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Three Large N Limits 

• O(N) Vector: solvable because the bubble 
diagrams can be summed. 

• Matrix (‘t Hooft) Limit: planar diagrams. 
Solvable only in special cases. 

• Tensor of rank three and higher. When 
interactions are specially chosen, dominated 
by the melonic (ladder) diagrams. Bonzom, Gurau, 

Riello, Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky 



O(N) x O(N) Matrix Model 

• Theory of  real matrices fab with distinguishable 
indices, i.e. in the bi-fundamental 
representation of O(N)axO(N)b symmetry.  

• The interaction is at least quartic: g tr ffTffT  

• Propagators are represented by colored double 
lines, and the interaction vertex is 

• In d=0 or 1 special limits describe two-
dimensional quantum gravity. 

 



• In the large N limit 
where gN is held fixed 
we find planar Feynman 
graphs, and each index 
loop may be red or 
green. 

• The dual graphs shown 
in black may be thought 
of as random surfaces 
tiled with squares whose 
vertices have alternating  
colors (red, green, red, 
green). 
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• For a 3-tensor with distinguishable indices the 
propagator has index structure 

 

• It may be represented graphically by 3 colored 
wires  

• Tetrahedral interaction with 
O(N)axO(N)bxO(N)c symmetry                        
Carrozza, Tanasa; IK, Tarnopolsky 

From Bi- to Tri-Fundamentals 



• Leading correction to the propagator has 3 
index loops 

 

 

 

• Requiring that this “melon” insertion is of 
order 1 means that                         must be held 
fixed in the large N limit.   

• Melonic graphs obtained by iterating    



Cables and Wires 
• The Feynman graphs of the quartic field 

theory may be resolved in terms of the 
colored wires (triple lines) 



• Most Feynman graphs in the quartic field theory 
are not melonic are therefore subdominant in the 
new large N limit, e.g. 

 

 

 

 

 

• Scales as 

• None of the graphs with an odd number of 
vertices are melonic. 

 

 

 

Non-Melonic Graphs 



• Here is the list of snail-free vacuum graphs up 
to 6 vertices Kleinert, Schulte-Frohlinde 

 

 

 

 

 

 

 

• Only 4 out of these 27 graphs are melonic. 

• The number of melonic graphs with p vertices 
grows as Cp Bonzom, Gurau, Riello, Rivasseau 



• ‘’Forgetting ” one  color we get a double-line 
graph. 
 

 
 

• The number of loops in a double-line graph is                      
                        where      is the Euler characteristic, 
    is the number of edges, and     is the number of 
vertices,  

 
• If we erase the blue lines we get  
 
 

 
 
 
 

Large N Scaling 



• Adding up such formulas, we find 

 

• The total number of index loops is 

 

• The genus of a graph is 

• Since           , for a “maximal graph” which 
dominates at large N all its subgraphs must 
have genus zero: 

• Scales as 

• In the 3-tensor models                       must be 
held fixed in the large N limit. 

 

 

 

 

 

 

 



The Sachdev-Ye-Kitaev Model 
• Quantum mechanics of a large number NSYK of  

   anti-commuting variables with action 

      

 

• Random couplings j  have a Gaussian 
distribution with zero mean.  

• The model flows to strong coupling and 
becomes nearly conformal.  Georges, Parcollet, Sachdev; 

Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; 
… 

 

 



• The simplest interesting case is q=4. 

• Exactly solvable in the large NSYK limit because 
only the melon Feynman diagrams contribute 

 

 

• Solid lines are fermion propagators, while 
dashed lines mean disorder average. 

• The exact solution shows resemblance with 
physics of certain two-dimensional black 
holes. Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang; 

Engelsoy, Merten, Verlinde; Jensen; …  



• Spectrum for a single realization of NSYK=32 
model with q=4. Maldacena, Stanford 

• No exact degeneracies, but the gaps are 
exponentially small. Large low T entropy. 



SYK-Like Tensor Quantum Mechanics 

• E. Witten, “An SYK-Like Model Without 
Disorder,” arXiv: 1610.09758.  

