Tensor Models

Igor Klebanov

Princeton University

New Frontiers in String Theory 2018 Yukawa Institute, Kyoto

July 2, 2018

Three Large N Limits

- O(N) Vector: solvable because the bubble diagrams can be summed.
- Matrix ('t Hooft) Limit: planar diagrams. Solvable only in special cases.
- Tensor of rank three and higher. When interactions are specially chosen, dominated by the melonic (ladder) diagrams. Bonzom, Gurau, Riello, Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky

$\mathrm{O}(\mathrm{N}) \times \mathrm{O}(\mathrm{N})$ Matrix Model

- Theory of real matrices ϕ^{ab} with distinguishable indices, i.e. in the bi-fundamental representation of $\mathrm{O}(\mathrm{N})_{\mathrm{a}} \times \mathrm{O}(\mathrm{N})_{b}$ symmetry.
- The interaction is at least quartic: $\mathrm{g} \operatorname{tr} \phi \phi^{\top} \phi \phi^{\top}$
- Propagators are represented by colored double lines, and the interaction vertex is
- In d=0 or 1 special limits describe twodimensional quantum gravity.
- In the large N limit where $g N$ is held fixed we find planar Feynman graphs, and each index loop may be red or green.
- The dual graphs shown in black may be thought of as random surfaces tiled with squares whose vertices have alternating colors (red, green, red, green).

From Bi- to Tri-Fundamentals

- For a 3-tensor with distinguishable indices the propagator has index structure

$$
\left\langle\phi^{a b c} \phi^{a^{\prime} b^{\prime} c^{\prime}}\right\rangle=\delta^{a a^{\prime}} \delta^{b b^{\prime}} \delta^{c c^{\prime}}
$$

- It may be represented graphically by 3 colored wires

- Tetrahedral interaction with $\mathrm{O}(\mathrm{N})_{a} \mathrm{xO}(\mathrm{N})_{b} \mathrm{xO}(\mathrm{N})_{c}$ symmetry Carrozza, Tanasa; IK, Tarnopolsky
$\frac{1}{4} g \phi^{a_{1} b_{1} c_{1}} \phi^{a_{1} b_{2} c_{2}} \phi^{a_{2} b_{1} c_{2}} \phi^{a_{2} b_{2} c_{1}}$

- Leading correction to the propagator has 3 index loops

- Requiring that this "melon" insertion is of order 1 means that $\lambda=g N^{3 / 2}$ must be held fixed in the large N limit.
- Melonic graphs obtained by iterating

Cables and Wires

- The Feynman graphs of the quartic field theory may be resolved in terms of the colored wires (triple lines) $\quad \lambda=g N^{3 / 2}$

$$
g^{2} N^{6} \sim N^{3} \lambda^{2}
$$

$$
g^{4} N^{9} \sim N^{3} \lambda^{4}
$$

Non-Melonic Graphs

- Most Feynman graphs in the quartic field theory are not melonic are therefore subdominant in the new large N limit, e.g.

- Scales as $g^{3} N^{6} \sim N^{3} \lambda^{3} N^{-3 / 2}$
- None of the graphs with an odd number of vertices are melonic.
- Here is the list of snail-free vacuum graphs up to 6 vertices Kleinert, Schulte-Frohlinde

- Only 4 out of these 27 graphs are melonic.
- The number of melonic graphs with p vertices grows as C^{P} Bonzom, Gurau, Riello, Rivasseau

Large N Scaling

- "Forgetting" one color we get a double-line graph.

- The number of loops in a double-line graph is $f=\chi+e-v$ where χ is the Euler characteristic, e is the number of edges, and v is the number of vertices, $e=2 v$
- If we erase the blue lines we get $f_{r g}=\chi_{r g}+v$
- Adding up such formulas, we find

$$
f_{b g}+f_{r g}+f_{b r}=2\left(f_{b}+f_{g}+f_{r}\right)=\chi_{b g}+\chi_{b r}+\chi_{r g}+3 v
$$

- The total number of index loops is

$$
f_{\text {total }}=f_{b}+f_{g}+f_{r}=\frac{3 v}{2}+3-g_{b g}-g_{b r}-g_{r g}
$$

- The genus of a graph is $g=1-\chi / 2$
- Since $g \geqslant 0$, for a "maximal graph" which dominates at large N all its subgraphs must have genus zero: $f_{\text {total }}=3+3 v / 2$
- Scales as $N^{3}\left(g N^{3 / 2}\right)^{v}$
- In the 3-tensor models $\lambda=g N^{3 / 2}$ must be held fixed in the large N limit.

