Towards holography for quantum mechanics

Romuald A. Janik
Jagiellonian University
Kraków

Motivation and ultimate goal:

Despite immense progress some questions which we would like to ask using holography still seem to remain beyond reach

Try to construct a holographic duality by going to an extremely simple setting where everything would be under control on both sides of the duality

Motivation and ultimate goal:

Despite immense progress some questions which we would like to ask using holography still seem to remain beyond reach

Try to construct a holographic duality by going to an extremely simple setting where everything would be under control on both sides of the duality

Motivation and ultimate goal:

Despite immense progress some questions which we would like to ask using holography still seem to remain beyond reach

Try to construct a holographic duality by going to an extremely simple setting where everything would be under control on both sides of the duality

Motivation and ultimate goal:

Despite immense progress some questions which we would like to ask using holography still seem to remain beyond reach

Try to construct a holographic duality by going to an extremely simple setting where everything would be under control on both sides of the duality

Outline

Motivation

Questions from holography
Tensor network constructions

Requirements for a holographic description
 Partition function
 Correlation functions
 The "gravity" subsector

Holographic description for a quantum-mechanical free particle

Conclusions and outlook

Outline

Motivation
Questions from holography
Tensor network constructions
Requirements for a holographic description
Partition function
Correlation functions
The "gravity" subsector

Holographic description for a quantum-mechanical free particle

Conclusions and outlook

Outline

Motivation

Questions from holography
Tensor network constructions

Requirements for a holographic description
Partition function
Correlation functions
The "gravity" subsector

Holographic description for a quantum-mechanical free particle

Conclusions and outlook

Outline

Motivation

Questions from holography
Tensor network constructions

Requirements for a holographic description
Partition function
Correlation functions
The "gravity" subsector

Holographic description for a quantum-mechanical free particle

Conclusions and outlook

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{C}$
- governs string scale effects

$$
\alpha_{e f f}^{\prime} \propto 1 / \sqrt{\lambda}
$$

- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity +)
- finite N_{c} - quantum gravity +

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory }
$$

Two main parameters

- governs string scale effects
- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity +)
- finite $N_{C}-$ quantum gravity +

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Two main parameters

```
tHooft coupling }\lambda=\mp@subsup{g}{YM}{2}\mp@subsup{N}{c}{}\mathrm{ ,
    - governs string scale effects
    * The }\lambda->0\mathrm{ limit is accessible on the perturbative gauge theory side
    - For a long time it seemed to be impossible to access this regime on
    the string side until huge progress using integrability
    - The number of colors Nc
    * planar limit - roughly classical (gravity +)
    * finite }\mp@subsup{N}{c}{}-\mathrm{ quantum gravity+
```

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{c}$,
- governs string scale effects
- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity +)
- finite $N_{c}-$ quantum gravity +

The original AdS/CFT correspondence

$$
\begin{array}{|l|}
\hline \mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5} \\
\hline
\end{array}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{c}$,
- governs string scale effects

```
- The \(\lambda \rightarrow 0\) limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors \(N_{c}\)
- planar limit - roughly classical (gravity + )
- finite \(N_{c}\) - quantum gravity +
```

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{c}$,
- governs string scale effects

$$
\alpha_{\text {eff }}^{\prime} \propto 1 / \sqrt{\lambda}
$$

- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity +)
- finite $N_{c}-$ quantum gravity +

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{c}$,
- governs string scale effects

$$
\alpha_{\text {eff }}^{\prime} \propto 1 / \sqrt{\lambda}
$$

- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity +)
- finite N_{c} - quantum gravity +

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{c}$,
- governs string scale effects

$$
\alpha_{e f f}^{\prime} \propto 1 / \sqrt{\lambda}
$$

- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity+)
- finite N_{c} - quantum gravity +

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{c}$,
- governs string scale effects

$$
\alpha_{e f f}^{\prime} \propto 1 / \sqrt{\lambda}
$$

- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity+)
- finite N_{c} - quantum gravity +

The original AdS/CFT correspondence

$$
\begin{array}{|l|}
\hline \mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5} \\
\hline
\end{array}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{c}$,
- governs string scale effects

$$
\alpha_{\text {eff }}^{\prime} \propto 1 / \sqrt{\lambda}
$$

- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity+)

The original AdS/CFT correspondence

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Two main parameters

- tHooft coupling $\lambda=g_{Y M}^{2} N_{c}$,
- governs string scale effects

$$
\alpha_{e f f}^{\prime} \propto 1 / \sqrt{\lambda}
$$

- The $\lambda \rightarrow 0$ limit is accessible on the perturbative gauge theory side
- For a long time it seemed to be impossible to access this regime on the string side until huge progress using integrability
- The number of colors N_{c}
- planar limit - roughly classical (gravity+)
- finite N_{c} - quantum gravity+

The planar limit, arbitrary λ

1. The spectrum:
\equiv Anomalous dimensions in the planar limit
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$

Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira
see also axioms for string splitting in $A d S_{5} \times S^{5}$

The planar limit, arbitrary λ

1. The spectrum:
```
\(\equiv\) Anomalous dimensions in the planar limit
\(\equiv\) energy levels of a single string in \(A d S_{5} \times S^{5}\)
```

Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira
see also axioms for string splitting in $A d S_{5} \times S^{5}$

The planar limit, arbitrary λ

1. The spectrum:
\equiv Anomalous dimensions in the planar limit
\qquad

Most complete solution: Quantum Spectral Curve
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira
see also axioms for string splitting in $A d S_{5} \times 5^{5}$
Bajnok, RJ

The planar limit, arbitrary λ

1. The spectrum:
\equiv Anomalous dimensions in the planar limit
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$

Most complete solution: Quantum Spectral Curve
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira
see also axioms for string splitting in $A d S_{5} \times 5^{5}$
Bajnok, RJ

The planar limit, arbitrary λ

1. The spectrum:
\equiv Anomalous dimensions in the planar limit
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$

Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira
see also axioms for string splitting in $A d S_{5} \times 5^{5}$

The planar limit, arbitrary λ

1. The spectrum:
\equiv Anomalous dimensions in the planar limit
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$

Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu. Vieira
see also axioms for string splitting in $A d S_{5} \times S^{5}$

The planar limit, arbitrary λ

1. The spectrum:
\equiv Anomalous dimensions in the planar limit
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$

Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
see also axioms for string splitting in $A d S_{5} \times S^{5}$

The planar limit, arbitrary λ

1. The spectrum:
\equiv Anomalous dimensions in the planar limit
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$

Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira
see also axioms for string splitting in $A d S_{5} \times S^{5}$

The planar limit, arbitrary λ

1. The spectrum:
\equiv Anomalous dimensions in the planar limit
\equiv energy levels of a single string in $A d S_{5} \times S^{5}$

Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin
2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira
see also axioms for string splitting in $A d S_{5} \times S^{5}$

Even with all this knowledge there are still open problems at large N_{c}

```
- The dual description of thermal plasma ( N}=4\mathrm{ SYM at nonzero
temperature) at large N}\mp@subsup{N}{c}{}\mathrm{ , strong coupling is given by a planar black
hole solution
* What is the dual description of thermal plasma still at large N}\mp@subsup{N}{c}{}\mathrm{ but
for }\lambda->0\mathrm{ ?
    > here the massive string excitations are as important as supergravity
    modes
    * what is the bulk action governing all these states - even at the
    classical level?
```

Even with all this knowledge there are still open problems at large N_{c}

- The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_{c}, strong coupling is given by a planar black hole solution

Even with all this knowledge there are still open problems at large N_{c}

- The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_{c}, strong coupling is given by a planar black hole solution
- What is the dual description of thermal plasma still at large N_{c} but for $\lambda \rightarrow 0$?
> here the massive string excitations are as important as supergravity modes
\Rightarrow what is the bulk action governing all these states - even at the classical level?

Even with all this knowledge there are still open problems at

 large N_{c}- The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_{c}, strong coupling is given by a planar black hole solution
- What is the dual description of thermal plasma still at large N_{c} but for $\lambda \rightarrow 0$?
- here the massive string excitations are as important as supergravity modes
* what is the bulk action governing all these states - even at the classical level?

Even with all this knowledge there are still open problems at large N_{c}

- The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_{c}, strong coupling is given by a planar black hole solution
- What is the dual description of thermal plasma still at large N_{c} but for $\lambda \rightarrow 0$?
- here the massive string excitations are as important as supergravity modes
- what is the bulk action governing all these states - even at the classical level?

The case of finite N_{c} is even more mysterious...

```
- We expect quantum gravity effects
- What workable theoretical framework could be used?
* covariant closed string field theory???
- something else?
```

The case of finite N_{c} is even more mysterious...

- We expect quantum gravity effects
- What workable theoretical framework could be used?
- covariant closed string field theory???
- something else?

