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String field theory (SFT)

String field
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String field action
S=3KPd+P3+...

@ We would like to discuss dynamical problems of superstring theory using SFT.
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Feynman amplitudes of superstring field theory

S=0KP+ 3+ ...

t

propagator 1 vertex

@ Amplitudes can be calculated perturbatively.

@ The results coincide with those from the first quantized theory.

>

worldsheet

3/27




Divergences of the Feynman amplitudes for superstrings

1. Infrared divergences (physical)

2. Spurious singularities (unphysical)

@ The amplitudes of a valid superstring field theory should be free of the

divergences of the second kind.
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In the case of LC gauge superstring field theory

These divergences can be regularized by formulating the theory in noncritical

dimensions.

In this talk, | would like to explain
@ what the spurious singularities are
@ how the regularization works

@ computation of Fayet-lliopoulos D terms using the formulation

Based on collaborations with Baba and Murakami and N. I. in progress
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Divergences of Feynman amplitudes for superstrings

§1 Divergences of Feynman amplitudes for superstrings

A = /Ml;ldtx KVIMVNE[/%bl:[X(zi)>+m}

M : moduli space of the Riemann surface

The integrand becomes singular at
Q t =ty € OM: infrared divergences

Q@ ¢ =ty &€ OM : spurious singularities

@ In the 1-st quantized formalism, this expression is derived by fixing the local

symmetries on the worldsheet. @D

@ The integrand may diverge at the point where the gauge slice is not

transverse to the gauge orbit. — spurious singularities @D
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Divergences of Feynman amplitudes for superstrings

Spurious singularities in 1-st quantized formalism

= e [{-veLf, qpxeon)- ] J

o It is difficult to find a goood gauge slice globally on M. A possible way to go
is to divide M into patches.
e It is possible to find a good slice in each patch.
e One can get and expression of A with contributions from the boundaries of the

patches.

M
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Divergences of Feynman amplitudes for superstrings

Spurious singularities in SFT

SFT amplitudes coincide with those from the 1-st quantized approach.

-

e \ /

@ An SFT corresponds to a specific choice of the gauge slice.

@ The Feynman rule of SFT should yield a good gauge slice for any Riemann

surface.
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Divergences of Feynman amplitudes for superstrings

Sen's SFT for closed superstrings

master action in BV formalism

1
g2

5 (9] 5 Qu6|#) + (9|5 Qs |w) + i{{w"}}

e infinitely many interaction terms of order A* (k =0,1,2,---)
@ There are a lot of freedom in choosing them (adding stubs, etc.)

@ One can arrange these interaction terms order by order in & so that the

amplitudes are free of spurious singularities.
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Light-cone gauge superstring field theory

§2 Light-cone gauge superstring field theory

LC gauge string field
Xt =t , , _
— @ I:t7a7XZ(U)7¢Z (0)’>‘A (0)]
Pt =0

@ Only physical degrees of freedom

o Lorentz invariance, supersymmetry, etc. are not manifest
@ Simple SFT action €D
@ Tractable spurious singularities @D

e All we should deal with are the contact term divergences
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Light-cone gauge superstring field theory

Dimensional regularization

LC SFT can be formulated in any spacetime dimensions.

s:/[é@-(maﬁmqugf@-(cp*@)}

2g—2+N 5 5
A= 3 /HdtK<VLC~~ 11 [(azp)wgc(zl)D e~ 52T

spin structure I=1 LC

e~ T diverges when the LC diagram becomes singular. @D

@ Taking d to be large and negative, divergences are regularized. €D

2 _ 10—-d. 10-d

o iady — H~p*>—m 4. 10=4 works as an infrared regulator

e Chiral fermions are dealt with by considering a linear dilaton background.
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Light-cone gauge superstring field theory

= /HdtK< ...Vbc%ﬁﬂv

spin structure I=1

/HdtK<V1 VNH/ bHX(z1>

artnee]) oo

LC

spin structure

@ The amplitudes can be expressed using a conformal gauge worldsheet theory
with Q% = 0. G
e The regularization preserves the gauge invariance.
@ The conformal gauge expression coincides with the one from the 1-st
quantized formalism by Sen-Witten in the limit Q — 0, if the latter is

(absolutely) convergent.
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C ion of Fayet-lliopoulos D terms

§3 Computation of Fayet-lliopoulos D terms

SO(32) heterotic string theory compactified on a CY-manifold with 4; = w;

With anomalous U (1)'s, FI D terms appear at one loop

1
v = —§D2—|—D<cg§—|¢|2)+---

1 2
o Lo 1oP)" 4o

@ The supersymmetric vacuum is at |¢\2 = cg?

@ ¢ > 0 can be obtained by calculating the tachyonic mass m? = —cg? of ¢ at

the classical vacuum ¢ = 0.
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C ion of Fayet-lliopoulos D terms

Computation of the m?

