + qc S(BC) + qapc S(ABC)

=qaa+qgpb+gcc+qgap(a+b)+qgac(a+c)+qgpec(b+c)+ gapec (a+ b+ c)

= a(ga +94B + gac + qaBc) +b(gB + 9aB + gBC +qaBC) + c(9c + gac + aBc + qaBC)

o (Construct entropy vector & read off corresponding g relations:
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Building up hyperplanes for N=3

Why ¢ Recall:

Q(g) =qaS(A)+qg S(B) + qc S(C) + gqap S(AB) 4+ qac S(AC) + qc S(BC) + qapc S(ABC)

=qaa+qgpb+gcc+qgap(a+b)+qgac(a+c)+qgpec(b+c)+ gapec (a+ b+ c)

= a(ga +94B + gac + qaBc) +b(gB + 9aB + gBC +qaBC) + c(9c + gac + aBc + qaBC)

e
\

=0

\/v\/

\/v\/

T .

must = 0 individually
since we can vary a, b, and ¢ independently

» (Construct entropy vector & read off corresponding ¢ relations:

S()

B

C

AB

AC

BC

ABC

a

b

C

- (A +39aB +4qac +qaBc =0
W\/

all terms involving A



Building up hyperplanes for N=3

» Consider simplest configuration w/ 3 uncorrelated regions
o 3 entangling surfaces: a,b,c

» 3 bulk surfaces, called correspondingly a, b, ¢

» (Construct entropy vector & read off corresponding ¢ relations:

S()

A

B

C

AB

AC

BC

ABC

a

b

C

- gA +9gaB +qac +qapc =0
= gB +gaB +qBCc + qapc =0
= (gc +494ac +9Bc + gac =0

o 3 egns for / unknowns = not sufficient to get a hyperplane...



{ Building up hyperplanes for N=3 }

° Add more surfaces by correlating regions (egA & Q)
o still 3 entangling surfaces: a,b,c

@ &



{ Building up hyperplanes for N=3 }

° Add more surfaces by correlating regions (egA & Q)
o still 3 entangling surfaces: a,b,c

o but now 4 bulk surfaces, a, b, ¢ and extra one, called ac

b |
A
e label by all entangling surfaces
n : the bulk surf. is anchored on
@ @
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* Add more surfaces by correlating regions (eg A & C)
o still 3 entangling surfaces: a,b,c

o but now 4 bulk surfaces, a, b, ¢ and extra one, called ac

=
& a

o Gives extra row to entanglement table:

ac

SO)| A | B | C|AB|AC]|BC|ABC
a | | | 0 0
b | | | |
C | 0 | 0
|

|

label by all entangling surfaces
the bulk surf. is anchored on



Building up hyperplanes for N=3

* Add more surfaces by correlating regions (eg A & C)
o still 3 entangling surfaces: a,b,c

o but now 4 bulk surfaces, a, b, ¢ and extra one, called ac

=
& a

o Gives extra row to entanglement table:

SO)| A | B | C|AB|AC]|BC|ABC
a | | | 0 0
b | | | |
C | 0 | 0
ac | |

VYV

|

label by all entangling surfaces
the bulk surf. is anchored on

Still insufficient for hyperplane...

s
ga +qap =0
4B - JAB FaBc T UAEc =1
gc + gqc =0
gac +9apc =0



[ Building up hyperplanes for N=3 J

* |Introduce notation to denote correlation:

bulk

bdy space:
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* |Introduce notation to denote correlation:

bulk

b bdy space:

> a

BRI blcts a confiouration n the CRT
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» Consider fully correlated configuration
o still 3 entangling surfaces: a,b,c

o but now / bulk surfaces: a,b, ¢, ab, ac,be, and abc

bdy space:

SOl A | B | C|AB|AC|BC|ABC

ab |
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abc




Building up hyperplanes for N=3

» Consider fully correlated configuration
o still 3 entangling surfaces: a,b,c

o but now / bulk surfaces: a,b, ¢, ab, ac,be, and abc

bdy space:

SOl A | B | C|AB|AC|BC|ABC

a
b |
c

ab |

ac |

bc |

abc

o now / egns for / unknowns = all ¢x s trivially vanish...



[ Building up hyperplanes for N=3 J

° [ry correlated configuration w/ | less bulk surface:
e now 6 entangling surfaces: aj, by, ¢i, az, bz, and
» and also 6 bulk surfaces:

bdy space:

b ‘
a‘ C.




