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Motivation and ultimate goal:
Despite immense progress some questions which we would like to ask

using holography still seem to remain beyond reach

Try to construct a holographic duality by going to an extremely simple
setting where everything would be under control on both sides of the
duality
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The original AdS/CFT correspondence

N = 4 Super Yang-Mills theory‘ = ’Superstrings on AdSs x S°

Two main parameters
» tHooft coupling A = gf,MNC,

> governs string scale effects
a;ff x 1/\/X

» The A — 0 limit is accessible on the perturbative gauge theory side
> For a long time it seemed to be impossible to access this regime on
the string side until huge progress using integrability

» The number of colors N,

> planar limit — roughly classical (gravity+)
> finite N. — quantum gravity+
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Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin

2. OPE coefficients and three string interactions:

C =
o |@

€]

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira
see also axioms for string splitting in AdSs x S°
Bajnok, RJ

5 /29



Even with all this knowledge there are still open problems at
large N,

6 /29



Even with all this knowledge there are still open problems at
large N,

» The dual description of thermal plasma (A = 4 SYM at nonzero
temperature) at large N, strong coupling is given by a planar black
hole solution

6 /29



Even with all this knowledge there are still open problems at
large N,

» The dual description of thermal plasma (A = 4 SYM at nonzero
temperature) at large N, strong coupling is given by a planar black
hole solution

» What is the dual description of thermal plasma still at large N, but
for A — 07

6 /29



Even with all this knowledge there are still open problems at
large N,

» The dual description of thermal plasma (A = 4 SYM at nonzero
temperature) at large N, strong coupling is given by a planar black
hole solution

» What is the dual description of thermal plasma still at large N, but
for A — 07

> here the massive string excitations are as important as supergravity
modes

6 /29



Even with all this knowledge there are still open problems at
large N,

» The dual description of thermal plasma (A = 4 SYM at nonzero
temperature) at large N, strong coupling is given by a planar black
hole solution

» What is the dual description of thermal plasma still at large N, but

for A — 07
> here the massive string excitations are as important as supergravity
modes

» what is the bulk action governing all these states - even at the
classical level?
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» We expect quantum gravity effects
» What workable theoretical framework could be used?

> covariant closed string field theory?77?
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7 /29



O(N) - higher spin duality

Klebanov, Polyakov

8 /29



O(N) - higher spin duality

Klebanov, Polyakov

> The singlet sector of free scalar O(N) vector model in 3D — dual to
4D Vasiliev gravity

8 /29



O(N) - higher spin duality

Klebanov, Polyakov

> The singlet sector of free scalar O(N) vector model in 3D — dual to
4D Vasiliev gravity

» Very nontrivial check of 3-point correlation functions Giombi, Yin

8 /29



O(N) - higher spin duality

Klebanov, Polyakov

> The singlet sector of free scalar O(N) vector model in 3D — dual to
4D Vasiliev gravity

» Very nontrivial check of 3-point correlation functions Giombi, Yin

> Very intriguing — first time no strings directly involved

8 /29



O(N) - higher spin duality

Klebanov, Polyakov

> The singlet sector of free scalar O(N) vector model in 3D — dual to
4D Vasiliev gravity

» Very nontrivial check of 3-point correlation functions Giombi, Yin

> Very intriguing — first time no strings directly involved

» The boundary field theory is completely under control

8 /29



O(N) - higher spin duality

vV v . v v

Klebanov, Polyakov

The singlet sector of free scalar O(N) vector model in 3D — dual to
4D Vasiliev gravity

Very nontrivial check of 3-point correlation functions Giombi, Yin
Very intriguing — first time no strings directly involved
The boundary field theory is completely under control

On the bulk side the situation is less clear — action for Vasiliev
gravity is not really known (although some proposals exist)

8 /29



O(N) - higher spin duality

vV v . v v

Klebanov, Polyakov

The singlet sector of free scalar O(N) vector model in 3D — dual to
4D Vasiliev gravity

