# ENTANGLEMENT RELATIONS FROM HOLOGRAPHY

#### Veronika Hubeny



Physics Department & center for Quantum Mathematics and Physics



[w.i.p. w/ Mukund Rangamani & Max Rota]



- Structure of entanglement
  - Useful characterization of a state (& dynamics) of a quantum system
  - May play a fundamental role in dualities, e.g. holography

- Structure of entanglement
  - Useful characterization of a state (& dynamics) of a quantum system
  - May play a fundamental role in dualities, e.g. holography
- Entanglement entropy (EE)
  - Natural measure of entanglement
  - But can be infinite (e.g. in local QFT)

- Structure of entanglement
  - Useful characterization of a state (& dynamics) of a quantum system
  - May play a fundamental role in dualities, e.g. holography
- Entanglement entropy (EE)
  - Natural measure of entanglement
  - But can be infinite (e.g. in local QFT)
- Linear combinations of EEs
  - Interesting quantities (e.g. mutual information, tripartite information, ...)
  - These can be finite, and their positivity/negativity is meaningful

- Structure of entanglement
  - Useful characterization of a state (& dynamics) of a quantum system
  - May play a fundamental role in dualities, e.g. holography
- Entanglement entropy (EE)
  - Natural measure of entanglement
  - But can be infinite (e.g. in local QFT)
- Linear combinations of EEs
  - Interesting quantities (e.g. mutual information, tripartite information, ...)
  - These can be finite, and their positivity/negativity is meaningful
- Relations (equalities & inequalities) between EEs
  - Saturation gives insight to entanglement structure
  - Useful, but only a handful of classes of these are known

- Structure of entanglement
  - Useful characterization of a state (& dynamics) of a quantum system
  - May play a fundamental role in dualities, e.g. holography
- Entanglement entropy (EE)
  - Natural measure of entanglement
  - But can be infinite (e.g. in local QFT)
- Linear combinations of EEs
  - Interesting quantities (e.g. mutual information, tripartite information, ...)
  - These can be finite, and their positivity/negativity is meaningful
- Relations (equalities & inequalities) between EEs
  - Saturation gives insight to entanglement structure
  - Useful, but only a handful of classes of these are known

Q: How do we find / generate further entanglement relations?

• Universal:

• True in holography:

- Universal:
  - Sub-additivity (SA)
  - Araki-Lieb (AL)

$$S(A) + S(B) \ge S(AB)$$

$$S(A) + S(AB) \ge S(B)$$

• True in holography:

#### • Universal:

$$S(A) + S(B) \ge S(AB)$$

$$S(A) + S(AB) \ge S(B)$$

$$S(AB) + S(BC) \ge S(B) + S(ABC)$$

$$S(AB) + S(BC) \ge S(A) + S(C)$$

True in holography:

#### Universal:

$$S(A) + S(B) \ge S(AB)$$

$$S(A) + S(AB) \ge S(B)$$

$$S(AB) + S(BC) \ge S(B) + S(ABC)$$

$$S(AB) + S(BC) \ge S(A) + S(C)$$

#### True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

#### Universal:

- Sub-additivity (SA)
- Araki-Lieb (AL)
- Strong sub-additivity (SSA)
- Weak monotonicity (WM)

- $S(A) + S(B) \ge S(AB)$
- $S(A) + S(AB) \ge S(B)$
- $S(AB) + S(BC) \ge S(B) + S(ABC)$
- $S(AB) + S(BC) \ge S(A) + S(C)$

#### True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

• 5-region cyclic inequality (C5)

$$S(ABC) + S(BCD) + S(CDE) + S(DEA) + S(EAB)$$
  
 
$$\geq S(AB) + S(BC) + S(CD) + S(DE) + S(EA) + S(ABCDE)$$

k-region cyclic inequality (Ck) for k=odd is obvious...

#### Universal:

$$S(A) + S(B) \ge S(AB)$$

$$S(A) + S(AB) \ge S(B)$$

$$S(AB) + S(BC) \ge S(B) + S(ABC)$$

$$S(AB) + S(BC) \ge S(A) + S(C)$$

- True in holography:
  - Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

Not all of these are independent

#### Universal:

$$S(A) + S(B) \ge S(AB)$$

$$S(A) + S(AB) \ge S(B)$$

$$S(AB) + S(BC) \ge S(B) + S(ABC) - S(ABC)$$

$$S(AB) + S(BC) \ge S(A) + S(C)$$

- True in holography:
  - Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

Not all of these are independent

= obtained by purification & relabeling

#### Universal:

- Sub-additivity (SA)
- Araki-Lieb (AL)
- Strong sub-additivity (SSA)
- Weak monotonicity (WM)

$$S(A) + S(B) \ge S(AB)$$
  
 $S(A) + S(AB) \ge S(B)$   
 $S(AB) + S(BC) \ge S(B) + S(ABC)$  = SA+MMI  
 $S(AB) + S(BC) \ge S(A) + S(C)$ 

- True in holography:
  - Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

Not all of these are independent





#### Universal:

- Sub-additivity (SA)
- Araki-Lieb (AL)
- Strong sub-additivity (SSA)
- Weak monotonicity (WM)

$$S(A) + S(B) \ge S(AB)$$
  
 $S(A) + S(AB) \ge S(B)$   
 $S(AB) + S(BC) \ge S(B) + S(ABC)$  = SA+MMI  
 $S(AB) + S(BC) \ge S(A) + S(C)$ 

- True in holography:
  - Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

Not all of these are independent

= obtained by purification & relabeling

= redundant

(but also obtain more by relabeling...)