The Sachdev-Ye-Kitaev Model

- Quantum mechanics of a large number $\mathrm{N}_{\mathrm{SYK}}$ of anti-commuting variables with action

$$
I=\int \mathrm{d} t\left(\frac{\mathrm{i}}{2} \sum_{i} \psi_{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{i}-\mathrm{i}^{q / 2} j_{i_{1} i_{2} \ldots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{q}}\right)
$$

- Random couplings j have a Gaussian distribution with zero mean.
- The model flows to strong coupling and becomes nearly conformal. Georges, Parcollet, Sachdev; Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon;
- The simplest interesting case is $\mathrm{q}=4$.
- Exactly solvable in the large $\mathrm{N}_{\text {syk }}$ limit because only the melon Feynman diagrams contribute

$+$

- Solid lines are fermion propagators, while dashed lines mean disorder average.
- The exact solution shows resemblance with physics of certain two-dimensional black holes. Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang; Engelsoy, Merten, Verlinde; Jensen; ...
- Spectrum for a single realization of $\mathrm{N}_{\mathrm{SrK}}=32$ model with $q=4$. Maldacena, Stanford
- No exact degeneracies, but the gaps are exponentially small. Large low T entropy.

SYK-Like Tensor Quantum Mechanics

- E. Witten, "An SYK-Like Model Without Disorder," arXiv: 1610.09758.
- Appeared on the evening of Halloween: October 31, 2016.

- It is sometimes tempting to change the term "melon diagrams" to "pumpkin diagrams."

The Gurau-Witten Model

- This model is called "colored" in the random tensor literature because the anti-commuting 3tensor fields $\psi_{A}^{a b c}$ carry a label $\mathrm{A}=0,1,2,3$.
$S_{\text {Gurau-Witten }}=\int d t\left(\frac{i}{2} \psi_{A}^{a b c} \partial_{t} \psi_{A}^{a b c}+g \psi_{0}^{a b c} \psi_{1}^{a d e} \psi_{2}^{f b e} \psi_{3}^{f d c}\right)$
- Perhaps more natural to call it "flavored."
- The model has $O(N)^{6}$ symmetry with each tensor in a tri-fundamental under a different subset of the six symmetry groups.
- Contains $4 \mathrm{~N}^{3}$ Majorana fermions.
- The 4 different fields may be associated with 4 vertices of a tetrahedron, and the 6 edges correspond to the different symmetry groups:

- As stressed by Witten, it may be advantageous to gauge the $\mathrm{SO}(\mathrm{N})^{6}$ symmetry.
- This would make it a candidate gauge/gravity correspondence.

The $\mathrm{O}(\mathrm{N})^{3}$ Model

- A pruned version: there are N^{3} Majorana fermions ік, tarnopolsky

$$
\begin{aligned}
& \left\{\psi^{a b c}, \psi^{a^{\prime} b^{\prime} c^{\prime}}\right\}=\delta^{a a^{\prime}} \delta^{b b^{\prime}} \delta^{c c^{\prime}} \\
H= & \frac{g}{4} \psi^{a b c} \psi^{a b^{\prime} c^{\prime}} \psi^{a^{\prime} b c^{\prime}} \psi^{a^{\prime} b^{\prime} c}-\frac{g}{16} N^{4}
\end{aligned}
$$

- Has $\mathrm{O}(\mathrm{N})_{\mathrm{a}} \mathrm{xO}(\mathrm{N})_{b} \mathrm{xO}(\mathrm{N})_{\mathrm{c}}$ symmetry under

$$
\psi^{a b c} \rightarrow M_{1}^{a a^{\prime}} M_{2}^{b b^{\prime}} M_{3}^{c c^{\prime}} \psi^{a^{\prime} b^{\prime} c^{\prime}}, \quad M_{1}, M_{2}, M_{3} \in O(N)
$$

- The $\mathrm{SO}(\mathrm{N})$ symmetry charges are

$$
Q_{1}^{a a^{\prime}}=\frac{i}{2}\left[\psi^{a b c}, \psi^{a^{\prime b c} c}\right], \quad Q_{2}^{b \prime^{\prime}}=\frac{i}{2}\left[\psi^{a b c}, \psi^{a b^{\prime} c}\right], \quad Q_{3}^{c c^{\prime}}=\frac{i}{2}\left[\psi^{a b c}, \psi^{a b c^{\prime}}\right]
$$

- The 3-tensors may be associated with indistinguishable vertices of a tetrahedron.

- This is equivalent to

- The 3-line Feynman graphs are produced using the propagator

Schwinger-Dyson Equations

- Some are the same as in the SYK model kitaev;

Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon

$G\left(t_{1}-t_{2}\right)=G_{0}\left(t_{1}-t_{2}\right)+g^{2} N^{3} \int d t d t^{\prime} G_{0}\left(t_{1}-t\right) G\left(t-t^{\prime}\right)^{3} G\left(t^{\prime}-t_{2}\right)$

$$
-\mathrm{O}=-
$$

- Neglecting the left-hand side in IR we find

$$
G\left(t_{1}-t_{2}\right)=-\left(\frac{1}{4 \pi g^{2} N^{3}}\right)^{1 / 4} \frac{\operatorname{sgn}\left(t_{1}-t_{2}\right)}{\left|t_{1}-t_{2}\right|^{1 / 2}}
$$

- Four point function
$\left\langle\psi^{a_{1} b_{1} c_{1}}\left(t_{1}\right) \psi^{a_{1} b_{1} c_{1}}\left(t_{2}\right) \psi^{a_{2} b_{2} c_{2}}\left(t_{3}\right) \psi^{a_{2} b_{2} c_{2}}\left(t_{4}\right)\right\rangle=N^{6} G\left(t_{12}\right) G\left(t_{34}\right)+\Gamma\left(t_{1}, \ldots, t_{4}\right)$