The case of finite N_{c} is even more mysterious...

- We expect quantum gravity effects
- What workable theoretical framework could be used?
- covariant closed string field theory???
- something else?

The case of finite N_{c} is even more mysterious...

- We expect quantum gravity effects
- What workable theoretical framework could be used?
- covariant closed string field theory???
- something else?

The case of finite N_{c} is even more mysterious...

- We expect quantum gravity effects
- What workable theoretical framework could be used?
- covariant closed string field theory???
- something else?

$\mathrm{O}(\mathrm{N})$ - higher spin duality

Klebanov, Polyakov

- The singlet sector of free scalar $O(N)$ vector model in 3D - dual to 4D Vasiliev gravity
- Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing - first time no strings directly involved
- The boundary field theory is completely under control
- On the bulk side the situation is less clear - action for Vasiliev gravity is not really known (although some proposals exist)
- In particular unfortunately it is not known how to quantize Vasiliev gravity...

$\mathrm{O}(\mathrm{N})$ - higher spin duality

Klebanov, Polyakov

- The singlet sector of free scalar $O(N)$ vector model in 3D - dual to 4D Vasiliev gravity
- Very nontrivial check of 3-point correlation functions
- Very intriguing - first time no strings directly involved
- The boundary field theory is completely under control
- On the bulk side the situation is less clear - action for Vasiliev gravity is not really known (although some proposals exist)
- In particular unfortunately it is not known how to quantize Vasiliev gravity.

$O(N)$ - higher spin duality

Klebanov, Polyakov

- The singlet sector of free scalar $O(N)$ vector model in 3D - dual to 4D Vasiliev gravity
- Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing - first time no strings directly involved
- The boundary field theory is completely under control
- On the bulk side the situation is less clear - action for Vasiliev gravity is not really known (although some proposals exist)
- In particular unfortunately it is not known how to quantize Vasiliev gravity..

$\mathrm{O}(\mathrm{N})$ - higher spin duality

Klebanov, Polyakov

- The singlet sector of free scalar $O(N)$ vector model in 3D - dual to 4D Vasiliev gravity
- Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing - first time no strings directly involved
- The boundary field theory is completely under control
- On the bulk side the situation is less clear - action for Vasiliev gravity is not really known (although some proposals exist)
- In particular unfortunately it is not known how to quantize Vasiliev gravity..

$\mathrm{O}(\mathrm{N})$ - higher spin duality

- The singlet sector of free scalar $O(N)$ vector model in 3D - dual to 4D Vasiliev gravity
- Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing - first time no strings directly involved
- The boundary field theory is completely under control
- On the bulk side the situation is less clear - action for Vasiliev gravity is not really known (although some proposals exist)
- In particular unfortunately it is not known how to quantize Vasiliev gravity..

$O(N)$ - higher spin duality

- The singlet sector of free scalar $O(N)$ vector model in 3D - dual to 4D Vasiliev gravity
- Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing - first time no strings directly involved
- The boundary field theory is completely under control
- On the bulk side the situation is less clear - action for Vasiliev gravity is not really known (although some proposals exist)
- In particular unfortunately it is not known how to quantize Vasiliev gravity..

$O(N)$ - higher spin duality

- The singlet sector of free scalar $O(N)$ vector model in 3D - dual to 4D Vasiliev gravity
- Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing - first time no strings directly involved
- The boundary field theory is completely under control
- On the bulk side the situation is less clear - action for Vasiliev gravity is not really known (although some proposals exist)
- In particular unfortunately it is not known how to quantize Vasiliev gravity...

2d CFT - higher spin duality

Gaberdiel, Gopakumar

```
* Beautiful story in 2D
    - a family of coset CF-''s with W}\mp@subsup{W}{N}{}\mathrm{ symmetry
* (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions
with a highly nontrivial higher spin algebra
* The duality involves, however, also a bulk scalar field interacting
    with the higher spin sector
* Very challenging to study at finite N
```


2d CFT - higher spin duality

Gaberdiel, Gopakumar

- Beautiful story in 2D...
- a family of coset CFT's with W_{N} symmetry
* (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- Very challenging to study at finite N

2d CFT - higher spin duality

Gaberdiel, Gopakumar

- Beautiful story in 2D...
- a family of coset CFT's with W_{N} symmetry
- (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- Very challenging to study at finite N

2d CFT - higher spin duality

Gaberdiel, Gopakumar

- Beautiful story in 2D...
- a family of coset CFT's with W_{N} symmetry
- (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- Very challenging to study at finite N

2d CFT - higher spin duality

Gaberdiel, Gopakumar

- Beautiful story in 2D...
- a family of coset CFT's with W_{N} symmetry
- (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- Very challenging to study at finite N

It would be very interesting to construct a holographic model where the bulk action would be completely known...

Tensor networks

- Consider a 1D spin chain system of length L (L is large, perhaps infinite) with some hamiltonian. One is interested in finding the ground state wavefunction
- The wave function $|\Psi\rangle=\Psi_{s_{1} s_{2} \ldots s_{L}}\left|s_{1} s_{2} \ldots s_{L}\right\rangle$ has exponentially many components. These components can be understood as defining a rank L tensor, which can be pictorially represented as

$$
\Psi_{s_{1} s_{2} \ldots s_{5}}=
$$

- Tensor networks provide variational ansatzae with less components e.g. Matrix Product State (MPS) is of the form

- MERA (Multiscale Entanglement Renormalization Ansatz), has a more sophisticated multilayer structure better suited for gapless systems...

Tensor networks

- Consider a 1D spin chain system of length $L(L$ is large, perhaps infinite) with some hamiltonian. One is interested in finding the ground state wavefunction
- The wave function $|\Psi\rangle=\Psi_{s_{1} s_{2} \ldots s_{L}}\left|s_{1} s_{2} \ldots s_{L}\right\rangle$ has exponentially many components. These components can be understood as defining a rank L tensor, which can be pictorially represented as

- Tensor networks provide variational ansatzae with less components e.g. Matrix Product State (MPS) is of the form

- MERA (Multiscale Entanglement Renormalization Ansatz), has a more sophisticated multilayer structure better suited for gapless systems.

Tensor networks

- Consider a 1D spin chain system of length $L(L$ is large, perhaps infinite) with some hamiltonian. One is interested in finding the ground state wavefunction
- The wave function $|\Psi\rangle=\Psi_{s_{1} s_{2} \ldots s_{L}}\left|s_{1} s_{2} \ldots s_{L}\right\rangle$ has exponentially many components. These components can be understood as

defining a rank L tensor, which can be pictorially represented as

- Tensor networks provide variational ansatzae with less components e.g. Matrix Product State (MPS) is of the form

- MERA (Multiscale Entanglement Renormalization Ansatz), has a more sophisticated multilayer structure better suited for gapless systems.

Tensor networks

- Consider a 1D spin chain system of length $L(L$ is large, perhaps infinite) with some hamiltonian. One is interested in finding the ground state wavefunction
- The wave function $|\Psi\rangle=\Psi_{s_{1} s_{2} \ldots s_{L}}\left|s_{1} s_{2} \ldots s_{L}\right\rangle$ has exponentially many components. These components can be understood as defining a rank L tensor, which can be pictorially represented as

$$
\Psi_{s_{1} s_{2} \ldots s_{5}}=
$$

- Tensor networks provide variational ansatzae with less components e.g. Matrix Product State (MPS) is of the form

- MERA (Multiscale Entanglement Renormalization Ansatz), has a more sophisticated multilayer structure better suited for gapless systems

Tensor networks

- Consider a 1D spin chain system of length $L(L$ is large, perhaps infinite) with some hamiltonian. One is interested in finding the ground state wavefunction
- The wave function $|\Psi\rangle=\Psi_{s_{1} s_{2} \ldots s_{L}}\left|s_{1} s_{2} \ldots s_{L}\right\rangle$ has exponentially many components. These components can be understood as defining a rank L tensor, which can be pictorially represented as

$$
\Psi_{s_{1} s_{2} \ldots s_{5}}=
$$

- Tensor networks provide variational ansatzae with less components e.g. Matrix Product State (MPS) is of the form

- MERA (Multiscale Entanglement Renormalization Ansatz), has a more sophisticated multilayer structure better suited for gapless systems.

Tensor networks

- Consider a 1D spin chain system of length $L(L$ is large, perhaps infinite) with some hamiltonian. One is interested in finding the ground state wavefunction
- The wave function $|\Psi\rangle=\Psi_{s_{1} s_{2} \ldots s_{L}}\left|s_{1} s_{2} \ldots s_{L}\right\rangle$ has exponentially many components. These components can be understood as defining a rank L tensor, which can be pictorially represented as

$$
\Psi_{s_{1} s_{2} \ldots s_{5}}=
$$

- Tensor networks provide variational ansatzae with less components e.g. Matrix Product State (MPS) is of the form

- MERA (Multiscale Entanglement Renormalization Ansatz), has a more sophisticated multilayer structure better suited for gapless systems.

