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Motivation and ultimate goal:

Despite immense progress some questions which we would like to ask
using holography still seem to remain beyond reach

Try to construct a holographic duality by going to an extremely simple
setting where everything would be under control on both sides of the
duality
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The original AdS/CFT correspondence

N = 4 Super Yang-Mills theory ≡ Superstrings on AdS5 × S5

Two main parameters
I tHooft coupling λ = g2YMNc ,

I governs string scale effects

α′
eff ∝ 1/

√
λ

I The λ→ 0 limit is accessible on the perturbative gauge theory side
I For a long time it seemed to be impossible to access this regime on

the string side until huge progress using integrability
I The number of colors Nc

I planar limit – roughly classical (gravity+)
I finite Nc – quantum gravity+
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The planar limit, arbitrary λ

1. The spectrum:
≡ Anomalous dimensions in the planar limit
≡ energy levels of a single string in AdS5 × S5

Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin

2. OPE coefficients and three string interactions:

Most advanced framework: Hexagon approach
Basso, Komatsu, Vieira

see also axioms for string splitting in AdS5 × S5
Bajnok, RJ
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Even with all this knowledge there are still open problems at
large Nc

I The dual description of thermal plasma (N = 4 SYM at nonzero
temperature) at large Nc , strong coupling is given by a planar black
hole solution

I What is the dual description of thermal plasma still at large Nc but
for λ→ 0?

I here the massive string excitations are as important as supergravity
modes

I what is the bulk action governing all these states - even at the
classical level?
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The case of finite Nc is even more mysterious...

I We expect quantum gravity effects
I What workable theoretical framework could be used?

I covariant closed string field theory???
I something else?
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O(N) - higher spin duality

Klebanov, Polyakov

I The singlet sector of free scalar O(N) vector model in 3D – dual to
4D Vasiliev gravity

I Very nontrivial check of 3-point correlation functions Giombi, Yin

I Very intriguing – first time no strings directly involved
I The boundary field theory is completely under control
I On the bulk side the situation is less clear – action for Vasiliev

gravity is not really known (although some proposals exist)
I In particular unfortunately it is not known how to quantize Vasiliev

gravity...
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2d CFT - higher spin duality

Gaberdiel, Gopakumar

I Beautiful story in 2D...
— a family of coset CFT’s with WN symmetry

I (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions
with a highly nontrivial higher spin algebra

I The duality involves, however, also a bulk scalar field interacting
with the higher spin sector

I Very challenging to study at finite N
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It would be very interesting to construct a holographic model
where the bulk action would be completely known...

10 / 29



Tensor networks

I Consider a 1D spin chain system of length L (L is large, perhaps
infinite) with some hamiltonian. One is interested in finding the
ground state wavefunction

I The wave function |Ψ〉 = Ψs1s2...sL |s1s2 . . . sL〉 has exponentially
many components. These components can be understood as
defining a rank L tensor, which can be pictorially represented as

Ψs1s2...s5 =
s1 s2 s3 s4 s5

Ψ

I Tensor networks provide variational ansatzae with less components
e.g. Matrix Product State (MPS) is of the form

Ψs1s2...s5 =
A1

s1

A2

s2

A3

s3

A4

s4

A5

s5

I MERA (Multiscale Entanglement Renormalization Ansatz), has a
more sophisticated multilayer structure better suited for gapless
systems...
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Tensor network constructions and holography

I Tensor network constructions offer a complementary point of view
on holography

I Swingle proposed a compelling link between holography and MERA

I Nozaki, Ryu, Takayanagi defined an underlying holographic metric in
terms of cMERA

I . . .
I Pastawski, Yoshida, Harlow, Preskill proposed isometric quantum

codes
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Tensor network constructions

I Tensor network constructions seem very kinematic in flavour, either
agnostic about hamiltonian (as in the isometric quantum code of
HaPPY), or the tensors are filled variationally for virtually any
hamiltonian..

I If holography indeed could be understood in this way, this seems to
indicate that a holographic description should exist for almost
any theory

I Here a ‘holographic description’ does not mean a description in
terms of classical gravity and almost decoupled other stuff but
a generic, possibly fully quantum interacting system in higher
number of dimensions

I On the other hand these constructions do not seem to give a
guideline for constructing spacetime dual action or specifying the
field content of the dual description
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Goals:

I Attempt a holographic description for the simplest possible theory
that one could think of...