C=o-

@ One loop mass correction

E(pz)’pzzo ~ /d2~rd2z<V(0)(z,E)V(O)(O,O)>’p2=O

[ o 7 v 00

p<=0

~ [ drws @0

@ Sen’s SFT reproduces this result. Sen went further and described the
supersymmetric vacuum using the SFT.
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C ion of Fayet-lliopoulos D terms

Computation of the m? by LC SFT

C=o-

e With the infrared regulator Q2 ~ 1%=4 —

z(p2)‘p2:0 ~ /d27d22<v<°)(z,z)v(0’(0,0)>L2:0

~ [ [l (6 (e @) Vb (0,0)]

p2=0

~ [ o 0.0) 1)
@ We have not been able to check if this agrees with the known result.
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Conclusions

§4 Conclusions

@ In order to regularize the divergences of the Feynman amplitudes, we

formulate light-cone gauge super string field theory in noncritical dimensions.

e Taking d — 10, we obtain the amplitudes which coincide with those from the

first quantized approach.

@ FI D terms may be calculated using the formalism.
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Conclusions

1-st quantized amplitudes @z

A / [dgmndxadX"dyp*] _;
= e
superrep. X superWeyl

/HdtK [dX"dbdedBdy] e e - [v1-~-vNH/ bHX(zi)+-<-]
K K 'Cx i
- e o]

(gmru Xa)
srep. x sWeyl

1 VN

€ +— b, c (reparametrization)
e’ <+— B, (supersymmetry)
(gm"r(t7 C)7 Xa(t7 C))
X(z) = 6BTr+---

picture changing operator
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Conclusions

Gauge slice

gauge trans. () gauge trans. ()

gauge slice gauge slice
@ When the gauge slice is not transverse to the gauge orbit at some point on
the gauge slice,
e App = 0 if the relevant gauge parameter is Grassmann even

e App = oo if the relevant gauge parameter is Grassmann odd

@ The integrand of a Feynman amplitude for superstrings may diverge when the

gauge slice fails to be transverse.
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Conclusions

Singularities @z

A:/Ml:Idta |:<V1(Zl)--~VN(ZN)l;Aab1;X(Zi)>+...:|

<H«s EYEN) § LI <zr>>

o 1 . IL . E (=i, Z7) I1,0(2:)°
Yla] (O zi — > Z, —24) Hi>j E (zi,zj) l_[r>s E(Z.,Zs) Tl;o (21)?

e Two kinds of singularities
© =z, = z;: contact term divergence
Q V] >z—->2Z —20)=0
@ The second one is harder to deal with.

e global condition involving the positions of a lot of operators
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S=/[%<I>~(ia8t—H)<I>+%S<I>~(<I>*<I>)]

e String field ® [t,a, X*(0),%" (o) , A% (0)]

@ propagator and vertex

«O>» «Fr «=>»

«E

>

(PN G4
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Conclusions

Feynman amplitudes for LC gauge SFT

A = > /HdtK <VLC VLCH[82 T#C(ZI)D e’

spin structure LC

= /MHdtK <V1 (Z1)-+ VN (ZN) H/ bHX z1>

spin structure

[T bL —

@ A naturally defined metric on LC diagram ds? = dpdp

e ¢ I Weyl anomaly
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Conclusions

Spurious singularities in LC SFT @z

A = > /HdtK<VLC VLCH[(82 4TLC(ZI)]> e T

spin structure LC

- 3 /HdtK <v1(zl VN(ZN)H/ bHX(ZI> }

spin structure

Q 1=z

Q@ Va2 —>.2,—2A)=0

@ No singularity of the second type.

e No 3,7 on the worldsheet (1-st line)

e The ¥ is canceled by the one from the ¢ partition function (2-nd line)
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Conclusions

Singular LC diagrams @z

@ eI becomes singular when combinations of these phenomena happen.

@ These correspond to contact term and infrared divergences.

[m]

=

(PN G4
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Conclusions

Problems with chiral fermions @z

o Naive dimensional regularization has problems with chiral fermions. We can
avoid them by considering the theory in linear dilaton background
® = —iQX", instead of changing the spacetime dimensions

_ L (e (gabaaxlabxl — 2iQRX* + - )
167

Doing so does not change the number of " ~ ~*
o Q% ~ 10=d
e We can change @Q continuously.

e This background breaks unitarity.
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Conclusions

The worldsheet theory for X=, ¢+

1 = d—10
o = ——/d?zaxm)r =
27 2

/dzz (Bxéx + gzsz) +
T
X =1In (—48X+5X+) —1n(2§.2)

@ This theory can be formulated in the case (9,, X ) # 0.

o In the case of the LC gauge amplitudes, we always have He‘“’jx* (ph #0)
and (9, X*+) £ 0.

@ The interaction terms are made of X, 9X* which have no singular OPE'’s

among themselves.
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Conclusions

The worldsheet theory for X*, 1+ ez

1, +__7d—10/2 .
St = -5 / d220X+dX . dz(axax+gzsz)+
d—10 [83X+ 3 /82X+\?
= - X+ : = - =
T (2) 0X ™~ (2)0 (2) 5 |:8X+ 2(8X+) ]-I—

@ This theory is exactly solvable and turns out to be a superconformal field
theory with ¢ = 3+ 2 (10 — d).

e The worldsheet theory has a nilpotent BRST charge

X* Xt ghosts
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