Building up hyperplanes for N=3

° [ry correlated configuration w/ | less bulk surface:
e now 6 entangling surfaces: a, by, ci, a2, by, and ¢

o and also 6 bulk surfaces:

bdy — b - SO | A B | C | AB|AC| BC |ABC
@B ay| | | | |
. c g as | | | | |
& o} AEEENEEREE.
A C Cq | | |
Co| | | | |

» now we DO get a hyperplane:
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e now 6 entangling surfaces: a, by, ci, a2, by, and ¢

o and now 6 bulk surfaces:

bdy space:

b, SOl A | B | C|AB|AC|BC|ABC

|
|
|
+ e
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° [ry correlated configuration w/ | less bulk surface:
e now 6 entangling surfaces: a, by, ci, a2, by, and ¢

o and now 6 bulk surfaces:

bdy space:

b, SOl A | B | C|AB|AC|BC|ABC

|
|
|
+ e

» now we DO get a hyperplane: )
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» Gives precisely I3(A: B:(C')=0 -~ MM



Building up hyperplanes for N=3

° [ry correlated configuration w/ | less bulk surface:

e now 6 entangling surfaces: a, by, ci, a2, by, and ¢

o and now 6 bulk surfaces:

But we used nested regions. ..

e

bdy space:
b SO A | B | C|AB]|AC]|BC|ABC
I 0} a| | = |
B 1
al C » a/2 | | | |
o b by | | |
© by T T
A ¢ c1 | e
Co| | &l |
O T et -
» now we DO get a hyperplane:
soln. for g's:

» Gives precisely I3(A: B:(C')=0 -~ MM



Building up hyperplanes for N=3

° We can also do i1t without nesting:
o still 6 entangling surfaces: ai, by, ci, a2, by, and ¢

» and 9 bulk surfaces: a1, b1, c1, as, ba, ca, aica, bias, c1bs

bdy space: SO| A | B | C|AB|AC|BC|ABC

2 2 C1 l | I |

o despite 9 (=#relations) > / (=#unknowns),

we still DO get a hyperplane:



Building up hyperplanes for N=3

° We can also do i1t without nesting:

o still 6 entangling surfaces: ai, by, ci, a2, by, and ¢

» and 9 bulk surfaces: a1, b1, c1, as, ba, ca, aica, bias, c1bs

AB

AC

BC

ABC

bdy space:

o despite 9 (=#relations) > / (=#unknowns),

=}

=}

we still DO get a hyperplane:

» Again gives precisely I3(A: B: (C')=0 -~ MM
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o get a hyperplane for NV parties

o Consider configurations for which we obtain D — 1 = 2% — 2
independent equations

e Need to Include all N “colors’
» Need to have sufficient amount of correlations
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{ General criteria }

* Jo get a hyperplane for N parties

o Consider configurations for which we obtain D — 1 = 2% — 2
independent equations

e Need to Include all N “colors’
» Need to have sufficient amount of correlations

o N.B.any balanced relation is automatically saturated by configurations
w/ sufficiently far separated (uncorrelated) regions — but this is too trivial:

* Jo avoid locus on intersection of multiple hyperplanes

» Ensure the configuration doesn't saturate any other previously-obtained
relations

e At each NV,we first “uplift” all the relations from N —1



Possibilities for hyperplanes

| . o &
Exemplified on a slice of N=3 entropy space R :
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Possibilities for hyperplanes

Exemplified on a slice of N=3 entropy space RZL:
(V state p, cutoff €, and configuration of regions €, corresponds a point (vector) §8(e) e RZF
A hyperplane is specified by information quantity @, with Q(S.(e)) =0 .)

Q I3(A:B:C Ir(A: B|IC Q g, e .
’ o ) 2t . © 3 o Irivial iInequalities (automatically
| | satisfied, but not saturated, by any

configuration)

S P

MMI SSA TI

o Redundant inequalities (e.g. SSA:
entropy vectors for configs w/ cutoff
span higher co-dimension space)

don't generate new Inequalities

| o Information quantities (e.g. ()2) that
SA I
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Possibilities for hyperplanes

Exemplified on a slice of N=3 entropy space RZL:
(V state p, cutoff €, and configuration of regions €, corresponds a point (vector) §8(e) e RZF
A hyperplane is specified by information quantity @, with Q(S.(e)) =0 .)
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—

TI

Trivial inequalities (automatically
satisfied, but not saturated, by any
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Redundant inequalities (e.g. SSA:
entropy vectors for configs w/ cutoff
span higher co-dimension space)

Information quantities (e.g. (J2) that
don't generate new Inequalities

Inequalities bounding entropy cone
(e.g. SA, MMI: entropy vectors for
configs. w/ cutoff span hyperplane)



Possibilities for hyperplanes

Exemplified on a slice of N=3 entropy space RZL:
(V state p, cutoff €, and configuration of regions €, corresponds a point (vector) §8(e) e RZF
A hyperplane is specified by information quantity @, with Q(S.(e)) =0 .)