Tensor networks

- Consider a 1D spin chain system of length $L(L$ is large, perhaps infinite) with some hamiltonian. One is interested in finding the ground state wavefunction
- The wave function $|\Psi\rangle=\Psi_{s_{1} s_{2} \ldots s_{L}}\left|s_{1} s_{2} \ldots s_{L}\right\rangle$ has exponentially many components. These components can be understood as defining a rank L tensor, which can be pictorially represented as

$$
\Psi_{s_{1} s_{2} \ldots s_{5}}=
$$

- Tensor networks provide variational ansatzae with less components e.g. Matrix Product State (MPS) is of the form

- MERA (Multiscale Entanglement Renormalization Ansatz), has a more sophisticated multilayer structure better suited for gapless systems...

Tensor network constructions and holography

```
- Tensor network constructions offer a complementary point of view
    on holography
- Swingle proposed a compelling link between holography and MERA
```

- Nozaki, Ryu, Takayanagi defined an underlying holographic metric in terms of cMERA
- Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum codes

Tensor network constructions and holography

- Tensor network constructions offer a complementary point of view on holography
- Swingle proposed a compelling link between holography and MERA
- Nozaki, Ryu, Takayanagi defined an underlying holographic metric in terms of cMERA
- Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum codes

Tensor network constructions and holography

- Tensor network constructions offer a complementary point of view on holography
- Swingle proposed a compelling link between holography and MERA
- Nozaki, Ryu, Takayanagi defined an underlying holographic metric in terms of cMERA
- Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum codes

Tensor network constructions and holography

- Tensor network constructions offer a complementary point of view on holography
- Swingle proposed a compelling link between holography and MERA

- Nozaki, Ryu, Takayanagi defined an underlying holographic metric in terms of cMERA
- Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum codes

Tensor network constructions and holography

- Tensor network constructions offer a complementary point of view on holography
- Swingle proposed a compelling link between holography and MERA

- Nozaki, Ryu, Takayanagi defined an underlying holographic metric in terms of cMERA
- Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum codes

Tensor network constructions and holography

- Tensor network constructions offer a complementary point of view on holography
- Swingle proposed a compelling link between holography and MERA

- Nozaki, Ryu, Takayanagi defined an underlying holographic metric in terms of cMERA
- ...
- Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum codes

Tensor network constructions and holography

- Tensor network constructions offer a complementary point of view on holography
- Swingle proposed a compelling link between holography and MERA

- Nozaki, Ryu, Takayanagi defined an underlying holographic metric in terms of cMERA
- ...
- Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum codes

Tensor network constructions and holography

- Tensor network constructions offer a complementary point of view on holography
- Swingle proposed a compelling link between holography and MERA

- Nozaki, Ryu, Takayanagi defined an underlying holographic metric in terms of cMERA
- ...
- Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum codes

Tensor network constructions

- Tensor network constructions seem very kinematic in flavour, either agnostic about hamiltonian (as in the isometric quantum code of HaPPY), or the tensors are filled variationally for virtually any hamiltonian..
- If hologranhy indeed could be understood in this way, this seems to indicate that a holographic description should exist for almost any theory
- Here a 'holographic description' does not mean a description in terms of classical gravity and almost decoupled other stuff but a generic, possibly fully quantum interacting system in higher number of dimensions
- On the other hand these constructions do not seem to give a guideline for constructing spacetime dual action or specifying the field content of the dual description

Tensor network constructions

- Tensor network constructions seem very kinematic in flavour, either agnostic about hamiltonian (as in the isometric quantum code of HaPPY), or the tensors are filled variationally for virtually any hamiltonian..
- If holography incleed could be understood in this way, this seems to indicate that a holographic description should exist for almost any theory
- Here a 'holographic description' does not mean a description in terms of classical gravity and almost decoupled other stuff but a generic, possibly fully quantum interacting system in higher number of dimensions
- On the other hand these constructions do not seem to give a guideline for constructing spacetime dual action or specifying the field content of the dual description

Tensor network constructions

- Tensor network constructions seem very kinematic in flavour, either agnostic about hamiltonian (as in the isometric quantum code of HaPPY), or the tensors are filled variationally for virtually any
hamiltonian..
- If holography indeed could be understood in this way, this seems to indicate that a holographic description should exist for almost any theory
- Here a 'holographic description' does not mean a description in terms of classical gravity and almost decoupled other stuff but a generic, possibly fully quantum interacting system in higher number of dimensions
- On the other hand these constructions do not seem to give a guideline for constructing spacetime dual action or specifying the field content of the dual description

Tensor network constructions

- Tensor network constructions seem very kinematic in flavour, either agnostic about hamiltonian (as in the isometric quantum code of HaPPY), or the tensors are filled variationally for virtually any hamiltonian..
- If holography indeed could be understood in this way, this seems to indicate that a holographic description should exist for almost any theory
- Here a 'holographic description' does not mean a description in terms of classical gravity and almost decoupled other stuff but a generic, possibly fully quantum interacting system in higher number of dimensions
- On the other hand these constructions do not seem to give a guideline for constructing spacetime dual action or specifying the field content of the dual description

Tensor network constructions

- Tensor network constructions seem very kinematic in flavour, either agnostic about hamiltonian (as in the isometric quantum code of HaPPY), or the tensors are filled variationally for virtually any hamiltonian..
- If holography indeed could be understood in this way, this seems to indicate that a holographic description should exist for almost any theory
- Here a 'holographic description' does not mean a description in terms of classical gravity and almost decoupled other stuff but a generic, possibly fully quantum interacting system in higher number of dimensions
- On the other hand these constructions do not seem to give a guideline for constructing spacetime dual action or specifying the field content of the dual description

Tensor network constructions

- Tensor network constructions seem very kinematic in flavour, either agnostic about hamiltonian (as in the isometric quantum code of HaPPY), or the tensors are filled variationally for virtually any hamiltonian..
- If holography indeed could be understood in this way, this seems to indicate that a holographic description should exist for almost any theory
- Here a 'holographic description' does not mean a description in terms of classical gravity and almost decoupled other stuff
number of dimensions
- On the other hand these constructions do not seem to give a guideline for constructing spacetime dual action or specifying the field content of the dual description

Tensor network constructions

- Tensor network constructions seem very kinematic in flavour, either agnostic about hamiltonian (as in the isometric quantum code of HaPPY), or the tensors are filled variationally for virtually any hamiltonian..
- If holography indeed could be understood in this way, this seems to indicate that a holographic description should exist for almost any theory
- Here a 'holographic description' does not mean a description in terms of classical gravity and almost decoupled other stuff but a generic, possibly fully quantum interacting system in higher number of dimensions
- On the other hand these constructions do not seem to give a guideline for constructing spacetime dual action or specifying the field content of the dual description

Tensor network constructions

- Tensor network constructions seem very kinematic in flavour, either agnostic about hamiltonian (as in the isometric quantum code of HaPPY), or the tensors are filled variationally for virtually any hamiltonian..
- If holography indeed could be understood in this way, this seems to indicate that a holographic description should exist for almost any theory
- Here a 'holographic description' does not mean a description in terms of classical gravity and almost decoupled other stuff but a generic, possibly fully quantum interacting system in higher number of dimensions
- On the other hand these constructions do not seem to give a guideline for constructing spacetime dual action or specifying the field content of the dual description

Goals:

- Attempt a holographic description for the simplest possible theory that one could think of...
- We would like to have an explicit dual bulk action...

What do we mean by a holographic description?

Goals:

- Attempt a holographic description for the simplest possible theory that one could think of...
- We would like to have an explicit dual bulk action...

Goals:

- Attempt a holographic description for the simplest possible theory that one could think of...
- We would like to have an explicit dual bulk action...

Goals:

- Attempt a holographic description for the simplest possible theory that one could think of...
- We would like to have an explicit dual bulk action...

What do we mean by a holographic description?

Goals:

- Attempt a holographic description for the simplest possible theory that one could think of...
- We would like to have an explicit dual bulk action...

Goals:

- Attempt a holographic description for the simplest possible theory that one could think of...
- We would like to have an explicit dual bulk action...

What do we mean by a holographic description?

Requirements for a holographic description

```
Suppose that the field theory is defined on some fixed d}d\mathrm{ -dimensional
spacetime geometry \Sigma
```


I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$
Z_{\text {boundary }}(\Sigma)=Z_{\text {bulk }}(M)
$$

- E.g this would provide a bulk interpretation of the thermodynamics of the theory.