- If we denote by Γ_{n} the ladder with n rungs

$$
\begin{aligned}
\Gamma & \Gamma \sum_{n} \Gamma_{n} \\
\Gamma_{n+1}\left(t_{1}, \ldots, t_{4}\right) & =\int d t d t^{\prime} K\left(t_{1}, t_{2} ; t, t^{\prime}\right) \Gamma_{n}\left(t, t^{\prime}, t_{3}, t_{4}\right) \\
K\left(t_{1}, t_{2} ; t_{3}, t_{4}\right) & =-3 g^{2} N^{3} G\left(t_{13}\right) G\left(t_{24}\right) G\left(t_{34}\right)^{2}
\end{aligned}
$$

Spectrum of two-particle operators

- S-D equation for the three-point function Gross, Rosenhaus

$$
v\left(t_{0}, t_{1}, t_{2}\right)=\left\langle O_{2}^{n}\left(t_{0}\right) \psi^{a b c}\left(t_{1}\right) \psi^{a b c}\left(t_{2}\right)\right\rangle=\frac{\operatorname{sgn}\left(t_{1}-t_{2}\right)}{\left|t_{0}-t_{1}\right|^{h}\left|t_{0}-t_{2}\right|^{h}\left|t_{1}-t_{2}\right|^{1 / 2-h}}
$$

- Scaling dimensions of operators $O_{2}^{n}=\psi^{a b c}\left(D_{t}^{n} \psi\right)^{a b c}$

$$
g(h)=-\frac{3}{2} \frac{\tan \left(\frac{\pi}{2}\left(h-\frac{1}{2}\right)\right)}{h-1 / 2}=1
$$

- The first solution is $\mathrm{h}=2$; dual to dilaton gravity.

- The higher scaling dimensions are $h \approx 3.77,5.68,7.63,9.60$ approaching $h_{n} \rightarrow n+\frac{1}{2}$

Gauge Invariant Operators

- Bilinear operators related by the EOM to some of the higher particle "single-sum" operators.

- All the 6-particle operators vanish by
 the Fermi statistics in the theory of one Majorana tensor

- The bubbles come from $\mathrm{O}(\mathrm{N})$ charges and vanish in the gauged model:

- The 17 single-sum 8-particle operators which do not include bubble insertions are

Factorial Growth

- There are 24 bubble-free 10-particle; 617 12particle; 4887 14-particle; 82466 16-particle operators; etc.
- The number of (2 k)-particle operators grows asymptotically as $\mathrm{k}!2^{\mathrm{k}}$. Bulycheva, IK, Milekhin, Tarnopolsky
- The Hagedorn temperature of the large N theory vanishes as $1 / \log \mathrm{N}$.
- The tensor models seem to lie "beyond string theory."
- Are they related to M-theory?

Spectra of Energy Eigenstates

- Generalize the Majorana tensor model to have

$O\left(N_{1}\right) \times O\left(N_{2}\right) \times O\left(N_{3}\right)$ symmetry

- The traceless Hamiltonian is

$$
\begin{aligned}
& H=\frac{g}{4} \psi^{a b c} \psi^{a b^{\prime} c^{\prime}} \psi^{a^{\prime} b c^{\prime}} \psi^{a^{\prime} b^{\prime} c}-\frac{g}{16} N_{1} N_{2} N_{3}\left(N_{1}-N_{2}+N_{3}\right) \\
& \left\{\psi^{a b c}, \psi^{a^{b^{\prime}} c^{\prime}}\right\}=\delta^{a a^{\prime}} \delta^{b b^{\prime}} \delta^{c c^{\prime}} \\
& a=1, \ldots, N_{1} ; b=1, \ldots, N_{2} ; c=1, \ldots, N_{3}
\end{aligned}
$$

- The Hilbert space has dimension $2^{\left[N_{1} N_{2} N_{3} / 2\right]}$
- Eigenstates of H form irreducible representations of the symmetry.

Complete Diagonalizations

- Generally possible only for small ranks. krishnan, Pavan Kumar, Sanyal, Bala Subramanian, Rosa; Chaudhuri et al.; IK, Roberts, Stanford, Tarnopolsky
- For example ıк, Milekhin, Popov, Tarnopolsky

Figure 1: Spectrum of the $O(4)^{2} \times O(2)$ model. There are four singlet states, and the stars mark their energies.
$\pm 16 g$ and $\pm 4 g$

- Spectra for $\mathrm{N}_{3}=2$
- For the $\mathrm{O}(2)^{3}$ model only two singlets at energies -2 g and 2 g .

