#### **Tensor Models**

#### Igor Klebanov



#### New Frontiers in String Theory 2018 Yukawa Institute, Kyoto July 2, 2018

# Three Large N Limits

- O(N) Vector: solvable because the bubble diagrams can be summed.
- Matrix ('t Hooft) Limit: planar diagrams.
   Solvable only in special cases.
- Tensor of rank three and higher. When interactions are specially chosen, dominated by the melonic (ladder) diagrams. Bonzom, Gurau, Riello, Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky



# O(N) x O(N) Matrix Model

- Theory of real matrices φ<sup>ab</sup> with distinguishable indices, i.e. in the bi-fundamental representation of O(N)<sub>a</sub>xO(N)<sub>b</sub> symmetry.
- The interaction is at least quartic: g tr  $\varphi \varphi^{\mathsf{T}} \varphi \varphi^{\mathsf{T}}$
- Propagators are represented by colored double lines, and the interaction vertex is
- In d=0 or 1 special limits describe twodimensional quantum gravity.

- In the large N limit where gN is held fixed we find planar Feynman graphs, and each index loop may be red or green.
- The dual graphs shown in black may be thought of as random surfaces tiled with squares whose vertices have alternating colors (red, green, red, green).



#### From Bi- to Tri-Fundamentals

For a 3-tensor with distinguishable indices the propagator has index structure

$$\langle \phi^{abc} \phi^{a'b'c'} \rangle = \delta^{aa'} \delta^{bb'} \delta^{cc'}$$

- It may be represented graphically by 3 colored wires <sup>a</sup>/<sub>b</sub>
- Tetrahedral interaction with O(N)<sub>a</sub>xO(N)<sub>b</sub>xO(N)<sub>c</sub> symmetry Carrozza, Tanasa; IK, Tarnopolsky

$$\frac{1}{4}g\phi^{a_1b_1c_1}\phi^{a_1b_2c_2}\phi^{a_2b_1c_2}\phi^{a_2b_2c_1}$$



Leading correction to the propagator has 3 index loops



- Requiring that this "melon" insertion is of order 1 means that  $\lambda = g N^{3/2}$  must be held fixed in the large N limit.
- Melonic graphs obtained by iterating



#### **Cables and Wires**

• The Feynman graphs of the quartic field theory may be resolved in terms of the colored wires (triple lines)  $\lambda = q N^{3/2}$ 



## Non-Melonic Graphs

• Most Feynman graphs in the quartic field theory are not melonic are therefore subdominant in the new large N limit, e.g.



- Scales as  $g^3 N^6 \sim N^3 \lambda^3 N^{-3/2}$
- None of the graphs with an odd number of vertices are melonic.

• Here is the list of snail-free vacuum graphs up to 6 vertices Kleinert, Schulte-Frohlinde



- Only 4 out of these 27 graphs are melonic.
- The number of melonic graphs with p vertices grows as C<sup>p</sup> Bonzom, Gurau, Riello, Rivasseau

## Large N Scaling

• "Forgetting" one color we get a double-line graph.



- The number of loops in a double-line graph is  $f = \chi + e v$  where  $\chi$  is the Euler characteristic, e is the number of edges, and v is the number of vertices, e = 2v
- If we erase the blue lines we get  $f_{rg} = \chi_{rg} + v$

• Adding up such formulas, we find

 $f_{bg} + f_{rg} + f_{br} = 2(f_b + f_g + f_r) = \chi_{bg} + \chi_{br} + \chi_{rg} + 3v$ 

- The total number of index loops is  $f_{\text{total}} = f_b + f_g + f_r = \frac{3v}{2} + 3 - g_{bg} - g_{br} - g_{rg}$
- The genus of a graph is  $g = 1 \chi/2$
- Since g≥0, for a "maximal graph" which dominates at large N all its subgraphs must have genus zero: f<sub>total</sub> = 3 + 3v/2
- Scales as  $N^3(gN^{3/2})^v$
- In the 3-tensor models  $\lambda = g N^{3/2}$  must be held fixed in the large N limit.

#### The Sachdev-Ye-Kitaev Model

• Quantum mechanics of a large number  $N_{\text{SYK}}$  of anti-commuting variables with action

$$I = \int \mathrm{d}t \left( \frac{\mathrm{i}}{2} \sum_{i} \psi_{i} \frac{\mathrm{d}}{\mathrm{d}t} \psi_{i} - \mathrm{i}^{q/2} j_{i_{1}i_{2}\dots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \dots \psi_{i_{q}} \right)$$

 Random couplings j have a Gaussian distribution with zero mean.

. . .

• The model flows to strong coupling and becomes nearly conformal. Georges, Parcollet, Sachdev; Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon;

- The simplest interesting case is q=4.
- Exactly solvable in the large N<sub>SYK</sub> limit because only the melon Feynman diagrams contribute



- Solid lines are fermion propagators, while dashed lines mean disorder average.
- The exact solution shows resemblance with physics of certain two-dimensional black holes. Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang;

Engelsoy, Merten, Verlinde; Jensen; ...