Requirements for a holographic description

Suppose that the field theory is defined on some fixed d-dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$
Z_{\text {boundary }}(\Sigma)=Z_{\text {bulk }}(M)
$$

- E.g this would provide a bulk interpretation of the thermodynamics of the theory.

Requirements for a holographic description

Suppose that the field theory is defined on some fixed d-dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary. - We should have equality of partition functions

$$
Z_{\text {boundary }}(\Sigma)=Z_{\text {bulk }}(M)
$$

- E.g this would provide a bulk interpretation of the thermodynamics of the theory

Requirements for a holographic description

Suppose that the field theory is defined on some fixed d-dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$
Z_{\text {boundary }}(\Sigma)=Z_{\text {bulk }}(M)
$$

- E.g this would provide a bulk interpretation of the thermodynamics of the theory

Requirements for a holographic description

Suppose that the field theory is defined on some fixed d-dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$
Z_{\text {boundary }}(\Sigma)=Z_{\text {bulk }}(M)
$$

- E.g this would provide a bulk interpretation of the thermodynamics of the theory

Requirements for a holographic description

Suppose that the field theory is defined on some fixed d-dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$
Z_{\text {boundary }}(\Sigma)=Z_{\text {bulk }}(M)
$$

- E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Requirements for a holographic description

Suppose that the field theory is defined on some fixed d-dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$
Z_{\text {boundary }}(\Sigma)=Z_{\text {bulk }}(M)
$$

- E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Typically for AdS/CFT we want much more...

Requirements for a holographic description

Ila Prescription for correlation functions

- We should be able to compute correlation functions for operators in the boundary theory from the bulk theory
llb The generating function for correlation functions
Gubser, Klebanov, Polyakov; Witten
- Observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by $z^{\#}$) should give sources for the corresponding operator in the generating function of correlators

$$
\int D \phi e^{i S_{\text {bndry }}(\phi)+i \int_{\Sigma} j\left(x^{\mu}\right) O\left(x^{\mu}\right) d^{d} x}=Z_{\text {bulk }}\left(\Phi_{O}\left(z, x^{\mu}\right) \underset{z \rightarrow 0}{\longrightarrow} j\left(x^{\mu}\right)\right)
$$

Requirements for a holographic description

Ila Prescription for correlation functions

- We should be able to compute correlation functions for operators in the boundary theory from the bulk theory
llb The generating function for correlation functions
Gubser, Klebanov, Polyakov; Witten
- Observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by $z^{\#}$) should give sources for the corresponding operator in the generating function of correlators

$$
\int D \phi e^{i S_{\text {bndry }}(\phi)+i \int_{\Sigma} j\left(x^{\mu}\right) O\left(x^{\mu}\right) d^{d} x}=Z_{\text {bulk }}\left(\Phi_{O}\left(z, x^{\mu}\right) \underset{z \rightarrow 0}{\longrightarrow} j\left(x^{\mu}\right)\right)
$$

Requirements for a holographic description

Ila Prescription for correlation functions

- We should be able to compute correlation functions for operators in the boundary theory from the bulk theory
llb The generating function for correlation functions
- Observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by $z^{\#}$) should give sources for the corresponding operator in the generating function of correlators

Requirements for a holographic description

Ila Prescription for correlation functions

- We should be able to compute correlation functions for operators in the boundary theory from the bulk theory
llb The generating function for correlation functions
- Observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by $z^{\#}$) should give sources for the corresponding operator in the generating function of correlators

Requirements for a holographic description

Ila Prescription for correlation functions

- We should be able to compute correlation functions for operators in the boundary theory from the bulk theory
llb The generating function for correlation functions
Gubser, Klebanov, Polyakov; Witten
- Observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by $z^{\#}$) should give sources for the corresponding operator in the generating function of correlators

Requirements for a holographic description

Ila Prescription for correlation functions

- We should be able to compute correlation functions for operators in the boundary theory from the bulk theory
llb The generating function for correlation functions
Gubser, Klebanov, Polyakov; Witten
- Observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by $z^{\#}$) should give sources for the corresponding operator in the generating function of correlators

Requirements for a holographic description

Ila Prescription for correlation functions

- We should be able to compute correlation functions for operators in the boundary theory from the bulk theory
llb The generating function for correlation functions
Gubser, Klebanov, Polyakov; Witten
- Observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by $z^{\#}$) should give sources for the corresponding operator in the generating function of correlators

Requirements for a holographic description

Ila Prescription for correlation functions

- We should be able to compute correlation functions for operators in the boundary theory from the bulk theory
IIb The generating function for correlation functions
Gubser, Klebanov, Polyakov; Witten
- Observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by $z^{\#}$) should give sources for the corresponding operator in the generating function of correlators

$$
\int D \phi e^{i S_{b n d r y}(\phi)+i \int_{\Sigma} j\left(x^{\mu}\right) O\left(x^{\mu}\right) d^{d} x}=Z_{b u l k}\left(\Phi_{O}\left(z, x^{\mu}\right) \underset{z \rightarrow 0}{\longrightarrow} j\left(x^{\mu}\right)\right)
$$

Requirements for a holographic description

|II Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- This would define a gravitational subsector in the bulk theory
- Standard example: Fefferman-Graham expansion of the bulk metric

$$
d s^{2}=\frac{g_{\mu \nu}\left(x^{\rho}, z\right) d x^{\mu} d x^{\nu}+d z^{2}}{z^{2}}+
$$

where

$$
g_{\mu \nu}\left(x^{\rho}, z\right)=g_{\mu \nu}^{(0)}\left(x^{\rho}\right)+g_{\mu \nu}^{(2)}\left(x^{\rho}\right) z^{2}+g_{\mu \nu}^{(4)}\left(x^{\rho}\right) z^{4}+
$$

- For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

```
The boundary theory is defined on a manifold & with tixed metric
* There should be a bulk field associated with the energy-momentum
    tensor and the boundary metric on \Sigma
* This would define a gravitational subsector in the bulk theory
* Standard example: Fefferman-Graham expansion of the bulk metric
```


where

- For higher spin gravity the whole picture is more complex.
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric

where

- For higher spin gravity the whole picture is more complex.
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor
- This would define a gravitational subsector in the bulk theory
- Standard example: Fefferman-Graham expansion of the bulk metric

where
- For higher spin gravity the whole picture is more complex.
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- This would define a gravitational subsector in the bulk theory
- Standard example: Fefferman-Graham expansion of the bulk metric

where

- For higher spin gravity the whole picture is more complex.
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- This would define a gravitational subsector in the bulk theory
- Standard example: Fefferman-Graham expansion of the bulk metric
where

- For higher spin gravity the whole picture is more complex.
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- This would define a gravitational subsector in the bulk theory
- Standard example: Fefferman-Graham expansion of the bulk metric
where

- For higher spin gravity the whole picture is more complex.
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- This would define a gravitational subsector in the bulk theory
- Standard example: Fefferman-Graham expansion of the bulk metric

$$
d s^{2}=\frac{g_{\mu \nu}\left(x^{\rho}, z\right) d x^{\mu} d x^{\nu}+d z^{2}}{z^{2}}+\ldots
$$

where

$$
g_{\mu \nu}\left(x^{\rho}, z\right)=g_{\mu \nu}^{(0)}\left(x^{\rho}\right)+g_{\mu \nu}^{(2)}\left(x^{\rho}\right) z^{2}+g_{\mu \nu}^{(4)}\left(x^{\rho}\right) z^{4}+\ldots
$$

- For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- This would define a gravitational subsector in the bulk theory
- Standard example: Fefferman-Graham expansion of the bulk metric

$$
d s^{2}=\frac{g_{\mu \nu}\left(x^{\rho}, z\right) d x^{\mu} d x^{\nu}+d z^{2}}{z^{2}}+\ldots
$$

where

$$
g_{\mu \nu}\left(x^{\rho}, z\right)=g_{\mu \nu}^{(0)}\left(x^{\rho}\right)+g_{\mu \nu}^{(2)}\left(x^{\rho}\right) z^{2}+g_{\mu \nu}^{(4)}\left(x^{\rho}\right) z^{4}+\ldots
$$

- For higher spin gravity the whole picture is more complex...