I We would like to have an explicit dual bulk action...

What do we mean by a holographic description?
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Requirements for a holographic description

Suppose that the field theory is defined on some fixed d-dimensional
spacetime geometry Σ

I Equality of partition functions
I The dual holographic theory should be defined on a higher

dimensional manifold M, having Σ as a boundary.
I We should have equality of partition functions

Zboundary (Σ) = Zbulk (M)

I E.g this would provide a bulk interpretation of the thermodynamics
of the theory...

Typically for AdS/CFT we want much more...
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Requirements for a holographic description

IIa Prescription for correlation functions
I We should be able to compute correlation functions for operators in

the boundary theory from the bulk theory

IIb The generating function for correlation functions
Gubser, Klebanov, Polyakov; Witten

I Observables/operators in the boundary theory should be associated
to fields in the bulk theory

I Boundary values of the bulk fields (up to a possible rescaling by z#)
should give sources for the corresponding operator in the generating
function of correlators∫

Dφ e iSbndry (φ)+i
∫

Σ j(xµ)O(xµ)dd x = Zbulk

(
ΦO (z , xµ) −→

z→0
j(xµ)

)
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Requirements for a holographic description

III Identification of a gravitational subsector
I The boundary theory is defined on a manifold Σ with fixed metric
I There should be a bulk field associated with the energy-momentum

tensor and the boundary metric on Σ
I This would define a gravitational subsector in the bulk theory
I Standard example: Fefferman-Graham expansion of the bulk metric

ds2 =
gµν(xρ, z)dxµdxν + dz2

z2
+ . . .

where

gµν(xρ, z) = g (0)
µν (xρ) + g (2)

µν (xρ) z2 + g (4)
µν (xρ) z4 + . . .

I For higher spin gravity the whole picture is more complex...
I But in this way one can identify a gravitational subsector of the

bulk theory
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I A bulk theory which realizes the equality of partition functions may
be quite far from incorporating requirements II and III...

I Classical example: WZW/Chern-Simons duality (dualities –
depending on boundary conditions one has various distinct versions)

I Suppose we study SU(N)k WZW. The SU(N) level k Chern-Simons
theory appearing on the dual side is completely different from a
noncompact CS theory which would describe 3D gravity...

I In fact trying to address the well known WZW/CS relation from the
point of view of holography led to the present investigation...
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Aim:

Try to satisfy the above requirements I-III for one of the simplest
systems possible, the quantum mechanical free particle in one dimension.

I Direct (but much simpler) analog of the massless free boson
(abelian WZW/CS)

I Extremely simplified system – no spatial direction – no complications
coming from error correcting code arguments etc.

I No large N, or coupling — expect the dual description to be
quantum
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The system

S =

∫
dt

1
2
q̇2

I Consider the bulk spacetime to be of the form

M = {(t, z) : z ≥ 0}

I Since in the 2D massless boson case we have dual abelian
Chern-Simons, here we expect to have a 2D abelian BF topological
theory

SBF =

∫
M
B dA =

∫
B (∂tAz − ∂zAt)dtdz

I As the action vanishes on the constraint manifold dA = 0, we need
to impose appropriate boundary conditions and boundary action

I For the equality of partition functions analogous computations were
done independently in the nonabelian case with different
motivations.

Mertens; Gonzalez, Grumiller, Salzer
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Step I – partition functions

I We will impose the following boundary conditions for the BF theory

B = −At |z=0 At = 0 |z→∞

I Again in analogy to WZW/CS, we have to supplant the BF action
with a boundary term so that the variation at the boundary vanishes

S I
bulk = SBF +

1
2

∫
{z=0}

B2dt

I The Lagrange multiplier field B imposes the constraint dA = 0,
hence we may set

Az = −∂z Φ At = −∂tΦ

I The boundary values of Φ(t, z)|z=0 will be identified with q(t) hence
the partition functions coincide as on the constraint surface

S I
bulk = 0 +

1
2

∫
{z=0}

B2dt =
1
2

∫
{z=0}

A2tdt =

∫
dt

1
2
q̇2
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Step II – bulk fields for sources