- Spectrum for a single realization of N<sub>SYK</sub>=32 model with q=4. Maldacena, Stanford
- No exact degeneracies, but the gaps are exponentially small. Large low T entropy.



#### SYK-Like Tensor Quantum Mechanics

- E. Witten, "An SYK-Like Model Without Disorder," arXiv: 1610.09758.
- Appeared on the evening of Halloween: October 31, 2016.



 It is sometimes tempting to change the term "melon diagrams" to "pumpkin diagrams."

#### The Gurau-Witten Model

• This model is called "colored" in the random tensor literature because the anti-commuting 3-tensor fields  $\psi_A^{abc}$  carry a label A=0,1,2,3.

$$S_{\text{Gurau-Witten}} = \int dt \left( \frac{i}{2} \psi_A^{abc} \partial_t \psi_A^{abc} + g \psi_0^{abc} \psi_1^{ade} \psi_2^{fbe} \psi_3^{fdc} \right)$$

- Perhaps more natural to call it "flavored."
- The model has  $O(N)^6$  symmetry with each tensor in a tri-fundamental under a different subset of the six symmetry groups.
- Contains 4N<sup>3</sup> Majorana fermions.

The 4 different fields may be associated with 4 vertices of a tetrahedron, and the 6 edges correspond to the different symmetry groups:



- As stressed by Witten, it may be advantageous to gauge the SO(N)<sup>6</sup> symmetry.
- This would make it a candidate gauge/gravity correspondence.

# The O(N)<sup>3</sup> Model

• A pruned version: there are N<sup>3</sup> Majorana fermions IK, Tarnopolsky

$$\{\psi^{abc},\psi^{a'b'c'}\} = \delta^{aa'}\delta^{bb'}\delta^{cc'}$$
$$H = \frac{g}{4}\psi^{abc}\psi^{abc'}\psi^{a'bc'}\psi^{a'bc'}\psi^{a'b'c} - \frac{g}{16}N^4$$

- Has  $O(N)_a x O(N)_b x O(N)_c$  symmetry under  $\psi^{abc} \rightarrow M_1^{aa'} M_2^{bb'} M_3^{cc'} \psi^{a'b'c'}, \quad M_1, M_2, M_3 \in O(N)$
- The SO(N) symmetry charges are

$$Q_1^{aa'} = \frac{i}{2} [\psi^{abc}, \psi^{a'bc}] , \qquad Q_2^{bb'} = \frac{i}{2} [\psi^{abc}, \psi^{ab'c}] , \qquad Q_3^{cc'} = \frac{i}{2} [\psi^{abc}, \psi^{abc'}]$$

 The 3-tensors may be associated with indistinguishable vertices of a tetrahedron.

• This is equivalent to

 The 3-line Feynman graphs are produced using the propagator



#### **Schwinger-Dyson Equations**

• Some are the same as in the SYK model Kitaev;

Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon



Neglecting the left-hand side in IR we find

$$G(t_1 - t_2) = -\left(\frac{1}{4\pi g^2 N^3}\right)^{1/4} \frac{\operatorname{sgn}(t_1 - t_2)}{|t_1 - t_2|^{1/2}}$$

• Four point function

 $\langle \psi^{a_1b_1c_1}(t_1)\psi^{a_1b_1c_1}(t_2)\psi^{a_2b_2c_2}(t_3)\psi^{a_2b_2c_2}(t_4)\rangle = N^6G(t_{12})G(t_{34}) + \Gamma(t_1,\ldots,t_4)$ 



• If we denote by  $\Gamma_n$  the ladder with n rungs

$$\Gamma = \sum_{n} \Gamma_{n}$$
  
$$\Gamma_{n+1}(t_1, \dots, t_4) = \int dt dt' K(t_1, t_2; t, t') \Gamma_n(t, t', t_3, t_4)$$

$$K(t_1, t_2; t_3, t_4) = -3g^2 N^3 G(t_{13}) G(t_{24}) G(t_{34})^2$$

## Spectrum of two-particle operators

• S-D equation for the three-point function Gross, Rosenhaus



• Scaling dimensions of operators  $O_2^n = \psi^{abc} (D_t^n \psi)^{abc}$ 

$$g(h) = -\frac{3}{2} \frac{\tan(\frac{\pi}{2}(h - \frac{1}{2}))}{h - 1/2} = 1$$

• The first solution is h=2; dual to dilaton gravity.



• The higher scaling dimensions are  $h \approx 3.77, 5.68, 7.63, 9.60$  approaching  $h_n \rightarrow n + \frac{1}{2}$ 

## **Gauge Invariant Operators**

• Bilinear operators related by the EOM to some of the higher particle "single-sum" operators.