Requirements for a holographic description

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- This would define a gravitational subsector in the bulk theory
- Standard example: Fefferman-Graham expansion of the bulk metric

$$
d s^{2}=\frac{g_{\mu \nu}\left(x^{\rho}, z\right) d x^{\mu} d x^{\nu}+d z^{2}}{z^{2}}+\ldots
$$

where

$$
g_{\mu \nu}\left(x^{\rho}, z\right)=g_{\mu \nu}^{(0)}\left(x^{\rho}\right)+g_{\mu \nu}^{(2)}\left(x^{\rho}\right) z^{2}+g_{\mu \nu}^{(4)}\left(x^{\rho}\right) z^{4}+\ldots
$$

- For higher spin gravity the whole picture is more complex...
- But in this way one can identify a gravitational subsector of the bulk theory
- A bulk theory which realizes the equality of partition functions may be quite far from incorporating requirements II and III...
- Classical example: WZW/Chern-Simons duality (dualities depending on boundary conditions one has various distinct versions)
- Suppose we study $\operatorname{SU}(N)_{k}$ WZW. The $S U(N)$ level k Chern-Simons theory appearing on the dual side is completely different from a noncompact CS theory which would describe 3D gravity...
- In fact trying to address the well known WZW/CS relation from the point of view of holography led to the present investigation...
- A bulk theory which realizes the equality of partition functions may be quite far from incorporating requirements II and III...
- Classical example: WZW/Chern-Simons duality (dualities depending on boundary conditions one has various distinct versions)
- Suppose we study $S U(N)_{k}$ WZW. The $S U(N)$ level k Chern-Simons theory appearing on the dual side is completely different from a noncompact CS theory which would describe 3D gravity...
- In fact trying to address the well known WZW/CS relation from the point of view of holography led to the present investigation...
- A bulk theory which realizes the equality of partition functions may be quite far from incorporating requirements II and III...
- Classical example: WZW/Chern-Simons duality (dualities depending on boundary conditions one has various distinct versions)
- Suppose we study $S U(N)_{k}$ WZW. The $S U(N)$ level k Chern-Simons theory appearing on the dual side is completely different from a noncompact CS theory which would describe 3D gravity...
- In fact trying to address the well known WZW/CS relation from the point of view of holography led to the present investigation...
- A bulk theory which realizes the equality of partition functions may be quite far from incorporating requirements II and III...
- Classical example: WZW/Chern-Simons duality (dualities depending on boundary conditions one has various distinct versions)
- Suppose we study $S U(N)_{k}$ WZW. The $S U(N)$ level k Chern-Simons theory appearing on the dual side is completely different from a noncompact CS theory which would describe 3D gravity...
- In fact trying to address the well known WZW/CS relation from the point of view of holography led to the present investigation.
- A bulk theory which realizes the equality of partition functions may be quite far from incorporating requirements II and III...
- Classical example: WZW/Chern-Simons duality (dualities depending on boundary conditions one has various distinct versions)
- Suppose we study $S U(N)_{k}$ WZW.
theory appearing on the dual side is completely different from a noncompact CS theory which would describe 3D gravity.
- In fact trying to address the well known WZW/CS relation from the point of view of holography led to the present investigation.
- A bulk theory which realizes the equality of partition functions may be quite far from incorporating requirements II and III...
- Classical example: WZW/Chern-Simons duality (dualities depending on boundary conditions one has various distinct versions)
- Suppose we study $S U(N)_{k}$ WZW. The $S U(N)$ level k Chern-Simons theory appearing on the dual side is completely different from a noncompact CS theory which would describe 3D gravity...
- A bulk theory which realizes the equality of partition functions may be quite far from incorporating requirements II and III...
- Classical example: WZW/Chern-Simons duality (dualities depending on boundary conditions one has various distinct versions)
- Suppose we study $S U(N)_{k}$ WZW. The $S U(N)$ level k Chern-Simons theory appearing on the dual side is completely different from a noncompact CS theory which would describe 3D gravity...
- In fact trying to address the well known WZW/CS relation from the point of view of holography led to the present investigation...

Aim:

Try to satisfy the above requirements I-III for one of the simplest systems possible, the quantum mechanical free particle in one dimension.

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- Extremely simplified system - no spatial direction - no complications coming from error correcting code arguments etc.
- No large N, or coupling - expect the dual descrintion to be quantum

Aim:

Try to satisfy the above requirements I-III for one of the simplest systems possible, the quantum mechanical free particle in one dimension.

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- Extremely simplified system - no spatial direction - no complications coming from error correcting code arguments etc.
- No large N or counling - exnect the dual descrintion to be quantum

Aim:

Try to satisfy the above requirements I-III for one of the simplest systems possible, the quantum mechanical free particle in one dimension.

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- Extremely simplified system - no spatial direction - no complications coming from error correcting code arguments etc.
- No large N, or coupling - expect the dual description to be quantum

Aim:

Try to satisfy the above requirements I-III for one of the simplest systems possible, the quantum mechanical free particle in one dimension.

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- Extremely simplified system - no spatial direction - no complications coming from error correcting code arguments etc.
- No large N, or coupling \square

Aim:

Try to satisfy the above requirements I-III for one of the simplest systems possible, the quantum mechanical free particle in one dimension.

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- Extremely simplified system - no spatial direction - no complications coming from error correcting code arguments etc.
- No large N, or coupling - expect the dual description to be quantum

Aim:

Try to satisfy the above requirements I-III for one of the simplest systems possible, the quantum mechanical free particle in one dimension.

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- Extremely simplified system - no spatial direction - no complications coming from error correcting code arguments etc.
- No large N, or coupling - expect the dual description to be quantum

The system

$$
S=\int d t \frac{1}{2} \dot{q}^{2}
$$

- Consider the bulk spacetime to be of the form

$$
M=\{(t, z): z \geq 0\}
$$

- Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$
S_{B F}=\int_{M} B d A=\int B\left(\partial_{t} A_{z}-\partial_{z} A_{t}\right) d t d z
$$

- As the action vanishes on the constraint manifold $d A=0$, we need to impose appropriate boundary conditions and boundary action
- For the equality of partition functions analogous computations were done independently in the nonabelian case with different motivations.

The system

$$
S=\int d t \frac{1}{2} \dot{q}^{2}
$$

- Consider the bulk spacetime to be of the form

$$
M=\{(t, z): z \geq 0\}
$$

- Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$
S_{B F}=\int_{M} B d A=\int B\left(\partial_{t} A_{z}-\partial_{z} A_{t}\right) d t d z
$$

- As the action vanishes on the constraint manifold $d A=0$, we need to impose appropriate boundary conditions and boundary action
- For the equality of partition functions analogous computations were done independently in the nonabelian case with different
motivations.

The system

$$
S=\int d t \frac{1}{2} \dot{q}^{2}
$$

- Consider the bulk spacetime to be of the form

$$
M=\{(t, z): z \geq 0\}
$$

- Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$
S_{B F}=\int_{M} B d A=\int B\left(\partial_{t} A_{z}-\partial_{z} A_{t}\right) d t d z
$$

- As the action vanishes on the constraint manifold $d A=0$, we need to impose appropriate boundary conditions and boundary action
- For the equality of partition functions analogous computations were done independently in the nonabelian case with different motivations.

The system

$$
S=\int d t \frac{1}{2} \dot{q}^{2}
$$

- Consider the bulk spacetime to be of the form

$$
M=\{(t, z): z \geq 0\}
$$

- Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$
S_{B F}=\int_{M} B d A=\int B\left(\partial_{t} A_{z}-\partial_{z} A_{t}\right) d t d z
$$

- As the action vanishes on the constraint manifold $d A=0$, we need to impose appropriate boundary conditions and boundary action
- For the equality of partition functions analogous computations were done independently in the nonabelian case with different motivations.

The system

$$
S=\int d t \frac{1}{2} \dot{q}^{2}
$$

- Consider the bulk spacetime to be of the form

$$
M=\{(t, z): z \geq 0\}
$$

- Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$
S_{B F}=\int_{M} B d A=\int B\left(\partial_{t} A_{z}-\partial_{z} A_{t}\right) d t d z
$$

- As the action vanishes on the constraint manifold $d A=0$, we need to impose appropriate boundary conditions and boundary action
- For the equality of partition functions analogous computations were done independently in the nonabelian case with different motivations.