• Appeared on the evening of Halloween: 
October 31, 2016. 

 

 

 

• It is sometimes tempting to change the term 
“melon diagrams” to “pumpkin diagrams.” 



The Gurau-Witten Model 
• This model is called “colored” in the random 

tensor literature because the anti-commuting 3-
tensor fields              carry a label A=0,1,2,3.   

 

 

 

• Perhaps more natural to call it ”flavored.” 

• The model has                symmetry with each 
tensor in a tri-fundamental under a different 
subset of the six symmetry groups. 

• Contains 4N3 Majorana fermions. 
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• The 4 different fields may be associated with 4 
vertices of a tetrahedron, and the 6 edges 
correspond to the different symmetry groups: 

 

 

 

 

 

• As stressed by Witten, it may be advantageous 
to gauge the SO(N)6 symmetry. 

• This would make it a candidate gauge/gravity 
correspondence. 

 

 

 

 

 

 



• A pruned version: there are N3 Majorana 
fermions IK, Tarnopolsky 

 

 

 

• Has O(N)axO(N)bxO(N)c symmetry under 

 

• The SO(N) symmetry charges are 

 

 

 

 

 

 

The O(N)3 Model 



• The 3-tensors may be 
associated with 
indistinguishable vertices 
of a tetrahedron.  

 

• This is equivalent to 

 

 

• The 3-line Feynman 
graphs are produced 
using the propagator 
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Schwinger-Dyson Equations 

• Some are the same as in the SYK model Kitaev; 

Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon 

 

 

 

 

 

• Neglecting the left-hand side in IR we find 

. . . . . .



• Four point function 

 

 

 

 

 

•  If we denote by       the ladder with n rungs 
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Spectrum of two-particle operators 
• S-D equation for the three-point function Gross, 

Rosenhaus 

 

 

 

 
 

 

• Scaling dimensions of operators   

 

 

 



• The first solution is h=2; dual to dilaton gravity. 

 

 

 

 

 

 

 

• The higher scaling dimensions are 

       approaching              



Gauge Invariant Operators 

• Bilinear operators related by the EOM to some 
of the higher particle “single-sum” operators.  

 

 

• All the 6-particle  

   operators vanish by  

   the Fermi statistics in  

   the theory of one  

   Majorana tensor 

 

 

 

 

 



• The bubbles come from O(N) charges and 
vanish in the gauged model: 

 

• The 17 single-sum 8-particle operators which 
do not include bubble insertions are  

 



Factorial Growth 

• There are 24 bubble-free 10-particle; 617 12-
particle; 4887 14-particle; 82466 16-particle 
operators; etc.  

• The number of (2k)-particle operators grows 
asymptotically as k! 2k. Bulycheva, IK, Milekhin, Tarnopolsky 

• The Hagedorn temperature of the large N 
theory vanishes as 1/log N. 

• The tensor models seem to lie “beyond string 
theory.” 

• Are they related to M-theory? 



Spectra of Energy Eigenstates 
• Generalize the Majorana tensor model to have 

                                                symmetry 

• The traceless Hamiltonian is 

 

 

 

• The Hilbert space has dimension 

• Eigenstates of H form irreducible 
representations of the symmetry.  
 

 

 

 

 



Complete Diagonalizations 

• Generally possible only for small ranks. Krishnan, 

Pavan Kumar, Sanyal, Bala Subramanian, Rosa; Chaudhuri et al.; IK, Roberts, 
Stanford, Tarnopolsky 

• For example IK, Milekhin, Popov, Tarnopolsky  



• Spectra for N3=2 

• For the O(2)3 model 

   only two singlets at  

   energies -2g and 2g.  



Energy Bounds 

• The bound on the singlet ground state energy 
IK, Milekhin, Popov, Tarnopolsky 

 

• In the melonic limit, this correctly scales as N3. 

• The gap to the lowest non-singlet state scales 
as 1/N. 

• For unequal ranks the bound is 



A Fermionic Matrix Model 

• For N3=2 the bound simplifies to 

 

 

• Saturated by the ground state. 