 $c_1 a_1$ 

 $c_2 a_2$ 

 $O_{\text{pillow}}^{(2)}$ 

 $O_{\text{pillow}}^{(3)}$ 

 $b_2 c_2$ 

Otetra O<sup>(1)</sup><sub>pillow</sub>
 All the 6-particle
 operators vanish by
 the Fermi statistics in
 the theory of one
 Majorana tensor

 $a_2$ 

• The bubbles come from O(N) charges and vanish in the gauged model:



 The 17 single-sum 8-particle operators which do not include bubble insertions are



#### **Factorial Growth**

- There are 24 bubble-free 10-particle; 617 12particle; 4887 14-particle; 82466 16-particle operators; etc.
- The number of (2k)-particle operators grows asymptotically as k! 2<sup>k</sup>. Bulycheva, IK, Milekhin, Tarnopolsky
- The Hagedorn temperature of the large N theory vanishes as 1/log N.
- The tensor models seem to lie "beyond string theory."
- Are they related to M-theory?

#### Spectra of Energy Eigenstates

- Generalize the Majorana tensor model to have  $O(N_1) \times O(N_2) \times O(N_3)$  symmetry
- The traceless Hamiltonian is

 $H = \frac{g}{4} \psi^{abc} \psi^{abc'} \psi^{a'bc'} \psi^{a'b'c} - \frac{g}{16} N_1 N_2 N_3 (N_1 - N_2 + N_3)$  $\{\psi^{abc}, \psi^{a'b'c'}\} = \delta^{aa'} \delta^{bb'} \delta^{cc'}$  $a = 1, \dots, N_1; \ b = 1, \dots, N_2; \ c = 1, \dots, N_3$ 

- The Hilbert space has dimension  $2^{[N_1N_2N_3/2]}$
- Eigenstates of H form irreducible representations of the symmetry.

## **Complete Diagonalizations**

• Generally possible only for small ranks. Krishnan,

Pavan Kumar, Sanyal, Bala Subramanian, Rosa; Chaudhuri et al.; IK, Roberts, Stanford, Tarnopolsky

• For example IK, Milekhin, Popov, Tarnopolsky



Figure 1: Spectrum of the  $O(4)^2 \times O(2)$  model. There are four singlet states, and the stars mark their energies.  $\pm 16q$  and  $\pm 4q$ 

| $(N_1, N_2)$                       | (2,2)    | (2,3)            | (3,3)            | (2,4)            | (3,4)             | (4,4)        |
|------------------------------------|----------|------------------|------------------|------------------|-------------------|--------------|
| $\frac{4}{a}E_{\text{degeneracy}}$ | -81      | -13 <sub>2</sub> | -20 <sub>6</sub> | -24 <sub>1</sub> | -34 <sub>6</sub>  | -641         |
| 5                                  | $0_{14}$ | -76              | $-16_{18}$       | $-16_{2}$        | $-28_{24}$        | $-48_{55}$   |
|                                    | 81       | -3 <sub>2</sub>  | $-12_{16}$       | $-12_{16}$       | $-24_8$           | $-40_{106}$  |
|                                    |          | $-1_{22}$        | -8 <sub>60</sub> | $-8_{23}$        | $-22_{76}$        | $-36_{256}$  |
|                                    |          | $1_{22}$         | -4 <sub>42</sub> | $-4_{16}$        | $-20_{40}$        | $-32_{810}$  |
|                                    |          | $3_{2}$          | $0_{228}$        | $0_{140}$        | -18 <sub>14</sub> | $-28_{256}$  |
|                                    |          | $7_6$            | $4_{42}$         | $4_{16}$         | $-16_{152}$       | $-24_{3250}$ |
|                                    |          | $13_{2}$         | 8 <sub>60</sub>  | 8 <sub>23</sub>  | $-14_{168}$       | $-20_{1024}$ |
|                                    |          |                  | $12_{16}$        | $12_{16}$        | $-12_{40}$        | $-16_{4985}$ |
|                                    |          |                  | $16_{18}$        | $16_{2}$         | $-10_{170}$       | $-12_{3072}$ |
|                                    |          |                  | $20_{6}$         | $24_{1}$         | $-8_{240}$        | $-8_{8932}$  |
|                                    |          |                  |                  |                  | $-6_{194}$        | $-4_{3584}$  |
|                                    |          |                  |                  |                  | $-4_{384}$        | $0_{12874}$  |
|                                    |          |                  |                  |                  | $-2_{270}$        | $4_{3584}$   |
|                                    |          |                  |                  |                  | $0_{248}$         | $8_{8932}$   |
|                                    |          |                  |                  |                  | $2_{640}$         | $12_{3072}$  |
|                                    |          |                  |                  |                  | $4_{384}$         | $16_{4985}$  |
|                                    |          |                  |                  |                  | $6_{76}$          | $20_{1024}$  |
|                                    |          |                  |                  |                  | $8_{312}$         | $24_{3250}$  |
|                                    |          |                  |                  |                  | $10_{216}$        | $28_{256}$   |
|                                    |          |                  |                  |                  | $14_{32}$         | $32_{810}$   |
|                                    |          |                  |                  |                  | $16_{128}$        | $36_{256}$   |
|                                    |          |                  |                  |                  | $18_{168}$        | $40_{106}$   |
|                                    |          |                  |                  |                  | $20_{64}$         | $48_{55}$    |
|                                    |          |                  |                  |                  | $26_{10}$         | $64_1$       |
|                                    |          |                  |                  |                  | $28_{24}$         |              |
|                                    |          |                  |                  |                  | $30_{6}$          |              |
|                                    |          |                  |                  |                  | $38_{2}$          |              |

- Spectra for N<sub>3</sub>=2
- For the O(2)<sup>3</sup> model only two singlets at energies -2g and 2g.