Very nontrivial check of 3-point correlation functions Giombi, Yin
Very intriguing — first time no strings directly involved
The boundary field theory is completely under control

On the bulk side the situation is less clear — action for Vasiliev
gravity is not really known (although some proposals exist)

In particular unfortunately it is not known how to quantize Vasiliev
gravity...
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» Beautiful story in 2D...
— a family of coset CFT's with Wy symmetry

» (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions
with a highly nontrivial higher spin algebra

» The duality involves, however, also a bulk scalar field interacting
with the higher spin sector

» Very challenging to study at finite N
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It would be very interesting to construct a holographic model
where the bulk action would be completely known...
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Tensor networks

» Consider a 1D spin chain system of length L (L is large, perhaps
infinite) with some hamiltonian. One is interested in finding the
ground state wavefunction

» The wave function |W) = W, o [s15:...5.) has exponentially
many components. These components can be understood as
defining a rank L tensor, which can be pictorially represented as

v
\Usl $2...55 o ‘ ‘ ‘ ‘ ‘
51 S2 S3 S34 Ss

» Tensor networks provide variational ansatzae with less components
e.g. Matrix Product State (MPS) is of the form

A A A A
\ \ \ \ \
S1 S> S3 Sa S5

\Uslsg.”55 -

» MERA (Multiscale Entanglement Renormalization Ansatz), has a
more sophisticated multilayer structure better suited for gapless
systems...
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Tensor network constructions and holography

>

Tensor network constructions offer a complementary point of view
on holography
Swingle proposed a compelling link between holography and MERA
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agnostic about hamiltonian (as in the isometric quantum code of
HaPPY), or the tensors are filled variationally for virtually any
hamiltonian..

> If holography indeed could be understood in this way, this seems to
indicate that a holographic description should exist for almost
any theory

» Here a ‘holographic description’ does not mean a description in
terms of classical gravity and almost decoupled other stuff but
a generic, possibly fully quantum interacting system in higher
number of dimensions

» On the other hand these constructions do not seem to give a
guideline for constructing spacetime dual action or specifying the
field content of the dual description
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dimensional manifold M, having ¥ as a boundary.
> We should have equality of partition functions

Zboundary(z) = Zbulk(M)

» E.g this would provide a bulk interpretation of the thermodynamics
of the theory...

Typically for AdS/CFT we want much more...
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> There should be a bulk field associated with the energy-momentum
tensor and the boundary metric on

» This would define a gravitational subsector in the bulk theory

» Standard example: Fefferman-Graham expansion of the bulk metric

ds

2 G (xP, z)dx"dx" + dz?
= 3 +
z
where
guv(x”,2) = g} (x") + g (x") 7 + gl (") 2 + ...
> For higher spin gravity the whole picture is more complex...

> But in this way one can identify a gravitational subsector of the
bulk theory
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> A bulk theory which realizes the equality of partition functions may
be quite far from incorporating requirements Il and IlI...

> Classical example: WZW/Chern-Simons duality (dualities —
depending on boundary conditions one has various distinct versions)

» Suppose we study SU(N), WZW. The SU(N) level k Chern-Simons
theory appearing on the dual side is completely different from a
noncompact CS theory which would describe 3D gravity...

> In fact trying to address the well known WZW/CS relation from the
point of view of holography led to the present investigation...

18 / 29



> A bulk theory which realizes the equality of partition functions may
be quite far from incorporating requirements Il and Ill...

18 / 29



> A bulk theory which realizes the equality of partition functions may
be quite far from incorporating requirements Il and Ill...

» Classical example: WZW /Chern-Simons duality

18 / 29



> A bulk theory which realizes the equality of partition functions may
be quite far from incorporating requirements Il and Ill...

> Classical example: WZW/Chern-Simons duality (dualities —
depending on boundary conditions one has various distinct versions)

18 / 29



> A bulk theory which realizes the equality of partition functions may
be quite far from incorporating requirements Il and Ill...