• This is a fermionic matrix model with symmetry  

 

 



• The traceless Hamiltonian is 

 

 

• May be expressed in terms  of quadratic Casimirs 

 

 

•                                 is not a symmetry here but an 
enveloping algebra (there is a simpler model 
introduced by Anninos and Silva, where it is a 
symmetry). 

• For all N1, N2, the energy levels are integers in 
units of g/4. 

 



Gauge Singlets 

• To eliminate large degeneracies, focus on the 
states invariant under    

• Their number can be found by gauging the 
free theory  



Gauge Singlets in the Matrix Model 

• Their number grows slowly. For N1=N2=10 only 
24 singlets out of 2100 states. 



Gauge Singlets in the O(N)3 Model 

• Their number vanishes for odd N due to a QM 
anomaly for odd numbers of flavors. 

• Grows very rapidly for even N 

 

 

 

 

 

• The large low-temperature entropy suggests 
tiny gaps for singlet excitations ~  

 

 

 

 

 

 

 

 

 

 



Spectrum of the Gauged N=4 Model 

• Work in progress on this system of 32 qubits with 
K. Pakrouski, F. Popov and G. Tarnopolsky.  

• Need to isolate the 36 states invariant under 
SO(4)3 out of the 601080390 “half-filled” states 
(those with 16 ones and 16 zeros). 

• Diagonalize 4H/g + 100 C where C is the sum of 
three Casimir operators. 

• A Lanczos type algorithm is well suited for this 
sparse operator. 

• Find 15 distinct SO(4)3 invariant energy levels: 
E=0 and 7 “mirror pairs” (E, -E). 

 

 



Discrete Symmetries 

• Act within the SO(N)3 invariant sector and can 
lead to small degeneracies. 

• Z2 parity transformation within each group like 

 

• Interchanges of the groups flip the energy 

 

 

 

• Z3 symmetry generated by                    , 



Preliminary Numerical Results 

• The maximum degeneracy at non-zero energy is 3. 

• The lowest singlet state is non-degenerate and has 
E0=- 40.035 g.  

• This is likely the ground state of H.  

• It is not far from our lower bound -41.569 g 

• The next SO(4)3 invariant states are at -24.255 g; 
they have degeneracy 3. 

• The highest degeneracy is at E=0. 

 



Model with a Complex Fermion 

• The action 
 

 

    has SU(N)xO(N)xSU(N)xU(1) symmetry. 

  

• Gauge invariant two-particle operators 
 

    including  



Spectrum of two-particle operators 

• The integral equation also admits symmetric 
solutions  

 

• Calculating the integrals we get 

 

 

• The first solution is h=1 corresponding to U(1) 
charge  



 

 

 

 

 

 

 

 

• The additional scaling dimensions   

 

    approach  
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Sachdev-Ye-Kitaev Model O(N)3 Tensor Model 

• Majorana fermions 

 

 

 

• No disorder  

 

• Has O(N)a x O(N)b x O(N)c symmetry 

• Majorana fermions 

 

•                are Gaussian random 

 

 

 

• Has O(NSYK) symmetry after  

     averaging over disorder 

Sachdev, Ye ‘93,  

Georges, Parcollet, Sachdev’01 

Kitaev ‘15 

 

IK, Tarnopolsky’16 



• Majorana fermions 

 

•                are Gaussian random 

 

 

 

• Has O(NSYK) x O(NSYK) x  

• O(NSYK) x O(NSYK)  symmetry 
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• Majorana fermions 

 

 

 

• No disorder  

 

• Has O(N)a x O(N)b x O(N)c x O(N)d  

      x O(N)e x O(N)f symmetry 

Gross-Rosenhaus Model 

   q=4, f=4 
Gurau-Witten Model 

Gross, Rosenhaus’ 16 
Gurau ‘10 

Witten’16 



• Complex fermions 

 

 

 

• Has SU(N)a x SU(N)b x O(N)c x U(1)  

      symmetry and no disorder 

Complex SYK Model Complex Tensor Model 

• Complex fermions 

 

•                are Gaussian random 

 

 

 