Step I - partition functions

- We will impose the following boundary conditions for the BF theory

$$
B=-\left.A_{t}\right|_{z=0} \quad A_{t}=\left.0\right|_{z \rightarrow \infty}
$$

- Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$
S_{\text {bulk }}^{\prime}=S_{B F}+\frac{1}{2} \int_{\{z=0\}} B^{2} d t
$$

- The Lagrange multiplier field B imposes the constraint $d A=0$, hence we may set

$$
A_{z}=-\partial_{z} \Phi \quad A_{t}=-\partial_{t} \Phi
$$

- The boundary values of $\left.\Phi(t, z)\right|_{z=0}$ will be identified with $q(t)$ hence the partition functions coincide as on the constraint surface

$$
S_{\text {bulk }}^{\prime}=0+\frac{1}{2} \int_{\{z=0\}} B^{2} d t=\frac{1}{2} \int_{\{z=0\}} A_{t}^{2} d t=\int d t \frac{1}{2} \dot{q}^{2}
$$

Step I - partition functions

- We will impose the following boundary conditions for the BF theory

$$
B=-\left.A_{t}\right|_{z=0} \quad A_{t}=\left.0\right|_{z \rightarrow \infty}
$$

- Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

- The Lagrange multiplier field B imposes the constraint $d A=0$, hence we may set

$$
A_{z}=-\partial_{z} \Phi \quad A_{t}=-\partial_{t} \Phi
$$

- The boundary values of $\left.\Phi(t, z)\right|_{z=0}$ will be identified with $q(t)$ hence the partition functions coincide as on the constraint surface

Step I - partition functions

- We will impose the following boundary conditions for the BF theory

$$
B=-\left.A_{t}\right|_{z=0} \quad A_{t}=\left.0\right|_{z \rightarrow \infty}
$$

- Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$
S_{b u l k}^{\prime}=S_{B F}+\frac{1}{2} \int_{\{z=0\}} B^{2} d t
$$

- The Lagrange multiplier field B imposes the constraint $d A=0$, hence we may set
- The boundary values of $\left.\Phi(t, z)\right|_{z=0}$ will be identified with $q(t)$ hence the partition functions coincide as on the constraint surface

Step I - partition functions

- We will impose the following boundary conditions for the BF theory

$$
B=-\left.A_{t}\right|_{z=0} \quad A_{t}=\left.0\right|_{z \rightarrow \infty}
$$

- Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$
S_{b u l k}^{\prime}=S_{B F}+\frac{1}{2} \int_{\{z=0\}} B^{2} d t
$$

- The Lagrange multiplier field B imposes the constraint $d A=0$, hence we may set

$$
A_{z}=-\partial_{z} \Phi \quad A_{t}=-\partial_{t} \Phi
$$

- The boundary values of $\left.\Phi(t, z)\right|_{z=0}$ will be identified with $q(t)$ hence the partition functions coincide as on the constraint surface

Step I - partition functions

- We will impose the following boundary conditions for the BF theory

$$
B=-\left.A_{t}\right|_{z=0} \quad A_{t}=\left.0\right|_{z \rightarrow \infty}
$$

- Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$
S_{b u l k}^{\prime}=S_{B F}+\frac{1}{2} \int_{\{z=0\}} B^{2} d t
$$

- The Lagrange multiplier field B imposes the constraint $d A=0$, hence we may set

$$
A_{z}=-\partial_{z} \Phi \quad A_{t}=-\partial_{t} \Phi
$$

- The boundary values of $\left.\Phi(t, z)\right|_{z=0}$ will be identified with $q(t)$ the partition functions coincide as on the constraint surface

Step I - partition functions

- We will impose the following boundary conditions for the BF theory

$$
B=-\left.A_{t}\right|_{z=0} \quad A_{t}=\left.0\right|_{z \rightarrow \infty}
$$

- Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$
S_{b u l k}^{\prime}=S_{B F}+\frac{1}{2} \int_{\{z=0\}} B^{2} d t
$$

- The Lagrange multiplier field B imposes the constraint $d A=0$, hence we may set

$$
A_{z}=-\partial_{z} \Phi \quad A_{t}=-\partial_{t} \Phi
$$

- The boundary values of $\left.\Phi(t, z)\right|_{z=0}$ will be identified with $q(t)$ hence the partition functions coincide as on the constraint surface

$$
S_{b u l k}^{\prime}=0+\frac{1}{2} \int_{\{z=0\}} B^{2} d t=\frac{1}{2} \int_{\{z=0\}} A_{t}^{2} d t=\int d t \frac{1}{2} \dot{q}^{2}
$$

Step II - bulk fields for sources

- Consider generating functions of all correlators of $q(t)$

$$
\int d t \frac{1}{2} \dot{q}^{2}+\int d t j(t) q(t)
$$

- We would like to introduce a new bulk field associated with the source $j(t)$
- In terms of the BF theory gauge field, the particle position $q(t)$ can be understood essentially as a Wilson line

$$
\int_{z=0}^{\infty} A_{z} d z=-\int_{z=0}^{\infty} \partial_{z} \phi(t, z)=\phi(t, 0)-\phi(t, \infty) \rightarrow \phi(t, 0)
$$

- So we have

$$
q(t)=\int_{L} A
$$

where the line L is attached to the boundary at time t and goes to infinity in the bulk.

Step II - bulk fields for sources

- Consider generating functions of all correlators of $q(t)$

$$
\int d t \frac{1}{2} \dot{q}^{2}+\int d t j(t) q(t)
$$

- We would like to introduce a new bulk field associated with the source $j(t)$
- In terms of the BF theory gauge field, the particle position $q(t)$ can be understood essentially as a Wilson line

$$
\int_{z=0}^{\infty} A_{z} d z=-\int_{z=0}^{\infty} \partial_{z} \Phi(t, z)=\Phi(t, 0)-\Phi(t, \infty) \rightarrow \Phi(t, 0)
$$

- So we have

where the line L is attached to the boundary at time t and goes to infinity in the bulk.

Step II - bulk fields for sources

- Consider generating functions of all correlators of $q(t)$

$$
\int d t \frac{1}{2} \dot{q}^{2}+\int d t j(t) q(t)
$$

- We would like to introduce a new bulk field associated with the source $j(t)$
- In terms of the BF theory gauge field, the particle position $q(t)$ can be understood essentially as a Wilson line

- So we have

where the line L is attached to the boundary at time t and goes to infinity in the bulk.

Step II - bulk fields for sources

- Consider generating functions of all correlators of $q(t)$

$$
\int d t \frac{1}{2} \dot{q}^{2}+\int d t j(t) q(t)
$$

- We would like to introduce a new bulk field associated with the source $j(t)$
- In terms of the BF theory gauge field, the particle position $q(t)$ can be understood essentially as a Wilson line

$$
\int_{z=0}^{\infty} A_{z} d z=-\int_{z=0}^{\infty} \partial_{z} \Phi(t, z)=\Phi(t, 0)-\Phi(t, \infty) \rightarrow \Phi(t, 0)
$$

- So we have

where the line L is attached to the boundary at time t and goes to infinity in the bulk.

Step II - bulk fields for sources

- Consider generating functions of all correlators of $q(t)$

$$
\int d t \frac{1}{2} \dot{q}^{2}+\int d t j(t) q(t)
$$

- We would like to introduce a new bulk field associated with the source $j(t)$
- In terms of the BF theory gauge field, the particle position $q(t)$ can be understood essentially as a Wilson line

$$
\int_{z=0}^{\infty} A_{z} d z=-\int_{z=0}^{\infty} \partial_{z} \Phi(t, z)=\Phi(t, 0)-\Phi(t, \infty) \rightarrow \Phi(t, 0)
$$

- So we have

$$
q(t)=\int_{L} A
$$

where the line L is attached to the boundary at time t and goes to infinity in the bulk.

Step II - bulk fields for sources

- In order to construct a bulk action which reduces to

$$
\int d t j(t) q(t)
$$

we will need two ingredients

- We will introduce another two-climensional abelian BF theory

$$
\int C d \alpha
$$

- We use the global 1-form $d t$ (this will be modified later)
- Introduce a constraint term in the action

$$
D \alpha \wedge d t
$$

which ensures that the 1 -form α only has temporal component

Step II - bulk fields for sources

- In order to construct a bulk action which reduces to

$$
\int d t j(t) q(t)
$$

we will need two ingredients

- We will introduce another two-dimensional abelian BF theory

- We use the global 1-form $d t$ (this will be modified later)
- Introduce a constraint term in the action

which ensures that the 1 -form α only has temporal component

Step II - bulk fields for sources

- In order to construct a bulk action which reduces to

$$
\int d t j(t) q(t)
$$

we will need two ingredients

- We will introduce another two-dimensional abelian BF theory

$$
\int C d \alpha
$$

- We use the global 1-form $d t$ (this will be modified later)
- Introduce a constraint term in the action
which ensures that the 1 -form α only has temporal component

Step II - bulk fields for sources

- In order to construct a bulk action which reduces to

$$
\int d t j(t) q(t)
$$

we will need two ingredients

- We will introduce another two-dimensional abelian BF theory

$$
\int C d \alpha
$$

- We use the global 1-form $d t$ (this will be modified later)
- Introduce a constraint term in the action $D \alpha \wedge d t$