# **Energy Bounds**

• The bound on the singlet ground state energy IK, Milekhin, Popov, Tarnopolsky

$$|E| \le E_{bound} = \frac{g}{16} N^3 (N+2) \sqrt{N-1}$$

- In the melonic limit, this correctly scales as N<sup>3</sup>.
- The gap to the lowest non-singlet state scales as 1/N.
- For unequal ranks the bound is

$$|E| \le \frac{g}{16} N_1 N_2 N_3 (N_1 N_2 N_3 + N_1^2 + N_2^2 + N_3^2 - 4)^{1/2}$$

#### A Fermionic Matrix Model

• For  $N_3 = 2$  the bound simplifies to

$$|E|_{N_3=2} \le \frac{g}{8} N_1 N_2 (N_1 + N_2)$$

- Saturated by the ground state.
- This is a fermionic matrix model with symmetry  $O(N_1) \times O(N_2) \times U(1)$   $\bar{\psi}_{ab} = \frac{1}{\sqrt{2}} \left( \psi^{ab1} + i\psi^{ab2} \right), \quad \psi_{ab} = \frac{1}{\sqrt{2}} \left( \psi^{ab1} - i\psi^{ab2} \right)$   $\{\bar{\psi}_{ab}, \bar{\psi}_{a'b'}\} = \{\psi_{ab}, \psi_{a'b'}\} = 0, \quad \{\bar{\psi}_{ab}, \psi_{a'b'}\} = \delta_{aa'}\delta_{bb'}$

• The traceless Hamiltonian is

 $H = \frac{g}{2} \left( \bar{\psi}_{ab} \bar{\psi}_{ab'} \psi_{a'b} \psi_{a'b'} - \bar{\psi}_{ab} \bar{\psi}_{a'b} \psi_{ab'} \psi_{a'b'} \right) + \frac{g}{8} N_1 N_2 (N_2 - N_1)$ 

• May be expressed in terms of quadratic Casimirs

$$-\frac{g}{2}\left(4C_2^{SU(N_1)} - C_2^{SO(N_1)} + C_2^{SO(N_2)} + \frac{2}{N_1}Q^2 + (N_2 - N_1)Q - \frac{1}{4}N_1N_2(N_1 + N_2)\right)$$

- $SU(N_1) \times SU(N_2)$  is not a symmetry here but an enveloping algebra (there is a simpler model introduced by Anninos and Silva, where it is a symmetry).
- For all N<sub>1</sub>, N<sub>2</sub>, the energy levels are integers in units of g/4.

## Gauge Singlets

- To eliminate large degeneracies, focus on the states invariant under  $SO(N_1) \times SO(N_2) \times SO(N_3)$
- Their number can be found by gauging the free theory  $L = \psi^{I} \partial_{t} \psi^{I} + \psi^{I} A_{IJ} \psi^{J}$

$$A = A^{1} \otimes \mathbb{1} \otimes \mathbb{1} + \mathbb{1} \otimes A^{2} \otimes \mathbb{1} + \mathbb{1} \otimes \mathbb{1} \otimes A^{3}$$
  
#singlet states = 
$$\int d\lambda_{G}^{N} \prod_{a=1}^{M/2} 2\cos(\lambda_{a}/2)$$
$$d\lambda_{SO(2n)} = \prod_{i < j}^{n} \sin\left(\frac{x_{i} - x_{j}}{2}\right)^{2} \sin\left(\frac{x_{i} + x_{j}}{2}\right)^{2} dx_{1} \dots dx_{n}$$

# Gauge Singlets in the Matrix Model

• Their number grows slowly. For  $N_1 = N_2 = 10$  only 24 singlets out of  $2^{100}$  states.

| $(N_1, N_2)$ | # singlet states |
|--------------|------------------|
| (4,4)        | 4                |
| (6,4)        | 4                |
| (6, 6)       | 4                |
| (8,4)        | 6                |
| (8,6)        | 8                |
| (8,8)        | 18               |
| (10, 4)      | 6                |
| (10,6)       | 8                |
| (10,8)       | 20               |
| (10, 10)     | 24               |

Table 3: Number of singlet states in the  $O(N_1) \times O(N_2) \times O(2)$  model

# Gauge Singlets in the O(N)<sup>3</sup> Model

- Their number vanishes for odd N due to a QM anomaly for odd numbers of flavors.
- Grows very rapidly for even N