### QI interpretation

#### • Universal:

Sub-additivity (SA)

$$S(A) + S(B) \ge S(AB)$$

• Strong sub-additivity (SSA)  $S(AB) + S(BC) \ge S(B) + S(ABC)$ 

- True in holography:
  - Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

# QI interpretation

#### Universal:

- Sub-additivity (SA)

$$S(A) + S(B) \ge S(AB)$$

 $I(A:B) \equiv S(A) + S(B) - S(AB) \ge 0$ 

- Strong sub-additivity (SSA)  $S(AB) + S(BC) \ge S(B) + S(ABC)$ 
  - $\Rightarrow$  Conditional mutual information  $I(A:C|B) \equiv I(A:BC) I(A:B) \geq 0$

#### True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

 $\Rightarrow$  Tripartite information  $I3(A:B:C) \equiv I(A:B) + I(A:C) - I(A:BC) \leq 0$ 

#### QI interpretation

#### Universal:

- Sub-additivity (SA)

$$S(A) + S(B) \ge S(AB)$$

 $I(A:B) \equiv S(A) + S(B) - S(AB) \ge 0$ 

- Strong sub-additivity (SSA)  $S(AB) + S(BC) \ge S(B) + S(ABC)$ 
  - $\Rightarrow$  Conditional mutual information  $I(A:C|B) \equiv I(A:BC) I(A:B) \geq 0$

#### True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

- $\Rightarrow$  Tripartite information  $I3(A:B:C) \equiv I(A:B) + I(A:C) I(A:BC) \leq 0$ 
  - → gives interesting structure information on nature of entanglement in holography cf. [Hayden, Headrick, Maloney]

### Holographic Entanglement Entropy

Proposal [RT=Ryu & Takayanagi, '06] for static configurations:

In the bulk, entanglement entropy  $S_{\mathcal{A}}$  for a boundary region  $\mathcal{A}$  is captured by the area of a minimal co-dimension-2 bulk surface  $\mathfrak{m}$  at constant t anchored on entangling surface  $\partial \mathcal{A}$  & homologous to  $\mathcal{A}$ 

$$S_{\mathcal{A}} = \min_{\partial \mathfrak{m} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{m})}{4 G_{N}}$$



# Holographic Entanglement Entropy

Proposal [RT=Ryu & Takayanagi, '06] for static configurations:

In the bulk, entanglement entropy  $S_{\mathcal{A}}$  for a boundary region  $\mathcal{A}$  is captured by the area of a minimal co-dimension-2 bulk surface  $\mathbf{m}$  at constant t anchored on entangling surface  $\partial \mathcal{A}$  & homologous to  $\mathcal{A}$ 

$$S_{\mathcal{A}} = \min_{\partial \mathfrak{m} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{m})}{4 G_{N}}$$



In time-dependent situations, RT prescription needs to be covariantized:

[HRT = VH, Rangamani, Takayanagi '07]

minimal surface m at constant time

extremal surface & in the full bulk

This gives a well-defined quantity in any (arbitrarily time-dependent asymptotically AdS) spacetime.





strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \geq S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

• proof in static configurations [Headrick & Takayanagi]



$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} = \alpha + \beta$$

strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

proof in static configurations [Headrick & Takayanagi]



$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} = \alpha + \beta \geq S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \geq S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

proof in static configurations [Headrick & Takayanagi]



• proof in time-dependent configurations also relatively easy — [Wall] using maximin; cf. [Headrick, Hubeny, Lawrence, Rangamani]

strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \geq S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

proof in static configurations [Headrick & Takayanagi]



$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} = \alpha + \beta \geq S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$

- proof in time-dependent configurations also relatively easy [Wall] using maximin;
   cf. [Headrick, Hubeny, Lawrence, Rangamani]
- MMI proof is essentially identical... [Hayden, Headrick, Maloney]

# Other holographic relations

- More inequalities were obtained in [Bao, Nezami, Ooguri, Stoica, Sully, Walter], e.g.:
  - $2S(ABC)+S(ABD)+S(ABE)+S(ACD)+S(ADE)+S(BCE)+S(BDE) \ge S(AB)+S(ABCD)+S(ABCE)+S(ABDE)+S(ABDE)+S(ACD)+S(ADC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BCC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(BC)+S(B$
  - $S(ABE)+S(ABC)+S(ABD)+S(ACD)+S(ACE)+S(ADE)+S(BCE)+S(BDE)+S(CDE) \ge S(AB)+S(ABCE)+S(ABDE)+S(ABDE)+S(ACD)+S(ACD)+S(BCD)+S(BCD)+S(BE)+S(CE)+S(DE)$
  - $S(ABC) + S(ABD) + S(ABE) + S(ACD) + S(ACE) + S(BC) + S(DE) \ge S(AB) + S(ABCD) + S(ABCE) + S(AC) + S(ADE) + S(B) + S(C) + S(D) + S(C) + S(D) + S(D)$
  - $3S(ABC) + 3S(ABD) + 3S(ACE) + S(ABE) + S(ACD) + S(ADE) + S(BCD) + S(BCE) + S(BDE) + S(CDE) \ge 2S(AB) + 2S(ABCD) + 2S(ABCE) + 2S(AC) + 2S(BD) + 2S(CE) + S(ABDE) + S(ACDE) + S(ACDE) + S(AD) + S(AE) + S(BC) + S(DE)$
- But not proved by the above method (though found to be valid)...

#### OUTLINE

- Motivation & Background
- Entropy space
  - Warm-up for 2 parties
  - QFTs & cutoff dependence
  - Hyperplanes
- Generating new information quantities
  - Example for 3 partitions
  - General criteria
  - Systemizing the search
- Summary & Open questions

#### OUTLINE

- Motivation & Background
- Entropy space
  - Warm-up for 2 parties
  - QFTs & cutoff dependence
  - Hyperplanes
- Generating new information quantities
  - Example for 3 partitions
  - General criteria
  - Systemizing the search
- Summary & Open questions

- Define all entanglement entropies
  - Consider partitioning of Hilbert space  $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
  - Independent EEs  $\rightarrow$  entropy vector  $\vec{S} = \{S(A), S(B), S(AB)\}$
  - ullet Lives in entropy space  $\mathbb{R}^3$



- Define all entanglement entropies
  - Consider partitioning of Hilbert space  $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
  - Independent EEs  $\rightarrow$  entropy vector  $\vec{S} = \{S(A), S(B), S(AB)\}$
  - ullet Lives in entropy space  $\mathbb{R}^3$
- Entanglement Relations
  - Positivity of EEs  $S(X) \ge 0$



