Non-Geometric Calabi-Yau Backgrounds

CH, Israel and Sarti 1710.00853

A Dabolkar and CH, 2002

Duality Symmetries

- Supergravities: continuous classical symmetry, broken in quantum theory, and by gauging
- String theory: discrete quantum duality symmetries; not field theory symms
- T-duality: perturbative symmetry on torus, mixes momentum modes and winding states
- U-duality: non-perturbative symmetry of type II on torus, mixes momentum modes and wrapped brane states
- Mirror Symmetry: perturbative symmetry on Calabi-Yau

- Spacetime constructed from local patches
- All symmetries of physics used in patching
- Patching with diffeomorphisms, gives manifold
- Patching with gauge symmetries: bundles
- String theory has new symmetries, not present in field theory. New non-geometric string backgrounds
- Patching with T-duality: T-FOLDS
- Patching with U-duality: U-FOLDS
- Patching with MIRROR SYMM: MIRROR-FOLDS

T-fold patching

Glue big circle (R) to small (I/R)
Glue momentum modes to winding modes
(or linear combination of momentum and winding)
Not conventional smooth geometry

T-fold patching

Glue big circle (R) to small (I/R)
Glue momentum modes to winding modes
(or linear combination of momentum and winding)
Not conventional smooth geometry

Non-Geometric Calabi-Yau Geometries

- Non-geometric reductions to D=4 Minkowski space
- For type II, N=2 SUSY in D=4. Fixes many moduli
- Mirrorfold Mirror symmetry transitions
- Gauged D=4 sugras with N=2 Minkowski vacua
- At minimum of potential: SCFT asymmetric Gepner model

- Suggestive of novel kind of doubling?
- New class of "compactifications"
- Bigger landscape?
- Could provide ways of escaping no-go theorems

- Kawai & Sugawara: Non-susy mirrorfolds
- Blumenhagen, Fuchs & Plauschinn. Gepner models from non-geometric quotient of CY CFT. Fixed point, so intrinsically stringy
- HIS: Gepner from asymm quotient of K3xT² CFT.
 Freely acting, so susy breaking scale not fixed at string scale. Sugra: good low energy description
- Non-geom from Stringy Scherk-Schwarz
 CH & Reid-Edwards, Reid-Edwards and Spanjaard
- G-theory Candelas Constantin Damian Larfors
 Morales K3 bundle over CP¹, U-duality monodromies.

Scherk-Schwarz reduction of Supergravity

•Supergravity in D dims:

Global duality G Scalars: G/H

Field $\phi \to g \phi$ $g \in G$

•Reduce on S¹

$$\phi(x^m, y) = g(y)\varphi(x^m)$$

Monodromy M on S¹

$$\phi(x^m, 2\pi) = M\phi(x^m, 0) \qquad M = g(2\pi)g(0)^{-1}$$

e.g.
$$g(y) = \exp(yN)$$

$$M = \exp(2\pi N)$$

Scherk-Schwarz reduction of Supergravity

Reduce on Tn

Monodromy for each S¹

$$M_i \in G$$

$$[M_i, M_j] = 0$$

Conjugating gives equivalent theory

$$M_i' = gM_ig^{-1}$$

$$g \in G$$

Consistent truncation of sugra to give gauged sugra in D-n dims.

Fields that are twisted typically become massive

Lifting to string theory

•Duality G broken to duality $G(\mathbb{Z})$ CH&Townsend $G(\mathbb{Z})$ is automorphism group of charge lattice

Moduli space $G(\mathbb{Z})\setminus G/H$

•Monodromies must be in $G(\mathbb{Z})$

Compatification with duality twists

G(Z) conjugacy classes Masses quantized

$$M = \exp(2\pi N) \in G(\mathbb{Z})$$

•If D-dim theory comes from 10 or 11 dimensions by compactification on N (e.g. torus or K3), this lifts to "bundle" of N over Tⁿ with $G(\mathbb{Z})$ transitions

AD&CH '02

CH '98

Torus Reductions with Duality Twists

If N=Td then have Td "bundle" over Tn

For bosonic string $G(\mathbb{Z})=O(d,d;\mathbb{Z})$

Monodromies in T-duality group: T-fold

String theory on Td: natural formulation on doubled torus T^{2d} with $O(d,d;\mathbb{Z})$ acting as diffeomorphisms

T-fold: T^{2d} bundle over Tⁿ

Fully doubled: T^{2d} bundle over T²ⁿ Monodromies on doubled torus

CH+ Reid-Edwards

K3 Sugra Reductions

IIA on K3: G=O(4,20), H=O(4)xO(20)