$\left(N_{1}, N_{2}\right)$	$(2,2)$	$(2,3)$	$(3,3)$	$(2,4)$	$(3,4)$	$(4,4)$
${ }_{9}^{4} E_{\text {degeneracy }}$	$\begin{gathered} -8_{1} \\ 0_{14} \\ 8_{1} \end{gathered}$	-13_{2}	-20_{6}	-24_{1}	-34_{6}	-641
		-7_{6}	-16_{18}	-16_{2}	-2824	-48_{55}
		-3_{2}	-12_{16}	-12_{16}	-24_{8}	-40_{106}
		-1_{22}	-8_{60}	$-8{ }_{23}$	-22_{76}	-36_{256}
		1_{22}	-4_{42}	-4_{16}	-20_{40}	-32_{810}
		3 7_{6}	0_{228}	0_{140}	-18_{14}	-28_{256}
			4_{42}	4_{16}	-16152	-24_{3250}
		13_{2}	860	823	-14_{168}	-20_{1024}
		13_{2}	$\begin{gathered} 12_{16} \\ 16_{18} \\ 20_{6} \end{gathered}$	12_{16}	-12_{40}	-16_{4985}
				16_{2}	-10_{170}	-12_{3072}
				24_{1}	-8_{240}	-88932
					-6194	-4_{3584}
					-4_{384}	0_{12874}
					-2_{270}	43584
					0_{248}	8_{8932}
					2640	12_{3072}
					4_{384}	16_{4985}
					6_{76}	20_{1024}
					8_{312}	24_{3250}
					10_{216}	28_{256}
					14_{32}	32_{810}
					16_{128}	36_{256}
					18_{168}	40_{106}
					20_{64}	48_{55}
					26_{10}	64_{1}
					28_{24}	
					30_{6}	
					38_{2}	

Energy Bounds

- The bound on the singlet ground state energy IK, Milekhin, Popov, Tarnopolsky

$$
|E| \leq E_{\text {bound }}=\frac{g}{16} N^{3}(N+2) \sqrt{N-1}
$$

- In the melonic limit, this correctly scales as N^{3}.
- The gap to the lowest non-singlet state scales as $1 / \mathrm{N}$.
- For unequal ranks the bound is

$$
|E| \leq \frac{g}{16} N_{1} N_{2} N_{3}\left(N_{1} N_{2} N_{3}+N_{1}^{2}+N_{2}^{2}+N_{3}^{2}-4\right)^{1 / 2}
$$

A Fermionic Matrix Model

- For $\mathrm{N}_{3}=2$ the bound simplifies to

$$
|E|_{N_{3}=2} \leq \frac{g}{8} N_{1} N_{2}\left(N_{1}+N_{2}\right)
$$

- Saturated by the ground state.
- This is a fermionic matrix model with symmetry

$$
\begin{aligned}
& O\left(N_{1}\right) \times O\left(N_{2}\right) \times U(1) \\
& \bar{\psi}_{a b}=\frac{1}{\sqrt{2}}\left(\psi^{a b 1}+i \psi^{a b 2}\right), \quad \psi_{a b}=\frac{1}{\sqrt{2}}\left(\psi^{a b 1}-i \psi^{a b 2}\right) \\
& \left\{\bar{\psi}_{a b}, \bar{\psi}_{a^{\prime} b^{\prime}}\right\}=\left\{\psi_{a b}, \psi_{a^{\prime} b^{\prime}}\right\}=0, \quad\left\{\bar{\psi}_{a b}, \psi_{a^{\prime} b^{\prime}}\right\}=\delta_{a a^{\prime}} \delta_{b b^{\prime}}
\end{aligned}
$$

- The traceless Hamiltonian is
$H=\frac{g}{2}\left(\bar{\psi}_{a b} \bar{\psi}_{a b^{\prime}} \psi_{a^{\prime} b} \psi_{a^{\prime} b^{\prime}}-\bar{\psi}_{a b} \bar{\psi}_{a^{\prime} b} \psi_{a b^{\prime}} \psi_{a^{\prime} b^{\prime}}\right)+\frac{g}{8} N_{1} N_{2}\left(N_{2}-N_{1}\right)$
- May be expressed in terms of quadratic Casimirs

$$
-\frac{g}{2}\left(4 C_{2}^{S U\left(N_{1}\right)}-C_{2}^{S O\left(N_{1}\right)}+C_{2}^{S O\left(N_{2}\right)}+\frac{2}{N_{1}} Q^{2}+\left(N_{2}-N_{1}\right) Q-\frac{1}{4} N_{1} N_{2}\left(N_{1}+N_{2}\right)\right)
$$

- $S U\left(N_{1}\right) \times S U\left(N_{2}\right)$ is not a symmetry here but an enveloping algebra (there is a simpler model introduced by Anninos and Silva, where it is a symmetry).
- For all $\mathrm{N}_{1}, \mathrm{~N}_{2}$, the energy levels are integers in units of $\mathrm{g} / 4$.

Gauge Singlets

- To eliminate large degeneracies, focus on the states invariant under $S O\left(N_{1}\right) \times S O\left(N_{2}\right) \times S O\left(N_{3}\right)$
- Their number can be found by gauging the free theory

$$
L=\psi^{I} \partial_{t} \psi^{I}+\psi^{I} A_{I J} \psi^{J}
$$

$$
A=A^{1} \otimes \mathbb{1} \otimes \mathbb{1}+\mathbb{1} \otimes A^{2} \otimes \mathbb{1}+\mathbb{1} \otimes \mathbb{1} \otimes A^{3}
$$

$$
\# \text { singlet states }=\int d \lambda_{G}^{N} \prod_{a=1}^{M / 2} 2 \cos \left(\lambda_{a} / 2\right)
$$

$$
d \lambda_{S O(2 n)}=\prod_{i<j}^{n} \sin \left(\frac{x_{i}-x_{j}}{2}\right)^{2} \sin \left(\frac{x_{i}+x_{j}}{2}\right)^{2} d x_{1} \ldots d x_{n}
$$

Gauge Singlets in the Matrix Model

- Their number grows slowly. For $\mathrm{N}_{1}=\mathrm{N}_{2}=10$ only 24 singlets out of 2^{100} states.