> Classical example: WZW/Chern-Simons duality (dualities —
depending on boundary conditions one has various distinct versions)

> Suppose we study SU(N), WZW.

18 / 29



> A bulk theory which realizes the equality of partition functions may
be quite far from incorporating requirements Il and Ill...

> Classical example: WZW/Chern-Simons duality (dualities —
depending on boundary conditions one has various distinct versions)

» Suppose we study SU(N), WZW. The SU(N) level k Chern-Simons
theory appearing on the dual side is completely different from a
noncompact CS theory which would describe 3D gravity...

18 / 29



v

A bulk theory which realizes the equality of partition functions may
be quite far from incorporating requirements Il and Ill...

Classical example: WZW/Chern-Simons duality (dualities —
depending on boundary conditions one has various distinct versions)
Suppose we study SU(N), WZW. The SU(N) level k Chern-Simons
theory appearing on the dual side is completely different from a
noncompact CS theory which would describe 3D gravity...

In fact trying to address the well known WZW/CS relation from the
point of view of holography led to the present investigation...

18 / 29



Aim:

Try to satisfy the above requirements I-111 for one of the simplest
systems possible, the quantum mechanical free particle in one dimension.

19 / 29



Aim:

Try to satisfy the above requirements I-111 for one of the simplest
systems possible, the quantum mechanical free particle in one dimension.

» Direct (but much simpler) analog of the massless free boson
(abelian WZW/CS)

19 / 29



Aim:

Try to satisfy the above requirements I-111 for one of the simplest
systems possible, the quantum mechanical free particle in one dimension.

» Direct (but much simpler) analog of the massless free boson
(abelian WZW/CS)

> Extremely simplified system — no spatial direction — no complications
coming from error correcting code arguments etc.

19 / 29



Aim:

Try to satisfy the above requirements I-111 for one of the simplest
systems possible, the quantum mechanical free particle in one dimension.

» Direct (but much simpler) analog of the massless free boson
(abelian WZW/CS)

> Extremely simplified system — no spatial direction — no complications
coming from error correcting code arguments etc.

» No large N, or coupling

19 / 29



Aim:

Try to satisfy the above requirements I-111 for one of the simplest
systems possible, the quantum mechanical free particle in one dimension.

» Direct (but much simpler) analog of the massless free boson
(abelian WZW/CS)

> Extremely simplified system — no spatial direction — no complications
coming from error correcting code arguments etc.

» No large N, or coupling — expect the dual description to be
quantum

19 / 29



Aim:

Try to satisfy the above requirements I-111 for one of the simplest
systems possible, the quantum mechanical free particle in one dimension.

» Direct (but much simpler) analog of the massless free boson
(abelian WZW/CS)

> Extremely simplified system — no spatial direction — no complications
coming from error correcting code arguments etc.

» No large N, or coupling — expect the dual description to be
quantum

19 / 29



The system

1,

20/ 29



The system
1
S= [ dt =g
/ 21

» Consider the bulk spacetime to be of the form

M ={(t,z): z > 0}

20 /29



The system
1
S= [ dt =g
/ 21

» Consider the bulk spacetime to be of the form
M ={(t,z): z > 0}
» Since in the 2D massless boson case we have dual abelian

Chern-Simons, here we expect to have a 2D abelian BF topological
theory

SeF = / B dA = / B (0:A, — 9, A, )dtdz
M

20 /29



The system
1
S= [ dt =g
/ 21

» Consider the bulk spacetime to be of the form
M ={(t,z): z > 0}
» Since in the 2D massless boson case we have dual abelian

Chern-Simons, here we expect to have a 2D abelian BF topological
theory

SeF = / B dA = / B (0:A, — 9, A, )dtdz
M

» As the action vanishes on the constraint manifold dA = 0, we need
to impose appropriate boundary conditions and boundary action