- Define all entanglement entropies
  - Consider partitioning of Hilbert space  $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
  - Independent EEs  $\rightarrow$  entropy vector  $\vec{S} = \{S(A), S(B), S(AB)\}$
  - ullet Lives in entropy space  $\mathbb{R}^3$
- Entanglement Relations
  - Positivity of EEs  $S(X) \ge 0$
  - SA  $S(A) + S(B) \ge S(AB)$



- Define all entanglement entropies
  - Consider partitioning of Hilbert space  $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
  - Independent EEs  $\rightarrow$  entropy vector  $\vec{S} = \{S(A), S(B), S(AB)\}$
  - ullet Lives in entropy space  $\mathbb{R}^3$
- Entanglement Relations
  - Positivity of EEs  $S(X) \ge 0$
  - SA  $S(A) + S(B) \ge S(AB)$
  - $AL_1$   $S(A) + S(AB) \ge S(B)$



- Define all entanglement entropies
  - Consider partitioning of Hilbert space  $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
  - Independent EEs  $\rightarrow$  entropy vector  $\vec{S} = \{S(A), S(B), S(AB)\}$
  - Lives in entropy space  $\mathbb{R}^3$
- Entanglement Relations
  - Positivity of EEs  $S(X) \ge 0$
  - SA  $S(A) + S(B) \ge S(AB)$
  - $AL_1$   $S(A) + S(AB) \ge S(B)$
  - $AL_2$   $S(B) + S(AB) \ge S(A)$



- Define all entanglement entropies
  - Consider partitioning of Hilbert space  $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
  - Independent EEs  $\rightarrow$  entropy vector  $\vec{S} = \{S(A), S(B), S(AB)\}$
  - Lives in entropy space  $\mathbb{R}^3$
- Entanglement Relations
  - Positivity of EEs  $S(X) \ge 0$
- - positivity of EE is redundant...



- Define all entanglement entropies
  - Consider partitioning of Hilbert space  $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
  - Independent EEs  $\rightarrow$  entropy vector  $\vec{S} = \{S(A), S(B), S(AB)\}$
  - Lives in entropy space  $\mathbb{R}^3$
- Entanglement Relations
  - Positivity of EEs  $S(X) \ge 0$
  - SA  $S(A) + S(B) \ge S(AB)$   $AL_1$   $S(A) + S(AB) \ge S(B)$   $AL_2$   $S(B) + S(AB) \ge S(A)$

  - positivity of EE is redundant...
  - SA+AL<sub>1</sub>+AL<sub>2</sub> form entropy cone



- Define all entanglement entropies
  - Consider partitioning of Hilbert space  $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_{\overline{AB}}$
  - Independent EEs  $\rightarrow$  entropy vector  $\vec{S} = \{S(A), S(B), S(AB)\}$
  - Lives in entropy space  $\mathbb{R}^3$
- Entanglement Relations
  - Positivity of EEs  $S(X) \ge 0$
  - SA  $S(A) + S(B) \ge S(AB)$   $AL_1$   $S(A) + S(AB) \ge S(B)$   $AL_2$   $S(B) + S(AB) \ge S(A)$

  - positivity of EE is redundant...
  - SA+AL<sub>1</sub>+AL<sub>2</sub> form entropy cone
  - specified by 'extreme rays'



Partition Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_{\overline{ABC}}$$

Partition Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_{\overline{ABC}}$$

- Entropy space is  $\mathbb{R}^7$ :
- Entropy vector:

$$\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\}$$

Partition Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_{\overline{ABC}}$$

- Entropy space is  $\mathbb{R}^7$ :
- Entropy vector:

$$\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\}$$

• General form of information quantity (= entanglement entropy relation)

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$

Partition Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_{\overline{ABC}}$$

- Entropy space is  $\mathbb{R}^7$ :
- Entropy vector:

$$\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\}$$

• General form of information quantity (= entanglement entropy relation)

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$



rational coefficients

Partition Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \otimes \mathcal{H}_{\overline{ABC}}$$

- Entropy space is  $\mathbb{R}^7$ :
- Entropy vector:

$$\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\}$$

• General form of information quantity (= entanglement entropy relation)

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$

• Entropy relations (equalities) are specified by hyperplanes in entropy space:  $Q(\vec{S}) = 0$ 

- $\bullet$  Partition Hilbert space into N factors
- Entropy space is  $\mathbb{R}^D$  with  $D = 2^N 1$
- ullet Entropy vector  $ec{S} = \{S(X)\}$  where X is any collection of parties
- General form of information quantity

$$Q(\vec{S}) = \sum_{X} q_X S(X) \qquad (D \text{ terms})$$

• Entropy relations specified by hyperplanes in entropy space:

$$Q(\vec{S}) = 0$$

#### Set of information quantities

Mathematical framework to study information quantities

describing interesting EE relations

= arrangement of hyperplanes



- But in the present case all hyperplanes pass through the origin
  - Allowed region forms a convex (polyhedral) cone in entropy space
  - In holography studied by [Bao, Nezami, Ooguri, Stoica, Sully, Walter '15]

### Entanglement in QFT

• Natural decomposition of Hilbert space = spatial regions



# Entanglement in QFT

• Natural decomposition of Hilbert space = spatial regions



# Entanglement in QFT

Natural decomposition of Hilbert space = spatial regions



- Entanglement entropy has a UV divergence
  - ~ area of entangling surface
  - can regulate by UV cutoff

• Two options to 'localize' a configuration in entropy space:



- Two options to 'localize' a configuration in entropy space:
- 1) Introduce a UV regulator:



- Two options to 'localize' a configuration in entropy space:
- 1) Introduce a UV regulator:



But position (& even direction) in entropy space is cutoff-dependent:



- Two options to 'localize' a configuration in entropy space:
- 1) Introduce a UV regulator:



But position (& even direction) in entropy space is cutoff-dependent:



- Two options to 'localize' a configuration in entropy space:
- 1) Introduce a UV regulator:



But position (& even direction) in entropy space is cutoff-dependent:



- Two options to 'localize' a configuration in entropy space:
- 2) Consider multi-boundary wormholes:



Fig. from [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

Each region covers one entire bdy (so # entangling surfs)

- Two options to 'localize' a configuration in entropy space:
- 2) Consider multi-boundary wormholes:



Fig. from [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

Each region covers one entire bdy (so # entangling surfs)

• But requires multiple CFTs...