$\left(N_{1}, N_{2}\right)$	\# singlet states
$(4,4)$	4
$(6,4)$	4
$(6,6)$	4
$(8,4)$	6
$(8,6)$	8
$(8,8)$	18
$(10,4)$	6
$(10,6)$	8
$(10,8)$	20
$(10,10)$	24

Table 3: Number of singlet states in the $O\left(N_{1}\right) \times O\left(N_{2}\right) \times O(2)$ model

Gauge Singlets in the $\mathrm{O}(\mathrm{N})^{3}$ Model

- Their number vanishes for odd N due to a QM anomaly for odd numbers of flavors.
- Grows very rapidly for even N

N	\# singlet states
2	2
4	36
6	595354780

Table 1: Number of singlet states in the $O(N)^{3}$ model

$$
\# \text { singlet states } \sim \exp \left(\frac{N^{3}}{2} \log 2-\frac{3 N^{2}}{2} \log N+O\left(N^{2}\right)\right)
$$

- The large low-temperature entropy suggests tiny gaps for singlet excitations $\sim c^{-N^{3}}$

Spectrum of the Gauged $\mathrm{N}=4$ Model

- Work in progress on this system of 32 qubits with K. Pakrouski, F. Popov and G. Tarnopolsky.
- Need to isolate the 36 states invariant under SO(4) ${ }^{3}$ out of the 601080390 "half-filled" states (those with 16 ones and 16 zeros).
- Diagonalize $4 \mathrm{H} / \mathrm{g}+100 \mathrm{C}$ where C is the sum of three Casimir operators.
- A Lanczos type algorithm is well suited for this sparse operator.
- Find 15 distinct $\mathrm{SO}(4)^{3}$ invariant energy levels: $\mathrm{E}=0$ and 7 "mirror pairs" ($\mathrm{E},-\mathrm{E}$).

Discrete Symmetries

- Act within the $\mathrm{SO}(\mathrm{N})^{3}$ invariant sector and can lead to small degeneracies.
- Z_{2} parity transformation within each group like

$$
\psi^{1 b c} \rightarrow-\psi^{1 b c}
$$

- Interchanges of the groups flip the energy

$$
\begin{array}{cl}
P_{23} \psi^{a b c} P_{23}=\psi^{a c b}, & P_{12} \psi^{a b c} P_{12}=\psi^{b a c} \\
P_{23} H P_{23}=-H, & P_{12} H P_{12}=-H
\end{array}
$$

- Z_{3} symmetry generated by $P=P_{12} P_{23}, \quad P^{3}=1$

$$
P \psi^{a b c} P^{\dagger}=\psi^{c a b}, \quad P H P^{\dagger}=H
$$

Preliminary Numerical Results

- The maximum degeneracy at non-zero energy is 3 .
- The lowest singlet state is non-degenerate and has $\mathrm{E}_{0}=-40.035 \mathrm{~g}$.
- This is likely the ground state of H .
- It is not far from our lower bound -41.569 g
- The next SO(4) ${ }^{3}$ invariant states are at -24.255 g ; they have degeneracy 3.
- The highest degeneracy is at $\mathrm{E}=0$.

Model with a Complex Fermion

- The action
$S=\int d t\left(i \bar{\psi}^{a b c} \partial_{t} \psi^{a b c}+\frac{1}{4} g \psi^{a_{1} b_{1} c_{1}} \bar{\psi}^{a_{1} b_{2} c_{2}} \psi^{a_{2} b_{1} c_{2}} \bar{\psi}^{a_{2} b_{2} c_{1}}\right)$ has $\operatorname{SU}(\mathrm{N}) \mathrm{xO}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N}) \mathrm{xU}(1)$ symmetry.
- Gauge invariant two-particle operators

$$
\mathcal{O}_{2}^{n}=\bar{\psi}^{a b c}\left(D_{t}^{n} \psi\right)^{a b c} \quad n=0,1, \ldots
$$

including $\bar{\psi}^{a b c} \psi^{a b c}$

Spectrum of two-particle operators

- The integral equation also admits symmetric solutions

$$
v\left(t_{1}, t_{2}\right)=\frac{1}{\left|t_{1}-t_{2}\right|^{1 / 2-h}}
$$

- Calculating the integrals we get

$$
g_{\mathrm{sym}}(h)=-\frac{1}{4 \pi} l_{\frac{3}{2}-h, \frac{1}{2}}^{-} l_{1-h, \frac{1}{2}}^{+}=-\frac{1}{2} \frac{\tan \left(\frac{\pi}{2}\left(h+\frac{1}{2}\right)\right)}{h-1 / 2}
$$