QQ Ig(.ABC)

MMI

SA

IQ(A : B)

—

SSA

Q1

—

TI

Trivial inequalities (automatically
satisfied, but not saturated, by any
configuration)

Redundant inequalities (e.g. SSA:
entropy vectors for configs w/ cutoff
span higher co-dimension space)

Information quantities (e.g. (J2) that
don't generate new Inequalities

Inequalities bounding entropy cone
(e.g. SA, MMI: entropy vectors for
configs. w/ cutoff span hyperplane)

This Is what we want to generate!



Relations:

a
b
c
d
e
ab
cde
acde
al 1 1 1 1 1 1 1 1 1 1 1 1 1
a2 1 1 1 1 1 1 1
b1 1 1 1 1 1 1 1 1 1 1 1 1 1
b2 1 1 1 1 1 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1
d 1 1 1 1 1 1 1 1 1 1 1
e 1 1 1 1 1 1 1 1 1 1 1
a2b2 1 1 1 1 1 1
cde 1
alcde

New notation: let a:= all terms g« w/ x including all occurrences of color A




Relations:

a2

b1

b2

a2b2

a2b2c6

cde

c1c2c3

alcde

c1c2c3c4

alc4

b1c5

ccl

dc2

ec3




{ Systematizing the search }

|. Scan over all configuration classes

o Consider disjoint regions (generalize as a limit...)
o Abstract configuration to a graph
o Organize by nesting level

2. Find the basic configuration “building blocks”™

o Start w/ simplest configuration (e.g. minimal # of entangling surfaces)
and show when adding complications gives redundant relations

3. Combine building blocks in all possible ways to get hyperplanes

o Need to build up D — 1 independent relations between the g's (can
be realized by a single configuration)
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o Complete N = 3 classification

o I3 (—» MMI) follows easily (from simple nesting level /=1 configuration)
o No addrtional inequalities can exist (by egn counting argument)
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of N=3 cone), but either sign possible

o At /=2, we get 4 new hyperplanes, but either sign possible
» Nothing new at higher nesting levels />2



[ Classification results J

o Complete NV = 3 classification

o I3 (—» MMI) follows easily (from simple nesting level /=1 configuration)
o No addrtional inequalities can exist (by egn counting argument)

° Almost-complete N =4 classification (w...p)
» No new Inequalities (as expected)

» At nesting level /=1 only I4 hyperplane is new (=distinct from uplift
of N=3 cone), but either sign possible

o At /=2, we get 4 new hyperplanes, but either sign possible
» Nothing new at higher nesting levels />2

o Complete nesting level /=1 for all N
o Thm: only get In



{ OUTLINE

Motivation & Background

Entropy space

e Warm-up for 2 parties
e QFIs & cutoff dependence
e Hyperplanes

Generating new Information quantrties
e Example for 3 partitions
o General criteria
e Systemizing the search

Summary & Open guestions
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{ Summary }

Entropy relations () more fundamental than entropy values S

Hyperplanes In entropy space provide a useful characterization
of Information quantities

o Saturation by “cancelling surfaces”

o Cutoff-independent, sensible even for a single CFT
(1.e. holographically: bulk with single asymptotic region)
o Logic of construction is iIndependent of N

o Automatically avoids generating redundant relations (such as SSA)

Allowed space defined by hyperplanes Is topologically closed
o Since constructed by explicit configuration (on single bdy)

W liccitre: “RI cone = HRIT cone”
e Since cancelation of surface works for time-dependence equally well
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5 Open Questions P

Efficiency of generating all N-party relations for N > 4
o Sufficiency of using only nesting levels /=1 and /=2

o (Generalization to adjoining regions

Efficiency of proving inequalities (posrtivity / negativity / both)
of Information quantrties

Extent of localization In entropy space

New Insights into the entanglement structures of holographic
CFTs w/ geometric states



Stay Tuned. ..

@ UCDAVIS

UNIVERSITY OF CALIFORNIA




L