- However, certain combinations of EEs (information quantities) are UV-finite
  - e.g. for disjoint regions, any "balanced" IQ is UV-finite

- However, certain combinations of EEs (information quantities) are UV-finite
  - e.g. for disjoint regions, any "balanced" IQ is UV-finite
  - Ex.: saturation of SA:

$$S(A) + S(B) = S(AB)$$



same parts of surfaces appear on both sides of the equality ⇒ cancel out independently of the cutoff

- However, certain combinations of EEs (information quantities) are UV-finite
  - e.g. for disjoint regions, any "balanced" IQ is UV-finite
  - Ex.: saturation of SA:

$$S(A) + S(B) = S(AB)$$



same parts of surfaces appear on both sides of the equality ⇒ cancel out independently of the cutoff

 $\Rightarrow$  under varying cutoff, vectors  $\vec{S}_{\varepsilon(x)}$  span lower-dimensional subspace of entropy space.

- However, certain combinations of EEs (information quantities) are UV-finite
  - e.g. for disjoint regions, any "balanced" IQ is UV-finite
  - Ex.: saturation of SA:

$$S(A) + S(B) = S(AB)$$



same parts of surfaces appear on both sides of the equality ⇒ cancel out independently of the cutoff

- $\Rightarrow$  under varying cutoff, vectors  $\vec{S}_{\varepsilon(x)}$  span lower-dimensional subspace of entropy space.
- Suggests hyperplanes are the natural / fundamental constructs
  - Think of RT for relations as operation on surfaces, not their areas...

#### OUTLINE

- Motivation & Background
- Entropy space
  - Warm-up for 2 parties
  - QFTs & cutoff dependence
  - Hyperplanes
- Generating new information quantities
  - Example for 3 partitions
  - General criteria
  - Systemizing the search
- Summary & Open questions

- Consider simplest configuration w/ 3 uncorrelated regions
  - 3 entangling surfaces: a,b,c



- Consider simplest configuration w/ 3 uncorrelated regions
  - 3 entangling surfaces: a,b,c
  - ullet 3 bulk surfaces, called correspondingly a,b,c



- Consider simplest configuration w/ 3 uncorrelated regions
  - 3 entangling surfaces: a,b,c
  - ullet 3 bulk surfaces, called correspondingly a,b,c



Construct entropy vector

| S(.) | Α | В | С | AB | AC | ВС | ABC |  |  |  |  |
|------|---|---|---|----|----|----|-----|--|--|--|--|
| a    |   |   |   |    |    |    |     |  |  |  |  |
| b    |   |   |   |    |    |    |     |  |  |  |  |
| c    |   |   |   |    |    |    |     |  |  |  |  |
|      |   |   |   |    |    |    |     |  |  |  |  |

$$S(A) = \frac{1}{4G_N} \text{Area}[a]$$

- Consider simplest configuration w/ 3 uncorrelated regions
  - 3 entangling surfaces: a,b,c
  - 3 bulk surfaces, called correspondingly a,b,c



 $\bullet$  Construct entropy vector & read off corresponding q relations:

| S(.) | Α | В | С | AB | AC | ВС | ABC |                                                     |
|------|---|---|---|----|----|----|-----|-----------------------------------------------------|
| a    |   |   |   |    |    |    |     | $ \rightarrow q_A + q_{AB} + q_{AC} + q_{ABC} = 0 $ |
| b    |   |   |   |    |    |    |     |                                                     |
| c    |   |   |   |    |    |    |     | all terms involving A                               |

Why? Recall:

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$

ullet Construct entropy vector & read off corresponding q relations:

| S(.) | Α | В | С | AB | AC | ВС | ABC |
|------|---|---|---|----|----|----|-----|
| a    |   |   |   |    |    |    |     |
| b    |   |   |   |    |    |    |     |
| c    |   |   |   |    |    |    |     |

$$\rightarrow q_A + q_{AB} + q_{AC} + q_{ABC} = 0$$
 all terms involving A

Why? Recall:

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$
$$= q_A a + q_B b + q_C c + q_{AB} (a + b) + q_{AC} (a + c) + q_{BC} (b + c) + q_{ABC} (a + b + c)$$

ullet Construct entropy vector & read off corresponding q relations:

| S(.) | Α | В | С | AB | AC | ВС | ABC |
|------|---|---|---|----|----|----|-----|
| a    |   |   |   |    |    |    | I   |
| b    |   |   |   |    |    |    |     |
| c    |   |   |   |    |    |    |     |

$$\Rightarrow q_A + q_{AB} + q_{AC} + q_{ABC} = 0$$
 all terms involving A

#### Why? Recall:

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$

$$= q_A a + q_B b + q_C c + q_{AB} (a + b) + q_{AC} (a + c) + q_{BC} (b + c) + q_{ABC} (a + b + c)$$

$$= a (q_A + q_{AB} + q_{AC} + q_{ABC}) + b (q_B + q_{AB} + q_{BC} + q_{ABC}) + c (q_C + q_{AC} + q_{BC} + q_{ABC})$$

ullet Construct entropy vector & read off corresponding q relations:

| S(.) | Α | В | С | AB | AC | ВС | ABC |
|------|---|---|---|----|----|----|-----|
| a    |   |   |   |    |    |    |     |
| b    |   |   |   |    |    |    |     |
| c    |   |   |   |    |    |    |     |

$$\Rightarrow q_A + q_{AB} + q_{AC} + q_{ABC} = 0$$
 all terms involving A

Why? Recall:

$$Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$$

$$= q_A a + q_B b + q_C c + q_{AB} (a + b) + q_{AC} (a + c) + q_{BC} (b + c) + q_{ABC} (a + b + c)$$

$$= a (q_A + q_{AB} + q_{AC} + q_{ABC}) + b (q_B + q_{AB} + q_{BC} + q_{ABC}) + c (q_C + q_{AC} + q_{BC} + q_{ABC})$$

$$= 0$$

ullet Construct entropy vector & read off corresponding q relations:

| S(.) | Α | В | C | AB | AC | ВС | ABC |
|------|---|---|---|----|----|----|-----|
| a    |   |   |   |    |    |    |     |
| b    |   |   |   |    |    |    | I   |
| c    |   |   |   |    |    |    | T   |

all terms involving A

- Consider simplest configuration w/ 3 uncorrelated regions
  - 3 entangling surfaces: a,b,c
  - ullet 3 bulk surfaces, called correspondingly a,b,c



 $\bullet$  Construct entropy vector & read off corresponding q relations:

| S(.) | Α | В | С | AB | AC | ВС | ABC |   |                                       |
|------|---|---|---|----|----|----|-----|---|---------------------------------------|
| a    |   |   |   |    |    |    |     | - | $q_A + q_{AB} + q_{AC} + q_{ABC} = 0$ |
| b    |   |   |   |    |    |    |     | - | $q_B + q_{AB} + q_{BC} + q_{ABC} = 0$ |
| c    |   |   |   |    |    |    |     | - | $q_C + q_{AC} + q_{BC} + q_{ABC} = 0$ |

• 3 eqns for 7 unknowns ⇒ not sufficient to get a hyperplane...

- Add more surfaces by correlating regions (e.g. A & C)
  - still 3 entangling surfaces: a,b,c



- Add more surfaces by correlating regions (e.g. A & C)
  - still 3 entangling surfaces: a,b,c
  - ullet but now 4 bulk surfaces, a,b,c and extra one, called ac



label by all entangling surfaces the bulk surf. is anchored on

- Add more surfaces by correlating regions (e.g. A & C)
  - still 3 entangling surfaces: a,b,c
  - ullet but now 4 bulk surfaces, a,b,c and extra one, called ac



label by all entangling surfaces the bulk surf. is anchored on

• Gives extra row to entanglement table:

| S(.) | Α | В | С | AB | AC | ВС | ABC |
|------|---|---|---|----|----|----|-----|
| a    |   |   |   |    | 0  |    | 0   |
| b    |   |   |   |    |    |    |     |
| c    |   |   |   |    | 0  |    | 0   |
| ac   |   |   |   |    |    |    |     |

- Add more surfaces by correlating regions (e.g. A & C)
  - still 3 entangling surfaces: a,b,c
  - ullet but now 4 bulk surfaces, a,b,c and extra one, called ac



label by all entangling surfaces the bulk surf. is anchored on

Gives extra row to entanglement table:

Still insufficient for hyperplane...

| S(.) | A | В | С | AB | AC | ВС | ABC |          |       |
|------|---|---|---|----|----|----|-----|----------|-------|
| a    |   |   |   |    | 0  |    | 0   | <b>→</b> | $q_A$ |
| b    |   |   |   |    |    |    |     | <b>→</b> | $q_B$ |
| c    |   |   | I |    | 0  |    | 0   | <b>→</b> | $q_C$ |
| ac   |   |   |   |    |    |    |     | -        | $q_A$ |

$$q_A + q_{AB} = 0$$

$$q_B + q_{AB} + q_{BC} + q_{ABC} = 0$$

• Introduce notation to denote correlation:

bulk



Introduce notation to denote correlation:

bulk



• Depicts a configuration in the CFT

- Consider fully correlated configuration
  - still 3 entangling surfaces: a,b,c

#### bdy space:



- Consider fully correlated configuration
  - still 3 entangling surfaces: a,b,c
  - but now 7 bulk surfaces: a,b,c,ab,ac,bc, and abc





| S(.) | Α | В | С | AB | AC | ВС | ABC |
|------|---|---|---|----|----|----|-----|
| a    |   |   |   |    |    |    |     |
| b    |   |   |   |    |    |    |     |
| c    |   |   |   |    |    |    |     |
| ab   |   |   |   |    |    |    |     |
| ac   |   |   |   |    |    |    |     |
| bc   |   |   |   |    |    |    |     |
| abc  |   |   |   |    |    |    |     |

- Consider fully correlated configuration
  - still 3 entangling surfaces: a,b,c
  - but now 7 bulk surfaces: a,b,c,ab,ac,bc, and abc



• now 7 eqns for 7 unknowns  $\Rightarrow$  all  $q_X$ 's trivially vanish...

- Try correlated configuration w/ I less bulk surface:
  - now 6 entangling surfaces: a<sub>1</sub>, b<sub>1</sub>, c<sub>1</sub>, a<sub>2</sub>, b<sub>2</sub>, and c<sub>2</sub>
  - and also 6 bulk surfaces:

#### bdy space:



- Try correlated configuration w/ I less bulk surface:
  - now 6 entangling surfaces: a<sub>1</sub>, b<sub>1</sub>, c<sub>1</sub>, a<sub>2</sub>, b<sub>2</sub>, and c<sub>2</sub>
  - and also 6 bulk surfaces:





| S(.)  | Α | В   | C | AB  | AC | ВС | ABC |
|-------|---|-----|---|-----|----|----|-----|
| $a_1$ |   |     |   | Ι   |    |    |     |
| $a_2$ |   |     |   |     |    |    |     |
| $b_1$ |   | - 1 |   | 1   |    | 1  | 1   |
| $b_2$ |   |     |   | i I | I  |    |     |
| $c_1$ |   |     |   |     |    |    |     |
| $c_2$ |   |     |   |     |    |    |     |

now we DO get a hyperplane:

- Try correlated configuration w/ I less bulk surface:
  - now 6 entangling surfaces: a<sub>1</sub>, b<sub>1</sub>, c<sub>1</sub>, a<sub>2</sub>, b<sub>2</sub>, and c<sub>2</sub>
  - and now 6 bulk surfaces:





now we DO get a hyperplane:

| S(.)  | Α | В | С | AB | AC | ВС | ABC |
|-------|---|---|---|----|----|----|-----|
| $a_1$ |   |   |   |    |    |    | I   |
| $a_2$ |   |   |   |    |    |    |     |
| $b_1$ |   |   |   |    |    |    |     |
| $b_2$ |   |   |   |    |    |    |     |
| $c_1$ |   |   |   |    |    |    |     |
| $c_2$ |   |   |   |    |    |    |     |
|       | + | + | + | •  | 1  | •  | +   |

soln. for q's:

- Try correlated configuration w/ I less bulk surface:
  - now 6 entangling surfaces: a<sub>1</sub>, b<sub>1</sub>, c<sub>1</sub>, a<sub>2</sub>, b<sub>2</sub>, and c<sub>2</sub>
  - and now 6 bulk surfaces:





| S(.)  | Α | В | С | AB | AC  | ВС | ABC |
|-------|---|---|---|----|-----|----|-----|
| $a_1$ |   |   |   |    |     |    |     |
| $a_2$ |   |   |   |    |     |    |     |
| $b_1$ |   |   |   |    |     |    |     |
| $b_2$ |   |   |   |    |     |    |     |
| $c_1$ |   |   |   |    |     |    |     |
| $c_2$ |   |   |   |    |     |    |     |
|       | + | + | + | -  | 11. | -  | +   |

now we DO get a hyperplane:

soln. for q's:

• Gives precisely  $I3(A:B:C)=0 \rightarrow MMI$ 

- Try correlated configuration w/ I less bulk surface:
  - now 6 entangling surfaces: a<sub>1</sub>, b<sub>1</sub>, c<sub>1</sub>, a<sub>2</sub>, b<sub>2</sub>, and c<sub>2</sub>
  - and now 6 bulk surfaces:



But we used nested regions...

| S(.)  | Α | В | $\cup$ | AB | AC  | ВС | ABC |
|-------|---|---|--------|----|-----|----|-----|
| $a_1$ |   |   |        |    |     |    |     |
| $a_2$ |   |   |        |    |     |    |     |
| $b_1$ |   |   |        |    |     |    |     |
| $b_2$ |   |   |        |    |     |    |     |
| $c_1$ |   |   |        |    |     |    |     |
| $c_2$ |   |   |        |    |     |    |     |
|       | + | + | +      | -  | 11. | -  | +   |

now we DO get a hyperplane:

soln. for q's:

• Gives precisely  $I3(A:B:C)=0 \rightarrow MMI$ 

- We can also do it without nesting:
  - still 6 entangling surfaces: a<sub>1</sub>, b<sub>1</sub>, c<sub>1</sub>, a<sub>2</sub>, b<sub>2</sub>, and c<sub>2</sub>
  - and 9 bulk surfaces:  $a_1, b_1, c_1, a_2, b_2, c_2, a_1c_2, b_1a_2, c_1b_2$



despite 9 (=#relations) > 7 (=#unknowns),
 we still DO get a hyperplane:

| S(.)     | Α | В | С | AB | AC | ВС | ABC |
|----------|---|---|---|----|----|----|-----|
| $a_1$    |   |   |   |    |    |    |     |
| $a_2$    |   |   |   |    |    |    |     |
| $b_1$    |   |   |   |    |    |    |     |
| $b_2$    |   |   |   |    |    |    |     |
| $c_1$    |   |   |   |    |    |    |     |
| $c_2$    |   |   |   |    |    |    |     |
| $a_1c_2$ |   |   |   |    | I  |    | 1   |
| $b_1a_2$ |   |   |   |    |    |    |     |
| $c_1b_2$ |   |   |   |    |    | I  |     |
|          | + | + | + | -  | -  | -  | +   |

- We can also do it without nesting:
  - still 6 entangling surfaces: a<sub>1</sub>, b<sub>1</sub>, c<sub>1</sub>, a<sub>2</sub>, b<sub>2</sub>, and c<sub>2</sub>
  - and 9 bulk surfaces:  $a_1, b_1, c_1, a_2, b_2, c_2, a_1c_2, b_1a_2, c_1b_2$



| S(.)     | Α | В | $\cup$ | AB | AC | ВС | ABC |
|----------|---|---|--------|----|----|----|-----|
| $a_1$    |   |   |        | 1  |    |    |     |
| $a_2$    |   |   |        |    |    |    |     |
| $b_1$    |   | Ī |        |    |    |    |     |
| $b_2$    |   | 1 |        |    |    |    |     |
| $c_1$    |   |   |        |    |    |    |     |
| $c_2$    |   |   |        |    |    |    |     |
| $a_1c_2$ |   |   |        |    | T  |    | 1   |
| $b_1a_2$ |   |   |        |    |    |    | - 1 |
| $c_1b_2$ |   |   |        |    |    | I  |     |
|          | + | + | +      |    | •  | •  | +   |

- despite 9 (=#relations) > 7 (=#unknowns),
   we still DO get a hyperplane:
- Again gives precisely  $I3(A:B:C)=0 \rightarrow MMI$

- ullet To get a hyperplane for N parties
  - Consider configurations for which we obtain  $D-1=2^N-2$  independent equations
  - ullet Need to include all N "colors"
  - Need to have sufficient amount of correlations

- ullet To get a hyperplane for N parties
  - Consider configurations for which we obtain  $D-1=2^N-2$  independent equations
  - ullet Need to include all N "colors"
  - Need to have sufficient amount of correlations
  - N.B. any balanced relation is automatically saturated by configurations w/ sufficiently far separated (uncorrelated) regions but this is too trivial:

- ullet To get a hyperplane for N parties
  - Consider configurations for which we obtain  $D-1=2^N-2$  independent equations
  - ullet Need to include all N "colors"
  - Need to have sufficient amount of correlations
  - N.B. any balanced relation is automatically saturated by configurations w/ sufficiently far separated (uncorrelated) regions but this is too trivial:
- To avoid locus on intersection of multiple hyperplanes
  - Ensure the configuration doesn't saturate any other previously-obtained relations

- ullet To get a hyperplane for N parties
  - Consider configurations for which we obtain  $D-1=2^N-2$  independent equations
  - ullet Need to include all N "colors"
  - Need to have sufficient amount of correlations
  - N.B. any balanced relation is automatically saturated by configurations w/ sufficiently far separated (uncorrelated) regions but this is too trivial:
- To avoid locus on intersection of multiple hyperplanes
  - Ensure the configuration doesn't saturate any other previously-obtained relations
  - ullet At each N , we first ''uplift'' all the relations from N-1

Exemplified on a slice of N=3 entropy space  $\mathbb{R}^7_+$ :



Exemplified on a slice of N=3 entropy space  $\mathbb{R}^7_+$ :

 $(\forall \text{ state } \rho \text{ , cutoff } \varepsilon \text{ , and configuration of regions } \mathbf{C}, \text{ corresponds a point (vector) } \vec{S}_{\varepsilon}(\mathbf{c}) \in \mathbb{R}^7_+$ 



Exemplified on a slice of N=3 entropy space  $\mathbb{R}^7_+$ :

( $\forall$  state  $\rho$ , cutoff  $\varepsilon$ , and configuration of regions  $\mathcal{C}$ , corresponds a point (vector)  $\vec{S}_{\varepsilon}(\mathcal{C}) \in \mathbb{R}^7_+$ A hyperplane is specified by information quantity Q, with  $Q(\vec{S}_{\varepsilon}(\mathcal{C})) = 0$ .)



#### Exemplified on a slice of N=3 entropy space $\mathbb{R}^7_+$ :

( $\forall$  state  $\rho$ , cutoff  $\varepsilon$ , and configuration of regions  $\mathcal{C}$ , corresponds a point (vector)  $\vec{S}_{\varepsilon}(\mathcal{C}) \in \mathbb{R}^7_+$ A hyperplane is specified by information quantity Q, with  $Q(\vec{S}_{\varepsilon}(\mathcal{C})) = 0$ .)



 Trivial inequalities (automatically satisfied, but not saturated, by any configuration)

#### Exemplified on a slice of N=3 entropy space $\mathbb{R}^7_+$ :

( $\forall$  state  $\rho$ , cutoff  $\varepsilon$ , and configuration of regions  $\mathcal C$ , corresponds a point (vector)  $\vec S_\varepsilon(\mathcal C) \in \mathbb R^7_+$  A hyperplane is specified by information quantity Q, with  $Q(\vec S_\varepsilon(\mathcal C)) = 0$ .)



- Trivial inequalities (automatically satisfied, but not saturated, by any configuration)
- Redundant inequalities (e.g. SSA: entropy vectors for configs w/ cutoff span higher co-dimension space)

#### Exemplified on a slice of N=3 entropy space $\mathbb{R}^7_+$ :

( $\forall$  state  $\rho$ , cutoff  $\varepsilon$ , and configuration of regions  $\mathcal{C}$ , corresponds a point (vector)  $\vec{S}_{\varepsilon}(\mathcal{C}) \in \mathbb{R}^7_+$ A hyperplane is specified by information quantity Q, with  $Q(\vec{S}_{\varepsilon}(\mathcal{C})) = 0$ .)



- Trivial inequalities (automatically satisfied, but not saturated, by any configuration)
- Redundant inequalities (e.g. SSA: entropy vectors for configs w/ cutoff span higher co-dimension space)
- Information quantities (e.g.  $Q_2$ ) that don't generate new inequalities

#### Exemplified on a slice of N=3 entropy space $\mathbb{R}^7_+$ :

( $\forall$  state  $\rho$ , cutoff  $\varepsilon$ , and configuration of regions  $\mathcal{C}$ , corresponds a point (vector)  $\vec{S}_{\varepsilon}(\mathcal{C}) \in \mathbb{R}^7_+$ A hyperplane is specified by information quantity Q, with  $Q(\vec{S}_{\varepsilon}(\mathcal{C})) = 0$ .)



- Trivial inequalities (automatically satisfied, but not saturated, by any configuration)
- Redundant inequalities (e.g. SSA: entropy vectors for configs w/ cutoff span higher co-dimension space)
- Information quantities (e.g.  $Q_2$ ) that don't generate new inequalities
- Inequalities bounding entropy cone (e.g. SA, MMI: entropy vectors for configs. w/ cutoff span hyperplane)

#### Exemplified on a slice of N=3 entropy space $\mathbb{R}^7_+$ :

( $\forall$  state  $\rho$ , cutoff  $\varepsilon$ , and configuration of regions  $\mathcal{C}$ , corresponds a point (vector)  $\vec{S}_{\varepsilon}(\mathcal{C}) \in \mathbb{R}^7_+$ A hyperplane is specified by information quantity Q, with  $Q(\vec{S}_{\varepsilon}(\mathcal{C})) = 0$ .)



- Trivial inequalities (automatically satisfied, but not saturated, by any configuration)
- Redundant inequalities (e.g. SSA: entropy vectors for configs w/ cutoff span higher co-dimension space)
- Information quantities (e.g.  $Q_2$ ) that don't generate new inequalities
- Inequalities bounding entropy cone (e.g. SA, MMI: entropy vectors for configs. w/ cutoff span hyperplane)

This is what we want to generate!