- The first solution is $\mathrm{h}=1$ corresponding to $\mathrm{U}(1)$ charge $\bar{\psi}^{a b c} \psi^{a b c}$

- The additional scaling dimensions $h \approx 2.65,4.58,6.55,8.54$
approach $\quad h_{n}=n+\frac{1}{2}+\frac{1}{\pi n}+\mathcal{O}\left(n^{-3}\right)$

Sachdev-Ye-Kitaev Model

$\mathrm{O}(\mathrm{N})^{3}$ Tensor Model

$H=\frac{1}{4!} \sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{N} J_{i_{1} i_{2} i_{3} i_{4}} \chi_{i_{1}} \chi_{i_{2}} \chi_{i_{3}} \chi_{i_{4}}$

- Majorana fermions $\left\{\chi_{i}, \chi_{j}\right\}=\delta_{i j}$
- $J_{i_{1} i_{2} i_{3} i_{4}}$ are Gaussian random $\left\langle J_{i_{1} i_{2} i_{3} i_{4}}^{2}\right\rangle=3!\frac{J^{2}}{N^{3}} \quad\left\langle J_{i_{1} i_{2} i_{3} i_{4}}\right\rangle=0$
- Has $\mathrm{O}\left(\mathrm{N}_{\mathrm{SYK}}\right)$ symmetry after averaging over disorder

Sachdev, Ye ‘93,
 Georges, Parcollet, Sachdev'01 Kitaev '15
$H=\frac{1}{4} \sum_{a_{1}, \ldots, c_{2}=1}^{N} \frac{J}{N^{3 / 2}} \chi_{a_{1} b_{1} c_{1}} \chi_{a_{1} b_{2} c_{2}} \chi_{a_{2} b_{1} c_{2}} \chi_{a_{2} b_{2} c_{1}}$

- Majorana fermions

$$
\left\{\chi_{a b c}, \chi_{a^{\prime} b^{\prime} c^{\prime}}\right\}=\delta_{a a^{\prime}} \delta_{b b^{\prime}} \delta_{c c^{\prime}}
$$

- No disorder
- Has $\mathrm{O}(\mathrm{N})_{\mathrm{a}} \mathrm{x}_{\mathrm{O}} \mathrm{O}(\mathrm{N})_{\mathrm{b}} \mathrm{x} \mathrm{O}(\mathrm{N})_{\mathrm{c}}$ symmetry

Gross-Rosenhaus Model

$\mathrm{q}=4, \mathrm{f}=4$

$$
H=\sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{N} J_{i_{1} i_{2} i_{3} i_{4}} \chi_{i_{1}}^{0} \chi_{i_{2}}^{1} \chi_{i_{3}}^{2} \chi_{i_{4}}^{3}
$$

- Majorana fermions $\left\{\chi_{i}^{a}, \chi_{j}^{b}\right\}=\delta_{i j} \delta^{a b}$
- $J_{i_{1} i_{2} i_{3} i_{4}}$ are Gaussian random

$$
\left\langle J_{i_{1} i_{2} i_{3} i_{4}}^{2}\right\rangle=4^{4} \frac{J^{2}}{N^{3}}\left\langle J_{i_{1} i_{2} i_{3} i_{4}}\right\rangle=0
$$

- Has $\mathrm{O}\left(\mathrm{N}_{\mathrm{SYK}}\right) \mathrm{x} \mathrm{O}\left(\mathrm{N}_{\mathrm{SYK}}\right) \mathrm{x}$
- $\mathrm{O}\left(\mathrm{N}_{\mathrm{SYK}}\right) \mathrm{x} O\left(\mathrm{~N}_{\mathrm{SYK}}\right)$ symmetry

Gross, Rosenhaus' 16

Gurau-Witten Model

$$
H=\sum_{a, \ldots, f=1}^{N} \frac{J}{N^{3 / 2}} \chi_{a b c}^{0} \chi_{a d e}^{1} \chi_{f b e}^{2} \chi_{f d c}^{3}
$$

- Majorana fermions

$$
\left\{\chi_{a b c}^{A}, \chi_{a^{\prime} b^{\prime} c^{\prime}}^{B}\right\}=\delta_{a a^{\prime}} \delta_{b b^{\prime}} \delta_{c c^{\prime}} \delta^{A B}
$$

- No disorder
- Has $O(N)_{a} \times O(N)_{b} \times O(N)_{c} x O(N)_{d}$ x $\mathrm{O}(\mathrm{N})_{\mathrm{e}} \mathrm{x}$ O(N) $)_{\mathrm{f}}$ symmetry

Gurau '10
Witten'16

Complex SYK Model

Complex Tensor Model

$H=\frac{1}{4!} \sum_{i_{1}, i_{2}, i_{3}, i_{4}=1}^{N} J_{i_{1} i_{2} i_{3} i_{4}} \chi_{i_{1}}^{\dagger} \chi_{i_{2}}^{\dagger} \chi_{i_{3}} \chi_{i_{4}}$