(2,2) Supergravity in d=6

IIA on $K3xT^2$: G=O(6,22), H=O(6)xO(22)

N=4 Supergravity in d=4

Scherk-Schwarz reduction: d=6 theory reduced on T² with monodromies $M_1, M_2 \in O(4, 20)$

Gives gauged N=4 supergravity in d=4

Reid-Edwards and Spanjaard

Supersymmetry

Fermions: monodromies in Pin(4)xO(20)

Gravitini in (2,1,1)x(1,2,1) of SU(2)xSU(2)xO(20)

Preserving 16 SUSYs: $M_i \in O(20)$

Preserving 8 SUSYs: $M_i \in SU(2) \times O(20)$

Breaking all SUSY: $M_i \in SU(2) \times SU(2) \times O(20)$

K3

Compact Ricci flat Kahler 4-manifolds: K3 and T4

K3 has SU(2) holonomy, hyperkahler. Manifold unique up to diffeomorphism.

Ricci flat metric depends on 22 moduli.

Moduli space

$$\mathcal{M} \cong O(3, 19; \mathbb{Z}) \backslash O(3, 19) / O(3) \times O(19)$$

 $O(3,19;\mathbb{Z})$: large diffeomorphisms of K3

K3 cohomology

$$H^2(K3) = \mathbb{R}^{22}$$
 $H^0(K3) = H^4(K3) = \mathbb{R}$

K3 cohomology

$$H^2(K3) = \mathbb{R}^{22}$$
 $H^0(K3) = H^4(K3) = \mathbb{R}$ Metric on forms: $(\alpha_p, \beta_{4-p}) = \int \alpha_p \wedge \beta_{4-p}$ $H^2(K3) = \mathbb{R}^{3,19}$ $H^0(K3) + H^4(K3) = \mathbb{R}^{1,1}$

- $\mathbb{R}^{3,0}$ Self-dual harmonic 2-forms; hyperkahler structure
- $\mathbb{R}^{0,19}$ Anti-self-dual harmonic 2-forms

$$H^*(K3) = \mathbb{R}^{4,20}$$

$$H^*(K3) = H^0(K3) + H^2(K3) + H^4(K3)$$

K3 cohomology

$$H^2(K3) = \mathbb{R}^{22}$$
 $H^0(K3) = H^4(K3) = \mathbb{R}$ Metric on forms: $(\alpha_p, \beta_{4-p}) = \int \alpha_p \wedge \beta_{4-p}$ $H^2(K3) = \mathbb{R}^{3,19}$ $H^0(K3) + H^4(K3) = \mathbb{R}^{1,1}$

 $\mathbb{R}^{3,0}$ Self-dual harmonic 2-forms; hyperkahler structure

 $\mathbb{R}^{0,19}$ Anti-self-dual harmonic 2-forms

Lattice of integral cohomology

$$\Gamma_{3,19} = H^2(K3; \mathbb{Z}) \cong E_8 \oplus E_8 \oplus U \oplus U \oplus U$$

Preserved by $O(\Gamma_{3,19}) \sim O(3,19;\mathbb{Z})$

IIA String on K3

G=O(4,20;Z) Automorphism group of CFT, preserves charge lattice

$$\Gamma_{4,20} = H^*(K3; \mathbb{Z}) \cong E_8 \oplus E_8 \oplus U \oplus U \oplus U \oplus U$$

U: 2-dim lattice of signature (1,1)

$$\mathcal{M}_{\Sigma} \cong O(\Gamma_{4,20}) \backslash O(4,20) / O(4) \times O(20)$$

 $O(3,19;\mathbb{Z})$: large diffeomorphisms of K3

 $\mathbb{Z}^{3,19}$: B-shifts

Rest of $O(4,20;\mathbb{Z})$ non-geometric

Compactify on T², monodromies

$$M_1, M_2 \in O(\Gamma_{4,20})$$

Heterotic String Dual

IIA string on K3 ———— Heterotic string on T⁴

CH&Townsend

IIA string on K3 "bundle" over T2

Heterotic string on T⁴ "bundle" over T²

Monodromies in heterotic T-duality group $O(4,20;\mathbb{Z})$:

T-fold

Doubled picture: T^{4,20} bundle over T²

Compactification of String Theory with Duality Twists

AD&CH '02

Monodromies $M_i \in G(\mathbb{Z})$

Points in moduli space that give Minkowski-space minima of Scherk-Schwarz scalar potential