Step II - bulk fields for sources

- In order to construct a bulk action which reduces to

$$
\int d t j(t) q(t)
$$

we will need two ingredients

- We will introduce another two-dimensional abelian BF theory

$$
\int C d \alpha
$$

- We use the global 1-form $d t$ (this will be modified later)
- Introduce a constraint term in the action

$$
D \alpha \wedge d t
$$

which ensures that the 1 -form α only has temporal component

Step II - bulk fields for sources

- In order to construct a bulk action which reduces to

$$
\int d t j(t) q(t)
$$

we will need two ingredients

- We will introduce another two-dimensional abelian BF theory

$$
\int C d \alpha
$$

- We use the global 1-form $d t$ (this will be modified later)
- Introduce a constraint term in the action

$$
D \alpha \wedge d t
$$

which ensures that the 1 -form α only has temporal component

Step II - bulk fields for sources

- Now the flatness condition $d \alpha=0$ ensures $\alpha=j(t) d t$, so we can generate the wanted term from a simple bulk interaction between α and A :

$$
\int_{M} \alpha \wedge A=\int_{M} j(t) d t \wedge\left(A_{t} d t+A_{z} d z\right)=\int j(t) \int_{0}^{\infty} A_{z} d z d t=\int j(t) q(t) d t
$$

- At this stage the overall bulk action is

$$
S_{\text {bulk }}^{\prime \prime}=\int_{M}(B d A+C d \alpha+\alpha \wedge A+D \alpha \wedge d t)+\frac{1}{2} \int_{\partial M} B^{2} d t
$$

- The appearance of an explicit $d t$ is not very pleasing - but we will get rid of it shortly

Step II - bulk fields for sources

- Now the flatness condition $d \alpha=0$ ensures $\alpha=j(t) d t$, so we can
generate the wanted term from a simple bulk interaction between α and A :

$$
\int_{M} a \wedge A=\int_{M} j(t) d t \wedge\left(A_{t} d t+A_{z} d z\right)=\int j(t) \int_{0}^{\infty} A_{z} d z d t=\int j(t) q(t) d t
$$

- At this stage the overall bulk action is

- The appearance of an explicit $d t$ is not very pleasing - but we will get rid of it shortly

Step II - bulk fields for sources

- Now the flatness condition $d \alpha=0$ ensures $\alpha=j(t) d t$, so we can generate the wanted term from a simple bulk interaction between α and A :
$\int_{M} \alpha \wedge A=\int_{M} j(t) d t \wedge\left(A_{t} d t+A_{z} d z\right)=\int j(t) \int_{0}^{\infty} A_{z} d z d t=\int j(t) q(t) d t$
- At this stage the overall bulk action is

- The appearance of an explicit $d t$ is not very pleasing - but we will get rid of it shortly

Step II - bulk fields for sources

- Now the flatness condition $d \alpha=0$ ensures $\alpha=j(t) d t$, so we can generate the wanted term from a simple bulk interaction between α and A :

$$
\int_{M} \alpha \wedge A=\int_{M} j(t) d t \wedge\left(A_{t} d t+A_{z} d z\right)=\int j(t) \int_{0}^{\infty} A_{z} d z d t=\int j(t) q(t) d t
$$

- At this stage the overall bulk action is

- The appearance of an explicit $d t$ is not very pleasing - but we will get rid of it shortly

Step II - bulk fields for sources

- Now the flatness condition $d \alpha=0$ ensures $\alpha=j(t) d t$, so we can generate the wanted term from a simple bulk interaction between α and A :

$$
\int_{M} \alpha \wedge A=\int_{M} j(t) d t \wedge\left(A_{t} d t+A_{z} d z\right)=\int j(t) \int_{0}^{\infty} A_{z} d z d t=\int j(t) q(t) d t
$$

- At this stage the overall bulk action is

$$
S_{b u l k}^{\prime \prime}=\int_{M}(B d A+C d \alpha+\alpha \wedge A+D \alpha \wedge d t)+\frac{1}{2} \int_{\partial M} B^{2} d t
$$

- The appearance of an explicit $d t$ is not very pleasing - but we will get rid of it shortly

Step II - bulk fields for sources

- Now the flatness condition $d \alpha=0$ ensures $\alpha=j(t) d t$, so we can generate the wanted term from a simple bulk interaction between α and A :

$$
\int_{M} \alpha \wedge A=\int_{M} j(t) d t \wedge\left(A_{t} d t+A_{z} d z\right)=\int j(t) \int_{0}^{\infty} A_{z} d z d t=\int j(t) q(t) d t
$$

- At this stage the overall bulk action is

$$
S_{b u l k}^{\prime \prime}=\int_{M}(B d A+C d \alpha+\alpha \wedge A+D \alpha \wedge d t)+\frac{1}{2} \int_{\partial M} B^{2} d t
$$

- The appearance of an explicit $d t$ is not very pleasing - but we will get rid of it shortly

Step III - the "gravity" subsector

- Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{t t}(t)$ and write the action as

$$
\frac{1}{2} \int \sqrt{g} g^{t t}\left(\partial_{t} q\right)^{2}=\frac{1}{2} \int \frac{1}{e} \dot{q}^{2}
$$

and the einbein $e=e(t)$ is a given function of time...

- We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1-form $d t$ (which is necessarily closed)
- Introduce a third abelian BF pair

$$
\int E d \eta
$$

- The closed 1-form η will play the role of $d t$.

Step III - the "gravity" subsector

- Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{t t}(t)$ and write the action as

$$
\frac{1}{2} \int \sqrt{g} g^{t t}\left(\partial_{t} q\right)^{2}=\frac{1}{2} \int \frac{1}{e} \dot{q}^{2}
$$

and the einbein $e=e(t)$ is a given function of time...

- We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1-form dt (which is necessarily closed)
- Introduce a third abelian BF pair

- The closed 1 -form η will play the role of $d t$.

Step III - the "gravity" subsector

- Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{t t}(t)$ and write the action as

$$
\frac{1}{2} \int \sqrt{g} g^{t t}\left(\partial_{t} q\right)^{2}=\frac{1}{2} \int \frac{1}{e} \dot{q}^{2}
$$

and the einbein $e=e(t)$ is a given function of time...

- We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1-form $d t$ (which is necessarily closed)
- Introduce a third abelian BF pair

- The closed 1 -form η will play the role of $d t$.

Step III - the "gravity" subsector

- Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{t t}(t)$ and write the action as

$$
\frac{1}{2} \int \sqrt{g} g^{t t}\left(\partial_{t} q\right)^{2}=\frac{1}{2} \int \frac{1}{e} \dot{q}^{2}
$$

and the einbein $e=e(t)$ is a given function of time...

- We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1 -form $d t$ (which is necessarily closed)
- Introduce a third abelian BF pair

- The closed 1 -form η will play the role of $d t$.

Step III - the "gravity" subsector

- Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{t t}(t)$ and write the action as

$$
\frac{1}{2} \int \sqrt{g} g^{t t}\left(\partial_{t} q\right)^{2}=\frac{1}{2} \int \frac{1}{e} \dot{q}^{2}
$$

and the einbein $e=e(t)$ is a given function of time...

- We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1 -form $d t$ (which is necessarily closed)
- Introduce a third abelian BF pair

$$
\int E d \eta
$$

- The closed 1-form η will play the role of $d t$.

Step III - the "gravity" subsector

- Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{t t}(t)$ and write the action as

$$
\frac{1}{2} \int \sqrt{g} g^{t t}\left(\partial_{t} q\right)^{2}=\frac{1}{2} \int \frac{1}{e} \dot{q}^{2}
$$

and the einbein $e=e(t)$ is a given function of time...

- We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1 -form $d t$ (which is necessarily closed)
- Introduce a third abelian BF pair

$$
\int E d \eta
$$

- The closed 1 -form η will play the role of $d t$.

Step III - the "gravity" subsector

- We will modify the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0}
$$

and fix the boundary value of η_{t}

- Accordingly we need to modify the additional boundary action

$$
\frac{1}{2} \int_{\{z=0\}} B^{2} d t \longrightarrow \frac{1}{2} \int_{\partial M} B^{2} \eta
$$

(this works as $\delta \eta_{t}=\left.0\right|_{z=0}$)

- Now the resulting action will take the form

$$
\frac{1}{2} \int_{\partial M} B^{2} \eta=\frac{1}{2} \int \frac{1}{\eta_{t}} A_{t}^{2} d t=\frac{1}{2} \int \frac{1}{\eta_{t}} \dot{q}^{2}
$$

- We see that we have to identify the boundary value of η_{t} with the einbein $e(t)$

Step III - the "gravity" subsector

- We will modify the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0}
$$

and fix the boundary value of η_{t}

- Accordingly we need to modify the additional boundary action

(this works as $\delta \eta_{t}=\left.0\right|_{z=0}$)
- Now the resulting action will take the form

- We see that we have to identify the boundary value of η_{t} with the einbein $e(t)$

Step III - the "gravity" subsector

- We will modify the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0}
$$

and fix the boundary value of η_{t}

- Accordingly we need to modify the additional boundary action

$$
\frac{1}{2} \int_{\{z=0\}} B^{2} d t \longrightarrow \frac{1}{2} \int_{\partial M} B^{2} \eta
$$

(this works as $\delta \eta_{t}=\left.0\right|_{z=0}$)