- Complex fermions $\left\{\chi_{i}, \chi_{j}^{\dagger}\right\}=\delta_{i j}$
- $J_{i_{1} i_{2} i_{3} i_{4}}$ are Gaussian random

$$
\left\langle J_{i_{1} i_{2} i_{3} i_{4}}^{2}\right\rangle=3!\frac{J^{2}}{N^{3}} \quad\left\langle J_{i_{1} i_{2} i_{3} i_{4}}\right\rangle=0
$$

- Has $\mathrm{U}\left(\mathrm{N}_{\mathrm{SYK}}\right)$ symmetry after averaging over disorder

Sachdev '15

$H=\frac{1}{4} \sum_{a_{1}, \ldots, c_{2}=1}^{N} \frac{J}{N^{3 / 2}} \chi_{a_{1} b_{1} c_{1}}^{\dagger} \chi_{a_{2} b_{2} c_{1}}^{\dagger} \chi_{a_{1} b_{2} c_{2}} \chi_{a_{2} b_{1} c_{2}}$

- Complex fermions

$$
\left\{\chi_{a b c}, \chi_{a^{\prime} b^{\prime} c^{\prime}}^{\dagger}\right\}=\delta_{a a^{\prime}} \delta_{b b^{\prime}} \delta_{c c^{\prime}}
$$

- Has $\operatorname{SU}(\mathrm{N})_{\mathrm{a}} \mathrm{x} \operatorname{SU}(\mathrm{N})_{b} \mathrm{x} \mathrm{O}(\mathrm{N})_{\mathrm{c}} \mathrm{x} \mathrm{U}(1)$ symmetry and no disorder

An Unstable Tensor Model

- Action with a potential that is not positive definite ${ }_{\text {IK, Tarnoposksy; Giombi, } \mathrm{IK} \text {, Tarnopolsky }}$

$$
S=\int d^{d} x\left(\frac{1}{2} \partial_{\mu} \phi^{a b c} \partial^{\mu} \phi^{a b c}+\frac{1}{4} g \phi^{a_{1} b_{1} c_{1}} \phi^{a_{1} b_{2} c_{2}} \phi^{a_{2} b_{1} c_{2}} \phi^{a_{2} b_{2} c_{1}}\right)
$$

- Schwinger-Dyson equation for 2 pt function Patashinsky, Pokrovsky

$$
G^{-1}(p)=-\lambda^{2} \int \frac{d^{d} k d^{d} q}{(2 \pi)^{2 d}} G(q) G(k) G(p+q+k)
$$

- Has solution

$$
G(p)=\lambda^{-1 / 2}\left(\frac{(4 \pi)^{d} d \Gamma\left(\frac{3 d}{4}\right)}{4 \Gamma\left(1-\frac{d}{4}\right)}\right)^{1 / 4} \frac{1}{\left(p^{2}\right)^{\frac{d}{4}}}
$$

Spectrum of two-particle spin zero operators

- Schwinger-Dyson equation

$$
\begin{aligned}
& \int d^{d} x_{3} d^{d} x_{4} K\left(x_{1}, x_{2} ; x_{3}, x_{4}\right) v_{h}\left(x_{3}, x_{4}\right)=g(h) v_{h}\left(x_{1}, x_{2}\right) \\
& K\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=3 \lambda^{2} G\left(x_{13}\right) G\left(x_{24}\right) G\left(x_{34}\right)^{2} \\
& v_{h}\left(x_{1}, x_{2}\right)=\frac{1}{\left.\left[\left(x_{1}-x_{2}\right)^{2}\right]^{\frac{1}{2}} \frac{d}{2}-h\right)} \\
& g_{\text {bos }}(h)=-\frac{3 \Gamma\left(\frac{3 d}{4}\right) \Gamma\left(\frac{d}{4}-\frac{h}{2}\right) \Gamma\left(\frac{h}{2}-\frac{d}{4}\right)}{\Gamma\left(-\frac{d}{4}\right) \Gamma\left(\frac{3 d}{4}-\frac{h}{2}\right) \Gamma\left(\frac{d}{4}+\frac{h}{2}\right)}
\end{aligned}
$$

- In $\mathrm{d}<4$ the first solution is complex $\frac{d}{2}+i \alpha(d)$
- Spectrum in d=1 again includes scaling dimension $\mathrm{h}=2$, suggesting the existence of a gravity dual.
- However, the leading solution is complex, which suggests that the large N CFT is unstable Giombi, K, Tarnopolsky $\quad h_{0}=\frac{1}{2}+1.525 i$
- It corresponds to the operator $\phi^{a b c} \phi^{a b c}$
- In d=4- ε

$$
h_{0}=2 \pm i \sqrt{6 \epsilon}-\frac{1}{2} \epsilon+\mathcal{O}\left(\epsilon^{3 / 2}\right)
$$

- The dual scalar field in AdS violates the Breitenlohner-Freedman bound.