Points in moduli space fixed under action of $M_i \in G(\mathbb{Z})$

$$M_i \in G(\mathbb{Z})$$
 has fixed point

 $M_i \in G(\mathbb{Z})$ in elliptic conjugacy class

$$G = SL(2, \mathbb{R})$$

 $SL(2,\mathbb{Z})$ Elliptic conjugacy classes of order 2,3,4,6

$$M_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $M_3 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$, $M_4 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $M_6 = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$

$$\mathbb{Z}_2, \mathbb{Z}_3.\mathbb{Z}_4.\mathbb{Z}_6$$

$$G = SL(2, \mathbb{R})$$

 $SL(2,\mathbb{Z})$ Elliptic conjugacy classes of order 2,3,4,6

$$M_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $M_3 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$, $M_4 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $M_6 = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$

$$\mathbb{Z}_2, \mathbb{Z}_3.\mathbb{Z}_4.\mathbb{Z}_6$$

Corresponding fixed points in

$$SL(2,\mathbb{Z})\backslash SL(2,\mathbb{R})/U(1)$$

Minkowski Vacua and Orbifolds AD&CH '02

At fixed point M_i generates \mathbb{Z}^{p_i}

$$(M_i)^{p_i} = 1$$

At this point in moduli space, construction becomes an orbifold, quotient by $M_i \times s_i$

 $G(\mathbb{Z})$ transformation together with shift in i'th S^1

$$s_i: y_i \to y_i + 2\pi/p_i$$

Geometric monodromies: orbifolds

T-duality monodromies: asymmetric orbifolds

K3 SCFT automorphisms: (asymmetric) Gepner

models

Israel & Thiery

- Reduction with duality twist becomes orbifold at minima of potential, with explicit SCFT construction
- Reduction with duality twist gives extension of orbifold construction to whole of moduli space, identifies effective supergravity theory
- General point in moduli space not critical point. No Minkowski solution there but often e.g. domain wall solutions

String Constructions with Minkowski Vacua with N=2 SUSY

Need monodromies in elliptic conjugacy classes of $O(20,4;\mathbb{Z})$: i.e. in

$$M_i \in [O(4) \times O(20)] \cap O(4, 20; \mathbb{Z})$$

SUSY
$$M_i \in [SU(2) \times O(20)] \cap O(4, 20; \mathbb{Z})$$

Any such monodromies will give Minkowski vacuum with N=2 SUSY

But finding such conjugacy classes is very hard open problem

Algebraic geometry constructs solutions

CY Mirror Symmetry

Moduli space of CY factorises

$$\mathcal{M}_{complex\ structure} \times \mathcal{M}_{Kahler}$$

Mirror CY has moduli spaces interchanged

$$\bar{\mathcal{M}}_{complex\ structure} = \mathcal{M}_{Kahler}$$

$$\bar{\mathcal{M}}_{Kahler} = \mathcal{M}_{complex\ structure}$$

K3 Mirror Symmetry

Moduli space doesn't factorise

$$\frac{O(4,20)}{O(4) \times O(20)}$$

No mirror symmetry: all K3's diffeomorphic

For <u>algebraic</u> K3, moduli space of CFTs factorises

$$\mathcal{M}_{complex} \times \mathcal{M}_{Kahler} = \frac{O(2, 20 - \rho)}{O(2) \times O(20 - \rho)} \times \frac{O(2, \rho)}{O(2) \times O(\rho)}$$

Picard number ρ

Mirror symmetry interchanges factors

Mirrored Automorphisms

$$\hat{\sigma}_p := \mu^{-1} \circ \sigma_p^T \circ \mu \circ \sigma_p$$

CH, Israel and Sarti

$$\mu:X o ilde{X}$$
 Mirror map for algebraic K3

$$\sigma_p$$
 Diffeomorphism of X

$$(\sigma_p)^p = 1$$

$$\sigma_p^T$$
 Diffeomorphism of \tilde{X}

$$(\sigma_p^T)^p = 1$$

For suitable X, σ_p this acts on charge lattice by an O(4,20;Z) transformation that is elliptic and SUSY

Use such automorphisms for monodromies

Non-Geometric CY Vacua

- Minkowski vacuum with N=2 SUSY
- Asymmetric Gepner model of Israel & Thiery
- Explicit SCFT with Landau-Ginsurg formulation, asymmetric orbifold with discrete torsion
- D=4 gauged N=4 SUGRA, breaking to N=2. Outside classification of Horst, Louis, Smyth
- Massless sector: N=2 SUSY, STU model, or STU plus small number of hypermultiplets

Conclusions

- Non-geometries giving supersymmetric Minkowski vacua of string theory with few massless moduli
- Further non-geometries? Landscape? Physics?
- Mirrored automorphism involves K3 and its mirror. Some bigger picture? e.g. $X \times \tilde{X}$
- General mathematical structure? Generalised CY?