 $\begin{array}{c|cc}
N & \# \text{ singlet states} \\
\hline
2 & 2 \\
4 & 36 \\
6 & 595354780
\end{array}$ 

Table 1: Number of singlet states in the  $O(N)^3$  model

#singlet states ~ exp
$$\left(\frac{N^3}{2}\log 2 - \frac{3N^2}{2}\log N + O(N^2)\right)$$

• The large low-temperature entropy suggests tiny gaps for singlet excitations ~  $c^{-N^3}$ 

#### Spectrum of the Gauged N=4 Model

- Work in progress on this system of 32 qubits with K. Pakrouski, F. Popov and G. Tarnopolsky.
- Need to isolate the 36 states invariant under SO(4)<sup>3</sup> out of the 601080390 "half-filled" states (those with 16 ones and 16 zeros).
- Diagonalize 4H/g + 100 C where C is the sum of three Casimir operators.
- A Lanczos type algorithm is well suited for this sparse operator.
- Find 15 distinct SO(4)<sup>3</sup> invariant energy levels:
   E=0 and 7 "mirror pairs" (E, -E).

## **Discrete Symmetries**

- Act within the SO(N)<sup>3</sup> invariant sector and can lead to small degeneracies.
- Z<sub>2</sub> parity transformation within each group like  $\psi^{1bc} \rightarrow -\psi^{1bc}$
- Interchanges of the groups flip the energy

$$P_{23}\psi^{abc}P_{23} = \psi^{acb} , \qquad P_{12}\psi^{abc}P_{12} = \psi^{bac}$$

 $P_{23}HP_{23} = -H , \qquad P_{12}HP_{12} = -H$ 

•  $Z_3$  symmetry generated by  $P = P_{12}P_{23}$ ,  $P^3 = 1$  $P\psi^{abc}P^{\dagger} = \psi^{cab}$ ,  $PHP^{\dagger} = H$ 

## **Preliminary Numerical Results**

- The maximum degeneracy at non-zero energy is 3.
- The lowest singlet state is non-degenerate and has
   E<sub>0</sub>=- 40.035 g.
- This is likely the ground state of H.
- It is not far from our lower bound -41.569 g
- The next SO(4)<sup>3</sup> invariant states are at -24.255 g; they have degeneracy 3.
- The highest degeneracy is at E=0.

## Model with a Complex Fermion

• The action

$$S = \int dt \Big( i ar{\psi}^{abc} \partial_t \psi^{abc} + rac{1}{4} g \psi^{a_1 b_1 c_1} ar{\psi}^{a_1 b_2 c_2} \psi^{a_2 b_1 c_2} ar{\psi}^{a_2 b_2 c_1} \Big)$$
  
has SU(N)xO(N)xSU(N)xU(1) symmetry.

• Gauge invariant two-particle operators  $\mathcal{O}_2^n = \bar{\psi}^{abc} (D_t^n \psi)^{abc} \qquad n = 0, 1, \dots$  including  $\bar{\psi}^{abc} \psi^{abc}$ 

#### Spectrum of two-particle operators

- The integral equation also admits symmetric solutions  $v(t_1,t_2) = rac{1}{|t_1-t_2|^{1/2-h}}$
- Calculating the integrals we get

$$g_{\rm sym}(h) = -\frac{1}{4\pi} l_{\frac{3}{2}-h,\frac{1}{2}}^{-} l_{1-h,\frac{1}{2}}^{+} = -\frac{1}{2} \frac{\tan(\frac{\pi}{2}(h+\frac{1}{2}))}{h-1/2}$$

• The first solution is h=1 corresponding to U(1) charge  $\bar{\psi}^{abc}\psi^{abc}$ 



• The additional scaling dimensions  $h \approx 2.65, \ 4.58, \ 6.55, \ 8.54$ approach  $h_n = n + \frac{1}{2} + \frac{1}{\pi n} + \mathcal{O}(n^{-3})$ 

#### Sachdev-Ye-Kitaev Model

$$H = \frac{1}{4!} \sum_{i_1, i_2, i_3, i_4=1}^{N} J_{i_1 i_2 i_3 i_4} \chi_{i_1} \chi_{i_2} \chi_{i_3} \chi_{i_4}$$

- Majorana fermions  $\{\chi_i, \chi_j\} = \delta_{ij}$
- $J_{i_1i_2i_3i_4}$  are Gaussian random

$$\langle J_{i_1 i_2 i_3 i_4}^2 \rangle = 3! \frac{J^2}{N^3} \quad \langle J_{i_1 i_2 i_3 i_4} \rangle = 0$$

• Has O(N<sub>SYK</sub>) symmetry after averaging over disorder



Sachdev, Ye '93, Georges, Parcollet, Sachdev'01 Kitaev '15

#### O(N)<sup>3</sup> Tensor Model

$$H = \frac{1}{4} \sum_{a_1, \dots, c_2 = 1}^{N} \frac{J}{N^{3/2}} \chi_{a_1 b_1 c_1} \chi_{a_1 b_2 c_2} \chi_{a_2 b_1 c_2} \chi_{a_2 b_2 c_1}$$