I Consider generating functions of all correlators of q(t)∫
dt

1
2
q̇2 +

∫
dt j(t)q(t)

I We would like to introduce a new bulk field associated with the
source j(t)

I In terms of the BF theory gauge field, the particle position q(t) can
be understood essentially as a Wilson line∫ ∞

z=0
Az dz = −

∫ ∞

z=0
∂z Φ(t, z) = Φ(t, 0)− Φ(t,∞)→ Φ(t, 0)

I So we have

q(t) =

∫
L
A

where the line L is attached to the boundary at time t and goes to
infinity in the bulk.
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Step II – bulk fields for sources

I In order to construct a bulk action which reduces to∫
dt j(t)q(t)

we will need two ingredients
I We will introduce another two-dimensional abelian BF theory∫

C dα

I We use the global 1-form dt (this will be modified later)
I Introduce a constraint term in the action

D α ∧ dt

which ensures that the 1-form α only has temporal component
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Step II – bulk fields for sources

I Now the flatness condition dα = 0 ensures α = j(t)dt, so we can
generate the wanted term from a simple bulk interaction between α
and A:∫

M
α∧A =

∫
M
j(t)dt∧(Atdt+Azdz) =

∫
j(t)

∫ ∞

0
Azdzdt =

∫
j(t)q(t)dt

I At this stage the overall bulk action is

S II
bulk =

∫
M

(B dA+ C dα + α ∧ A+ D α ∧ dt) +
1
2

∫
∂M
B2dt

I The appearance of an explicit dt is not very pleasing – but we will
get rid of it shortly
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Step III – the “gravity” subsector

I Since the quantum mechanical path integral is essentially just a
QFT on a 1-dimensional worldline, one can introduce a fixed
1-dimensional metric gtt(t) and write the action as

1
2

∫
√
g g tt(∂tq)2 =

1
2

∫
1
e
q̇2

and the einbein e = e(t) is a given function of time...
I We would like to introduce a natural bulk field which goes over to

the einbein at the boundary.
I At the same time we will replace the 1-form dt (which is necessarily

closed)
I Introduce a third abelian BF pair∫

E dη

I The closed 1-form η will play the role of dt.
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Step III – the “gravity” subsector

I We will modify the boundary conditions

At + ηtB = 0|z=0

and fix the boundary value of ηt

I Accordingly we need to modify the additional boundary action

1
2

∫
{z=0}

B2dt −→ 1
2

∫
∂M
B2 η

(this works as δηt = 0|z=0)
I Now the resulting action will take the form

1
2

∫
∂M
B2 η =

1
2

∫
1
ηt
A2tdt =

1
2

∫
1
ηt
q̇2

I We see that we have to identify the boundary value of ηt with the
einbein e(t)
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Step III – the “gravity” subsector

I The final bulk action at this stage is

S III
bulk =

∫
M

(B dA+ C dα + E dη + α ∧ A+ D α ∧ η) +
1
2

∫
∂M
B2η

with the boundary conditions

At + ηtB = 0|z=0 αt = j(t)|z=0 ηt = e(t)|z=0

I We are led to identify E , η as the “gravitational” subsector of the
bulk theory
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Step IV – integrate out boundary degrees of freedom

I Ultimately we should integrate out B and A to obtain the final bulk
action involving only the bulk fields corresponding to sources for
q(t) and the energy-momentum tensor Ttt

e iSeff
bulk [C ,D,E ,α,η] =

∫
DB DAe iS III

bulk [B,A,C ,D,E ,α,η]

I Unfortunately this seems to be quite nonlocal...
I One can speculate whether this is a generic situation and a local

holographic bulk action in this sense occurs only in special
circumstances??? (like large N and/or strong coupling?)
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Conclusions

I We have constructed a dual description of a quantum mechanical
free particle which realizes formally some basic requirements for
holography

I The bulk fields include a source for the field q(t)
I ... and a field reducing to the einbein at the boundary
I N components/singlet? relation to 2D Vasiliev
I Symmetries?
I How to incorporate V (q) for the quantum mechanical system?
I Revisit WZW/CS...
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