### N=5 example

**Relations:** 

• e.g. for N=5: "nesting level" L=1



New notation: let  $a := all terms q_x w/x including all occurrences of color A$ 

### N=5 example

• e.g. for N=5: effect of nesting



# Systematizing the search

- 1. Scan over all configuration classes
  - Consider disjoint regions (generalize as a limit...)
  - Abstract configuration to a graph
  - Organize by nesting level \$\mathcal{L}\$
- 2. Find the basic configuration "building blocks"
  - Start w/ simplest configuration (e.g. minimal # of entangling surfaces) and show when adding complications gives redundant relations
- 3. Combine building blocks in all possible ways to get hyperplanes
  - Need to build up D-1 independent relations between the q's (can be realized by a single configuration)

#### Classification results

- $\cdot$  Complete N=3 classification
  - $I_3$  ( $\rightarrow$  MMI) follows easily (from simple nesting level  $\mathcal{L}=1$  configuration)
  - No additional inequalities can exist (by eqn counting argument)

#### Classification results

- Complete N=3 classification
  - $I_3$  ( $\rightarrow$  MMI) follows easily (from simple nesting level  $\mathcal{L}=1$  configuration)
  - No additional inequalities can exist (by eqn counting argument)
- Almost-complete  $N=4\,$  classification (w.i.p)
  - No new inequalities (as expected)
  - At nesting level  $\mathcal{L}=1$  only  $I_4$  hyperplane is new (=distinct from uplift of N=3 cone), but either sign possible
  - At  $\mathcal{L}=2$ , we get 4 new hyperplanes, but either sign possible
  - Nothing new at higher nesting levels 2>2

#### Classification results

- Complete N=3 classification
  - $I_3$  ( $\rightarrow$  MMI) follows easily (from simple nesting level  $\mathcal{L}=1$  configuration)
  - No additional inequalities can exist (by eqn counting argument)
- Almost-complete  $N=4\,$  classification (w.i.p)
  - No new inequalities (as expected)
  - At nesting level  $\mathcal{L}=1$  only  $I_4$  hyperplane is new (=distinct from uplift of N=3 cone), but either sign possible
  - At  $\mathcal{L}=2$ , we get 4 new hyperplanes, but either sign possible
  - Nothing new at higher nesting levels 2>2
- $\bullet$  Complete nesting level  $\mathcal{L}=1$  for all N
  - ullet Thm: only get  $I_N$

#### OUTLINE

- Motivation & Background
- Entropy space
  - Warm-up for 2 parties
  - QFTs & cutoff dependence
  - Hyperplanes
- Generating new information quantities
  - Example for 3 partitions
  - General criteria
  - Systemizing the search
- Summary & Open questions

ullet Entropy relations Q more fundamental than entropy values  $ec{S}_{arepsilon}$ 

- ullet Entropy relations Q more fundamental than entropy values  $ec{S}_{arepsilon}$
- Hyperplanes in entropy space provide a useful characterization of information quantities
  - Saturation by "cancelling surfaces"
  - Cutoff-independent, sensible even for a single CFT

     (i.e. holographically: bulk with single asymptotic region)

- ullet Entropy relations Q more fundamental than entropy values  $ec{S}_{arepsilon}$
- Hyperplanes in entropy space provide a useful characterization of information quantities
  - Saturation by "cancelling surfaces"
  - Cutoff-independent, sensible even for a single CFT

     (i.e. holographically: bulk with single asymptotic region)
  - ullet Logic of construction is independent of N

- ullet Entropy relations Q more fundamental than entropy values  $ec{S}_{arepsilon}$
- Hyperplanes in entropy space provide a useful characterization of information quantities
  - Saturation by "cancelling surfaces"
  - Cutoff-independent, sensible even for a single CFT

     (i.e. holographically: bulk with single asymptotic region)
  - ullet Logic of construction is independent of N
  - Automatically avoids generating redundant relations (such as SSA)

- ullet Entropy relations Q more fundamental than entropy values  $ec{S}_{arepsilon}$
- Hyperplanes in entropy space provide a useful characterization of information quantities
  - Saturation by "cancelling surfaces"
  - Cutoff-independent, sensible even for a single CFT

     (i.e. holographically: bulk with single asymptotic region)
  - ullet Logic of construction is independent of N
  - Automatically avoids generating redundant relations (such as SSA)
- Allowed space defined by hyperplanes is topologically closed
  - Since constructed by explicit configuration (on single bdy)

- ullet Entropy relations Q more fundamental than entropy values  $ec{S}_{arepsilon}$
- Hyperplanes in entropy space provide a useful characterization of information quantities
  - Saturation by "cancelling surfaces"
  - Cutoff-independent, sensible even for a single CFT

     (i.e. holographically: bulk with single asymptotic region)
  - ullet Logic of construction is independent of N
  - Automatically avoids generating redundant relations (such as SSA)
- Allowed space defined by hyperplanes is topologically closed
  - Since constructed by explicit configuration (on single bdy)
- Conjecture: "RT cone = HRT cone"
  - Since cancelation of surface works for time-dependence equally well

ullet Efficiency of generating all N-party relations for N>4

- ullet Efficiency of generating all N-party relations for N>4
  - Sufficiency of using only nesting levels  $\mathcal{L}=1$  and  $\mathcal{L}=2$

- ullet Efficiency of generating all N-party relations for N>4
  - Sufficiency of using only nesting levels  $\mathcal{L}=1$  and  $\mathcal{L}=2$
  - Generalization to adjoining regions

- ullet Efficiency of generating all N-party relations for N>4
  - Sufficiency of using only nesting levels  $\mathcal{L}=1$  and  $\mathcal{L}=2$
  - Generalization to adjoining regions
- Efficiency of proving inequalities (positivity / negativity / both)
   of information quantities

- ullet Efficiency of generating all N-party relations for N>4
  - Sufficiency of using only nesting levels  $\mathcal{L}=1$  and  $\mathcal{L}=2$
  - Generalization to adjoining regions
- Efficiency of proving inequalities (positivity / negativity / both)
   of information quantities
- Extent of localization in entropy space

- ullet Efficiency of generating all N-party relations for N>4
  - Sufficiency of using only nesting levels  $\mathcal{L}=1$  and  $\mathcal{L}=2$
  - Generalization to adjoining regions
- Efficiency of proving inequalities (positivity / negativity / both)
   of information quantities
- Extent of localization in entropy space
- New insights into the entanglement structures of holographic CFTs w/ geometric states

# Stay Tuned...