• Majorana fermions

$$\{\chi_{abc}, \chi_{a'b'c'}\} = \delta_{aa'}\delta_{bb'}\delta_{cc'}$$

- No disorder
- Has  $O(N)_a \times O(N)_b \times O(N)_c$  symmetry



IK, Tarnopolsky'16

| Gross-Rosenhaus Model<br>q=4, f=4                                                                                           | Gurau-Witten Model                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| $H = \sum_{i_1, i_2, i_3, i_4=1}^N J_{i_1 i_2 i_3 i_4} \chi^0_{i_1} \chi^1_{i_2} \chi^2_{i_3} \chi^3_{i_4}$                 | $H = \sum_{a,,f=1}^{N} \frac{J}{N^{3/2}} \chi^{0}_{abc} \chi^{1}_{ade} \chi^{2}_{fbe} \chi^{3}_{fdc}$ |
| • Majorana fermions $\{\chi_i^a, \chi_j^b\} = \delta_{ij} \delta^{ab}$                                                      | Majorana fermions                                                                                     |
| • $J_{i_1i_2i_3i_4}$ are Gaussian random                                                                                    | $\{\chi^A_{abc}, \chi^B_{a'b'c'}\} = \delta_{aa'}\delta_{bb'}\delta_{cc'}\delta^{AB}$                 |
| $\langle J_{i_1 i_2 i_3 i_4}^2 \rangle = 4^4 \frac{J^2}{N^3} \langle J_{i_1 i_2 i_3 i_4} \rangle = 0$                       | • No disorder                                                                                         |
| <ul> <li>Has O(N<sub>SYK</sub>) x O(N<sub>SYK</sub>) x</li> <li>O(N<sub>SYK</sub>) x O(N<sub>SYK</sub>) symmetry</li> </ul> | • Has $O(N)_a \times O(N)_b \times O(N)_c \times O(N)_d$<br>$\times O(N)_e \times O(N)_f$ symmetry    |
|                                                                                                                             | $\begin{array}{c} X_{ade}^{1} \\ e \\ a \\ b \\ f \\ \end{array}$                                     |
| Gross, Rosenhaus' 16                                                                                                        | $\chi^0_{abc}$ c $\chi^3_{fdc}$ Witten'16                                                             |

#### Complex SYK Model

#### Complex Tensor Model

$$H = \frac{1}{4!} \sum_{i_1, i_2, i_3, i_4=1}^N J_{i_1 i_2 i_3 i_4} \chi_{i_1}^{\dagger} \chi_{i_2}^{\dagger} \chi_{i_3} \chi_{i_4}$$

- Complex fermions  $\{\chi_i, \chi_j^{\dagger}\} = \delta_{ij}$
- $J_{i_1i_2i_3i_4}$  are Gaussian random

$$\langle J_{i_1 i_2 i_3 i_4}^2 \rangle = 3! \frac{J^2}{N^3} \quad \langle J_{i_1 i_2 i_3 i_4} \rangle = 0$$

• Has U(N<sub>SYK</sub>) symmetry after averaging over disorder



Sachdev '15 Davison, Fu, Gu, Georges, Jensen, Sachdev '16

$$H = \frac{1}{4} \sum_{a_1,\dots,c_2=1}^{N} \frac{J}{N^{3/2}} \chi^{\dagger}_{a_1b_1c_1} \chi^{\dagger}_{a_2b_2c_1} \chi_{a_1b_2c_2} \chi_{a_2b_1c_2}$$

• Complex fermions

$$\{\chi_{abc}, \chi_{a'b'c'}^{\dagger}\} = \delta_{aa'}\delta_{bb'}\delta_{cc'}$$

• Has  $SU(N)_a \ge SU(N)_b \ge O(N)_c \ge U(1)$ symmetry and no disorder



## An Unstable Tensor Model

• Action with a potential that is not positive definite IK, Tarnopolsky; Giombi, IK, Tarnopolsky

$$S = \int d^d x \left( \frac{1}{2} \partial_\mu \phi^{abc} \partial^\mu \phi^{abc} + \frac{1}{4} g \phi^{a_1 b_1 c_1} \phi^{a_1 b_2 c_2} \phi^{a_2 b_1 c_2} \phi^{a_2 b_2 c_1} \right)$$

• Schwinger-Dyson equation for 2pt function Patashinsky, Pokrovsky

$$G^{-1}(p) = -\lambda^2 \int \frac{d^d k d^d q}{(2\pi)^{2d}} G(q) G(k) G(p+q+k)$$

Has solution

$$G(p) = \lambda^{-1/2} \left( \frac{(4\pi)^d d\Gamma(\frac{3d}{4})}{4\Gamma(1-\frac{d}{4})} \right)^{1/4} \frac{1}{(p^2)^{\frac{d}{4}}}$$