• Has U(NSYK) symmetry after  

      averaging over disorder  

Sachdev ’15 

Davison, Fu,  Gu,  Georges,  Jensen,  Sachdev ‘16 
IK, GT’16 
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 An Unstable Tensor Model   
• Action with a potential that is not positive 

definite IK, Tarnopolsky; Giombi, IK, Tarnopolsky 

 

 

• Schwinger-Dyson equation for 2pt function 
Patashinsky, Pokrovsky 

 

 

• Has solution 



Spectrum of two-particle spin zero 
operators 

• Schwinger-Dyson equation 

 

 

 

 

 

 

• In d<4 the first solution is complex  



• Spectrum in d=1 again includes scaling 
dimension h=2, suggesting the existence of a 
gravity dual. 

• However, the leading solution is complex, 
which suggests that the large N  CFT is 
unstable Giombi, IK, Tarnopolsky  

• It corresponds to the operator 

• In d=4-e 

 

• The dual scalar field in AdS violates the 
Breitenlohner-Freedman bound.    

 



Complex Fixed Point in 4-e Dimensions 

• The tetrahedron operator  

 

mixes with the pillow and double-sum operators 

 

 

 

• The renormalizable action is 



• The large N scaling is 

 

 

• The 2-loop beta functions and fixed points:  

 

 

 

 

• The scaling dimension of                  is 



Super Melons 

• May consider a supersymmetric model with 
“tetrahedron superpotential” IK, Tarnopolsky 

 

• In d=3 such a theory is renormalizable, so for 
d<3 it may flow to an interacting 
superconformal theory. 

• In d=1 exhibits SUSY breaking. Chang, Colin-Ellerin, 

Rangamani 

• Includes a positive sextic scalar potential. 

 

 

 



Stable Bosonic Model in 2.9 Dimensions 

• Work in progress with S. Giombi, F. Popov, S. 
Prakash and G. Tarnopolsky on the theory 
dominated by the positive  “prism” interaction 

 

 

• To obtain the large N solution                             
it is convenient to rewrite  

 

 

 



• Tensor counterpart of a bosonic SYK-like model. 

    Murugan, Stanford, Witten 

• The IR solution in general dimension: 

 

 

 

 

• In 

 

 

• For d=2.9 find numerically 



 
• Graphical solution  for dimensions of bilinear 

operators in d=2.9 
 
 
 
 
 
 
 

• The first root is 
 
 

• For d<2.8056,             becomes complex. 



Renormalized Perturbation Theory 

• For 2.8056 < d <3 the large N theory is stable. 

• To make the theory renormalizable in d=3 
need to add 7 more O(N)3 invariant terms. 

• The 8 coupled beta functions have a non-
trivial real fixed point.  

• The resulting epsilon expansions agree in the 
large N limit with the solutions of the 
Schwinger-Dyson equations.  



Conclusions 

• The vector and matrix large N limits have been 
used extensively for many years in various 
theoretical physics problems.  

• The tensor large N limits for rank 3 and higher 
are relatively new.   

• The O(N)3 fermionic tensor quantum 
mechanics seems to be the closest 
counterpart of the basic SYK model for 
Majorana fermions. Yet, there are some 
important differences between the two. 

 



• Gauging the SO(N)3 symmetry leaves 
interesting spectra of operators and 
eigenstates.  

• Energy gaps should become very small already 
for N=6.  

• Higher dimensional generalizations are 
possible, e.g. a stable sextic scalar theory in 
2.8056 < d < 3, which is solvable in the  large N  
limit. 

• In 3-e dimensions it may be studied for finite 
N using standard perturbation theory. 



• Vector: CFTs are dual to higher spin quantum 
gravity in AdS; e.g. the O(N) Wilson-Fisher Model 
coupled to Chern-Simons is dual to the Vasiliev 
theory in AdS4. One Regge trajectory. 

• Matrix: N=4 Super-Yang-Mills is dual string theory 

on AdS5 x S5. An infinite number of Regge 
trajectories.    

• Tensor: Vastly more operators than in the matrix 
case. Hagedorn temperature vanishes for large N. 

    What quantum gravity theories are they dual to? 