- Now the resulting action will take the form

- We see that we have to identify the boundary value of η_{t} with the einbein $e(t)$

Step III - the "gravity" subsector

- We will modify the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0}
$$

and fix the boundary value of η_{t}

- Accordingly we need to modify the additional boundary action

$$
\frac{1}{2} \int_{\{z=0\}} B^{2} d t \longrightarrow \frac{1}{2} \int_{\partial M} B^{2} \eta
$$

(this works as $\delta \eta_{t}=\left.0\right|_{z=0}$)

- Now the resulting action will take the form

- We see that we have to identify the boundary value of η_{t} with the einbein $e(t)$

Step III - the "gravity" subsector

- We will modify the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0}
$$

and fix the boundary value of η_{t}

- Accordingly we need to modify the additional boundary action

$$
\frac{1}{2} \int_{\{z=0\}} B^{2} d t \longrightarrow \frac{1}{2} \int_{\partial M} B^{2} \eta
$$

(this works as $\delta \eta_{t}=\left.0\right|_{z=0}$)

- Now the resulting action will take the form

$$
\frac{1}{2} \int_{\partial M} B^{2} \eta=\frac{1}{2} \int \frac{1}{\eta_{t}} A_{t}^{2} d t=\frac{1}{2} \int \frac{1}{\eta_{t}} \dot{q}^{2}
$$

> We see that we have to identify the boundary value of η_{t} with the einbein $e(t)$

Step III - the "gravity" subsector

- We will modify the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0}
$$

and fix the boundary value of η_{t}

- Accordingly we need to modify the additional boundary action

$$
\frac{1}{2} \int_{\{z=0\}} B^{2} d t \longrightarrow \frac{1}{2} \int_{\partial M} B^{2} \eta
$$

(this works as $\delta \eta_{t}=\left.0\right|_{z=0}$)

- Now the resulting action will take the form

$$
\frac{1}{2} \int_{\partial M} B^{2} \eta=\frac{1}{2} \int \frac{1}{\eta_{t}} A_{t}^{2} d t=\frac{1}{2} \int \frac{1}{\eta_{t}} \dot{q}^{2}
$$

- We see that we have to identify the boundary value of η_{t} with the einbein $e(t)$

Step III - the "gravity" subsector

- The final bulk action at this stage is
$S_{\text {bulk }}^{\text {III }}=\int_{M}(B d A+C d \alpha+E d \eta+\alpha \wedge A+D \alpha \wedge \eta)+\frac{1}{2} \int_{\partial M} B^{2} \eta$
with the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0} \quad \alpha_{t}=\left.j(t)\right|_{z=0} \quad \eta_{t}=\left.e(t)\right|_{z=0}
$$

- We are led to identify E, η as the "gravitational" subsector of the bulk theory

Step III - the "gravity" subsector

- The final bulk action at this stage is

$$
S_{b u l k}^{\prime \prime \prime}=\int_{M}(B d A+C d \alpha+E d \eta+\alpha \wedge A+D \alpha \wedge \eta)+\frac{1}{2} \int_{\partial M} B^{2} \eta
$$

with the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0} \quad \alpha_{t}=\left.j(t)\right|_{z=0} \quad \eta_{t}=\left.e(t)\right|_{z=0}
$$

- We are led to identify E, η as the "gravitational" subsector of the bulk theory

Step III - the "gravity" subsector

- The final bulk action at this stage is

$$
S_{b u l k}^{\prime \prime \prime}=\int_{M}(B d A+C d \alpha+E d \eta+\alpha \wedge A+D \alpha \wedge \eta)+\frac{1}{2} \int_{\partial M} B^{2} \eta
$$

with the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0} \quad \alpha_{t}=\left.j(t)\right|_{z=0} \quad \eta_{t}=\left.e(t)\right|_{z=0}
$$

- We are led to identify E, η as the "gravitational" subsector of the bulk theory

Step III - the "gravity" subsector

- The final bulk action at this stage is

$$
S_{b u l k}^{\prime \prime \prime}=\int_{M}(B d A+C d \alpha+E d \eta+\alpha \wedge A+D \alpha \wedge \eta)+\frac{1}{2} \int_{\partial M} B^{2} \eta
$$

with the boundary conditions

$$
A_{t}+\eta_{t} B=\left.0\right|_{z=0} \quad \alpha_{t}=\left.j(t)\right|_{z=0} \quad \eta_{t}=\left.e(t)\right|_{z=0}
$$

- We are led to identify E, η as the "gravitational" subsector of the bulk theory

Step IV - integrate out boundary degrees of freedom

- Ultimately we should integrate out B and A to obtain the final bulk action involving only the bulk fields corresponding to sources for $q(t)$ and the energy-momentum tensor $T_{t t}$

$$
e^{i S_{b u l k}^{\text {eff }}[C, D, E, \alpha, \eta]}=\int D B D A e^{i S_{b u l k}^{\prime \prime \prime}[B, A, C, D, E, \alpha, \eta]}
$$

- Unfortunately this seems to be quite nonlocal...
- One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

Step IV - integrate out boundary degrees of freedom

- Ultimately we should integrate out B and A to obtain the final bulk action involving only the bulk fields corresponding to sources for $q(t)$ and the energy-momentum tensor $T_{t t}$

- Unfortunately this seems to be quite nonlocal...
- One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

Step IV - integrate out boundary degrees of freedom

- Ultimately we should integrate out B and A to obtain the final bulk action involving only the bulk fields corresponding to sources for $q(t)$ and the energy-momentum tensor $T_{t t}$

$$
e^{i S_{b u l k}^{e f f}[C, D, E, \alpha, \eta]}=\int D B D A e^{i S_{b u k}^{l \prime \prime}[B, A, C, D, E, \alpha, \eta]}
$$

- Unfortunately this seems to be quite nonlocal...
- One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

Step IV - integrate out boundary degrees of freedom

- Ultimately we should integrate out B and A to obtain the final bulk action involving only the bulk fields corresponding to sources for $q(t)$ and the energy-momentum tensor $T_{t t}$

$$
e^{i S_{b u l k}^{e f f}[C, D, E, \alpha, \eta]}=\int D B D A e^{i S_{b u k}^{l \prime \prime}[B, A, C, D, E, \alpha, \eta]}
$$

- Unfortunately this seems to be quite nonlocal...
- One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

Step IV - integrate out boundary degrees of freedom

- Ultimately we should integrate out B and A to obtain the final bulk action involving only the bulk fields corresponding to sources for $q(t)$ and the energy-momentum tensor $T_{t t}$

$$
e^{i S_{b u l k}^{e f f}[C, D, E, \alpha, \eta]}=\int D B D A e^{i S_{b u k}^{l \prime \prime}[B, A, C, D, E, \alpha, \eta]}
$$

- Unfortunately this seems to be quite nonlocal...
- One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances???

Step IV - integrate out boundary degrees of freedom

- Ultimately we should integrate out B and A to obtain the final bulk action involving only the bulk fields corresponding to sources for $q(t)$ and the energy-momentum tensor $T_{t t}$

$$
e^{i S_{b u l k}^{e f f}[C, D, E, \alpha, \eta]}=\int D B D A e^{i S_{b u k}^{l \prime \prime}[B, A, C, D, E, \alpha, \eta]}
$$

- Unfortunately this seems to be quite nonlocal...
- One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

Conclusions

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- The bulk fields include a source for the field $q(t)$
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- Symmetries?
- How to incorporate $V(q)$ for the quantum mechanical system?
- Revisit WZW/CS...

Conclusions

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- The bulk fields include a source for the field $q(t)$
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- Symmetries?
- How to incorporate $V(q)$ for the quantum mechanical system?
- Revisit WZW/CS...

Conclusions

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- The bulk fields include a source for the field $q(t)$
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- Symmetries?
- How to incorporate $V(q)$ for the quantum mechanical system?
- Revisit WZW/CS...

Conclusions

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- The bulk fields include a source for the field $q(t)$
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- Symmetries?
- How to incorporate $V(q)$ for the quantum mechanical system?
- Revisit WZW/CS...

Conclusions

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- The bulk fields include a source for the field $q(t)$
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- Symmetries?
- How to incorporate $V(q)$ for the quantum mechanical system?
- Revisit WZW/CS...

Conclusions

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- The bulk fields include a source for the field $q(t)$
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- Symmetries?
- How to incorporate $V(q)$ for the quantum mechanical system?
- Revisit WZW/CS...

Conclusions

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- The bulk fields include a source for the field $q(t)$
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- Symmetries?
- How to incorporate $V(q)$ for the quantum mechanical system?
- Revisit WZW/CS.

Conclusions

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- The bulk fields include a source for the field $q(t)$
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- Symmetries?
- How to incorporate $V(q)$ for the quantum mechanical system?
- Revisit WZW/CS...