# Spectrum of two-particle spin zero operators

• Schwinger-Dyson equation

$$\int d^{d}x_{3}d^{d}x_{4}K(x_{1}, x_{2}; x_{3}, x_{4})v_{h}(x_{3}, x_{4}) = g(h)v_{h}(x_{1}, x_{2})$$

$$K(x_{1}, x_{2}; x_{3}, x_{4}) = 3\lambda^{2}G(x_{13})G(x_{24})G(x_{34})^{2}$$

$$v_{h}(x_{1}, x_{2}) = \frac{1}{[(x_{1} - x_{2})^{2}]^{\frac{1}{2}(\frac{d}{2} - h)}}$$

$$g_{\text{bos}}(h) = -\frac{3\Gamma\left(\frac{3d}{4}\right)\Gamma\left(\frac{d}{4} - \frac{h}{2}\right)\Gamma\left(\frac{h}{2} - \frac{d}{4}\right)}{\Gamma\left(-\frac{d}{4}\right)\Gamma\left(\frac{3d}{4} - \frac{h}{2}\right)\Gamma\left(\frac{d}{4} + \frac{h}{2}\right)}$$

• In d<4 the first solution is complex  $\frac{d}{2} + i\alpha(d)$ 

- Spectrum in d=1 again includes scaling dimension h=2, suggesting the existence of a gravity dual.
- However, the leading solution is complex, which suggests that the large N CFT is unstable Giombi, IK, Tarnopolsky  $h_0 = \frac{1}{2} + 1.525i$
- It corresponds to the operator  $\phi^{abc}\phi^{abc}$
- In d=4-ε

$$h_0 = 2 \pm i\sqrt{6\epsilon} - \frac{1}{2}\epsilon + \mathcal{O}(\epsilon^{3/2})$$

• The dual scalar field in AdS violates the Breitenlohner-Freedman bound.

#### **Complex Fixed Point in 4-E Dimensions**

• The tetrahedron operator

 $O_t(x) = \phi^{a_1 b_1 c_1} \phi^{a_1 b_2 c_2} \phi^{a_2 b_1 c_2} \phi^{a_2 b_2 c_1}$ 

#### mixes with the pillow and double-sum operators

$$O_p(x) = \frac{1}{3} \left( \phi^{a_1 b_1 c_1} \phi^{a_1 b_1 c_2} \phi^{a_2 b_2 c_2} \phi^{a_2 b_2 c_1} + \phi^{a_1 b_1 c_1} \phi^{a_2 b_1 c_1} \phi^{a_2 b_2 c_2} \phi^{a_1 b_2 c_2} + \phi^{a_1 b_1 c_1} \phi^{a_1 b_2 c_1} \phi^{a_2 b_1 c_2} \phi^{a_2 b_2 c_2} \right),$$

$$O_{ds}(x) = \phi^{a_1 b_1 c_1} \phi^{a_1 b_1 c_1} \phi^{a_2 b_2 c_2} \phi^{a_2 b_2 c_2}$$

• The renormalizable action is

$$S = \int d^d x \left( \frac{1}{2} \partial_\mu \phi^{abc} \partial^\mu \phi^{abc} + \frac{1}{4} \left( g_1 O_t(x) + g_2 O_p(x) + g_3 O_{ds}(x) \right) \right)$$

• The large N scaling is

$$g_1 = \frac{(4\pi)^2 \tilde{g}_1}{N^{3/2}}, \quad g_2 = \frac{(4\pi)^2 \tilde{g}_2}{N^2}, \quad g_3 = \frac{(4\pi)^2 \tilde{g}_3}{N^3}$$

• The 2-loop beta functions and fixed points:

$$\begin{split} \tilde{\beta}_t &= -\epsilon \tilde{g}_1 + 2\tilde{g}_1^3 \,, \\ \tilde{\beta}_p &= -\epsilon \tilde{g}_2 + \left(6\tilde{g}_1^2 + \frac{2}{3}\tilde{g}_2^2\right) - 2\tilde{g}_1^2\tilde{g}_2 \,\,, \\ \tilde{\beta}_{ds} &= -\epsilon \tilde{g}_3 + \left(\frac{4}{3}\tilde{g}_2^2 + 4\tilde{g}_2\tilde{g}_3 + 2\tilde{g}_3^2\right) - 2\tilde{g}_1^2(4\tilde{g}_2 + 5\tilde{g}_3) \end{split}$$

 $\tilde{g}_1^* = (\epsilon/2)^{1/2}, \quad \tilde{g}_2^* = \pm 3i(\epsilon/2)^{1/2}, \quad \tilde{g}_3^* = \mp i(3\pm\sqrt{3})(\epsilon/2)^{1/2}$ 

• The scaling dimension of  $\phi^{abc}\phi^{abc}$  is

$$\Delta_O = d - 2 + 2(\tilde{g}_2^* + \tilde{g}_3^*) = 2 \pm i\sqrt{6\epsilon} + \mathcal{O}(\epsilon)$$

# Super Melons

- May consider a supersymmetric model with "tetrahedron superpotential" IK, Tarnopolsky  $W = \frac{1}{4}g\Phi^{a_1b_1c_1}\Phi^{a_1b_2c_2}\Phi^{a_2b_1c_2}\Phi^{a_2b_2c_1}$
- In d=3 such a theory is renormalizable, so for d<3 it may flow to an interacting superconformal theory.
- In d=1 exhibits SUSY breaking. Chang, Colin-Ellerin, Rangamani
- Includes a positive sextic scalar potential.