20 /29



The system
1
S= [ dt =g
/ 21

» Consider the bulk spacetime to be of the form

M ={(t,z): z > 0}

» Since in the 2D massless boson case we have dual abelian
Chern-Simons, here we expect to have a 2D abelian BF topological
theory

SeF = / B dA = / B (0:A, — 9, A, )dtdz
M

» As the action vanishes on the constraint manifold dA = 0, we need
to impose appropriate boundary conditions and boundary action
» For the equality of partition functions analogous computations were
done independently in the nonabelian case with different
motivations.
Mertens; Gonzalez, Grumiller, Salzer
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B = 7At |z:0 At =0 |z—>oo

» Again in analogy to WZW/CS, we have to supplant the BF action
with a boundary term so that the variation at the boundary vanishes

1
Shui = SeF + 5/ B*dt
{z=0}

> The Lagrange multiplier field B imposes the constraint dA = 0,
hence we may set

Az = —8z¢ Af = —8t¢

» The boundary values of ®(t, z)|,—o will be identified with g(t) hence
the partition functions coincide as on the constraint surface

1 1 1
Stk =0+ 5/ B%dt = §/ A2dt = /dt Ec']2
{z=0} {z=0}
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» In terms of the BF theory gauge field, the particle position g(t) can
be understood essentially as a Wilson line

/Oo Aydz =— /Oo 0,P(t,z) = ®(t,0) — P(t,00) — P(t,0)
z z=0

q(t)=/LA

where the line L is attached to the boundary at time t and goes to
infinity in the bulk.

» So we have
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» In order to construct a bulk action which reduces to
[ atitoate
we will need two ingredients
» We will introduce another two-dimensional abelian BF theory
/Cda
> We use the global 1-form dt (this will be modified later)
» Introduce a constraint term in the action

Do A dt

which ensures that the 1-form « only has temporal component
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Step Il — bulk fields for sources

> Now the flatness condition da: = 0 ensures « = j(t)dt, so we can
generate the wanted term from a simple bulk interaction between o
and A:

/M ANA = /M J(6)dEA(Ardt+A, dz) = / i) /0 " AL dedt = / i(t)q(t)dt

» At this stage the overall bulk action is

1
5é’u/k:/ (BdA+Cda+a/\A+Da/\dt)+f/ B2t
M 2 oM

» The appearance of an explicit dt is not very pleasing — but we will
get rid of it shortly
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1-dimensional metric gy+(t) and write the action as

1 tt 2_1/1-2
2/\/§g (0:q) =5/ 9

and the einbein e = e(t) is a given function of time...

» We would like to introduce a natural bulk field which goes over to
the einbein at the boundary.

» At the same time we will replace the 1-form dt (which is necessarily
closed)

» Introduce a third abelian BF pair

/Edn

> The closed 1-form n will play the role of dft.
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» We will modify the boundary conditions
At + 'f]tB = 0|z:0

and fix the boundary value of 7,
» Accordingly we need to modify the additional boundary action
1 1
4 /‘ B%dt — = B%n
2 Jiz—0 2 Jom

(this works as dn; = 0|,—0)

» Now the resulting action will take the form

1 1 /1 1 /1
- B? :f/—ﬁm:f/—j
2 /6/\// ! 2) e " 2) ne 7
> We see that we have to identify the boundary value of 7; with the

einbein e(t)
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Step Il — the “gravity” subsector

» The final bulk action at this stage is

1
Sg’u’,k:/ (BdA+Cda+Edn+aAA+DaAn)+§/ B%p
M oM

with the boundary conditions

At + ntB = 0‘2:0 Qi :j(t)|z:0 Nt = e(t)|z:0

» We are led to identify E, n as the “gravitational” subsector of the
bulk theory

27 /29
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eiSiunlC.D,Eam] _ /DB DA e/ShunB.A,C.D.E o]

» Unfortunately this seems to be quite nonlocal...

» One can speculate whether this is a generic situation and a local
holographic bulk action in this sense occurs only in special
circumstances??? (like large N and/or strong coupling?)
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