#### Stable Bosonic Model in 2.9 Dimensions

 Work in progress with S. Giombi, F. Popov, S. Prakash and G. Tarnopolsky on the theory dominated by the positive "prism" interaction

$$S = \int d^d x \left( \frac{1}{2} (\partial_\mu \phi^{abc})^2 + \frac{g_1}{6!} \phi^{a_1 b_1 c_1} \phi^{a_1 b_2 c_2} \phi^{a_2 b_1 c_2} \phi^{a_3 b_3 c_1} \phi^{a_3 b_2 c_3} \phi^{a_2 b_3 c_3} \right)$$

 To obtain the large N solution it is convenient to rewrite

$$S = \int d^d x \left( \frac{1}{2} (\partial_\mu \phi^{abc})^2 + \frac{\lambda}{3!} \phi^{a_1 b_1 c_1} \phi^{a_1 b_2 c_2} \phi^{a_2 b_1 c_2} \chi^{a_2 b_2 c_1} - \frac{1}{2} \chi^{abc} \chi^{abc} \right)$$

• Tensor counterpart of a bosonic SYK-like model.

Murugan, Stanford, Witten

• The IR solution in general dimension:

$$\begin{split} & 3\Delta_{\phi} + \Delta_{\chi} = d \ , \qquad d/2 - 1 < \Delta_{\phi} < d/6 \\ & \frac{\Gamma(\Delta_{\phi})\Gamma(d - \Delta_{\phi})}{\Gamma(\frac{d}{2} - \Delta_{\phi})\Gamma(-\frac{d}{2} + \Delta_{\phi})} = 3\frac{\Gamma(3\Delta_{\phi})\Gamma(d - 3\Delta_{\phi})}{\Gamma(\frac{d}{2} - 3\Delta_{\phi})\Gamma(-\frac{d}{2} + 3\Delta_{\phi})} \end{split}$$

• In  $d = 3 - \epsilon$ 

 $\Delta_{\phi} = \frac{1}{2} - \frac{\epsilon}{2} + \epsilon^2 - \frac{20\epsilon^3}{3} + \left(\frac{472}{9} + \frac{\pi^2}{3}\right)\epsilon^4 + \left(7\zeta(3) - \frac{12692}{27} - \frac{56\pi^2}{9}\right)\epsilon^5 + O\left(\epsilon^6\right)$ 

• For d=2.9 find numerically

 $\Delta_{\phi} = 0.456264 , \qquad \Delta_{\chi} = 1.53121$ 

Graphical solution for dimensions of bilinear operators in d=2.9



• The first root is

$$\Delta_{\phi^2} = 1 - \epsilon + 32\epsilon^2 - \frac{976\epsilon^3}{3} + \left(\frac{30320}{9} + \frac{32\pi^2}{3}\right)\epsilon^4 + O\left(\epsilon^5\right)$$

• For d<2.8056,  $\Delta_{\phi^2}$  becomes complex.

## **Renormalized Perturbation Theory**

- For 2.8056 < d <3 the large N theory is stable.
- To make the theory renormalizable in d=3 need to add 7 more O(N)<sup>3</sup> invariant terms.
- The 8 coupled beta functions have a nontrivial real fixed point.
- The resulting epsilon expansions agree in the large N limit with the solutions of the Schwinger-Dyson equations.

#### Conclusions

- The vector and matrix large N limits have been used extensively for many years in various theoretical physics problems.
- The tensor large N limits for rank 3 and higher are relatively new.
- The O(N)<sup>3</sup> fermionic tensor quantum mechanics seems to be the closest counterpart of the basic SYK model for Majorana fermions. Yet, there are some important differences between the two.

- Gauging the SO(N)<sup>3</sup> symmetry leaves interesting spectra of operators and eigenstates.
- Energy gaps should become very small already for N=6.
- Higher dimensional generalizations are possible, e.g. a stable sextic scalar theory in 2.8056 < d < 3, which is solvable in the large N limit.</li>
- In 3-ε dimensions it may be studied for finite N using standard perturbation theory.

- Vector: CFTs are dual to higher spin quantum gravity in AdS; e.g. the O(N) Wilson-Fisher Model coupled to Chern-Simons is dual to the Vasiliev theory in AdS<sub>4</sub>. One Regge trajectory.
- Matrix: N=4 Super-Yang-Mills is dual string theory on AdS<sub>5</sub> x S<sup>5</sup>. An infinite number of Regge trajectories.
- Tensor: Vastly more operators than in the matrix case. Hagedorn temperature vanishes for large N.
   What quantum gravity theories are they dual to?