Complex Fixed Point in 4- ε Dimensions

- The tetrahedron operator

$$
O_{t}(x)=\phi^{a_{1} b_{1} c_{1}} \phi^{a_{1} b_{2} c_{2}} \phi^{a_{2} b_{1} c_{2}} \phi^{a_{2} b_{2} c_{1}}
$$

mixes with the pillow and double-sum operators

$$
\begin{gathered}
O_{p}(x)=\frac{1}{3}\left(\phi^{a_{1} b_{1} c_{1}} \phi^{a_{1} b_{1} c_{2}} \phi^{a_{2} b_{2} c_{2}} \phi^{a_{2} b_{2} c_{1}}+\phi^{a_{1} b_{1} c_{1}} \phi^{a_{2} b_{1} c_{1}} \phi^{a_{2} b_{2} c_{2}} \phi^{a_{1} b_{2} c_{2}}+\phi^{a_{1} b_{1} c_{1}} \phi^{a_{1} b_{2} c_{1}} \phi^{a_{2} b_{1} c_{2}} \phi^{a_{2} b_{2} c_{2}}\right),
\end{gathered}
$$

- The renormalizable action is

$$
S=\int d^{d} x\left(\frac{1}{2} \partial_{\mu} \phi^{a b c} \partial^{\mu} \phi^{a b c}+\frac{1}{4}\left(g_{1} O_{t}(x)+g_{2} O_{p}(x)+g_{3} O_{d s}(x)\right)\right)
$$

- The large N scaling is

$$
g_{1}=\frac{(4 \pi)^{2} \tilde{g}_{1}}{N^{3 / 2}}, \quad g_{2}=\frac{(4 \pi)^{2} \tilde{g}_{2}}{N^{2}}, \quad g_{3}=\frac{(4 \pi)^{2} \tilde{g}_{3}}{N^{3}}
$$

- The 2-loop beta functions and fixed points:

$$
\begin{aligned}
& \tilde{\beta}_{t}=-\epsilon \tilde{g}_{1}+2 \tilde{g}_{1}^{3}, \\
& \tilde{\beta}_{p}=-\epsilon \tilde{g}_{2}+\left(6 \tilde{g}_{1}^{2}+\frac{2}{3} \tilde{g}_{2}^{2}\right)-2 \tilde{g}_{1}^{2} \tilde{g}_{2}, \\
& \tilde{\beta}_{d s}=-\epsilon \tilde{g}_{3}+\left(\frac{4}{3} \tilde{g}_{2}^{2}+4 \tilde{g}_{2} \tilde{g}_{3}+2 \tilde{g}_{3}^{2}\right)-2 \tilde{g}_{1}^{2}\left(4 \tilde{g}_{2}+5 \tilde{g}_{3}\right) \\
& \tilde{g}_{1}^{*}=(\epsilon / 2)^{1 / 2}, \quad \tilde{g}_{2}^{*}= \pm 3 i(\epsilon / 2)^{1 / 2}, \quad \tilde{g}_{3}^{*}=\mp i(3 \pm \sqrt{3})(\epsilon / 2)^{1 / 2}
\end{aligned}
$$

- The scaling dimension of $\phi^{a b c} \phi^{a b c}$ is

$$
\Delta_{O}=d-2+2\left(\tilde{g}_{2}^{*}+\tilde{g}_{3}^{*}\right)=2 \pm i \sqrt{6 \epsilon}+\mathcal{O}(\epsilon)
$$

Super Melons

- May consider a supersymmetric model with "tetrahedron superpotential" ${ }_{\text {к, Tarnopolsky }}$
- In d=3 such a theory is renormalizable, so for d<3 it may flow to an interacting superconformal theory.
- In d=1 exhibits SUSY breaking. chang, Colin-Ellerin, Rangamani
- Includes a positive sextic scalar potential.

Stable Bosonic Model in 2.9 Dimensions

- Work in progress with S. Giombi, F. Popov, S. Prakash and G. Tarnopolsky on the theory dominated by the positive "prism" interaction
- To obtain the large N solution it is convenient to rewrite

$$
S=\int d^{d} x\left(\frac{1}{2}\left(\partial_{\mu} \phi^{a b c}\right)^{2}+\frac{\lambda}{3!} \phi^{a_{1} b_{1} c_{1}} \phi^{a_{1} b_{2} c_{2}} \phi^{a_{2} b_{1} c_{2}} \chi^{a_{2} b_{2} c_{1}}-\frac{1}{2} \chi^{a b c} \chi^{a b c}\right)
$$

- Tensor counterpart of a bosonic SYK-like model.

Murugan, Stanford, Witten

- The IR solution in general dimension:

$$
\begin{aligned}
& 3 \Delta_{\phi}+\Delta_{\chi}=d, \quad d / 2-1<\Delta_{\phi}<d / 6 \\
& \frac{\Gamma\left(\Delta_{\phi}\right) \Gamma\left(d-\Delta_{\phi}\right)}{\Gamma\left(\frac{d}{2}-\Delta_{\phi}\right) \Gamma\left(-\frac{d}{2}+\Delta_{\phi}\right)}=3 \frac{\Gamma\left(3 \Delta_{\phi}\right) \Gamma\left(d-3 \Delta_{\phi}\right)}{\Gamma\left(\frac{d}{2}-3 \Delta_{\phi}\right) \Gamma\left(-\frac{d}{2}+3 \Delta_{\phi}\right)}
\end{aligned}
$$

- $\operatorname{In} d=3-\epsilon$
$\Delta_{\phi}=\frac{1}{2}-\frac{\epsilon}{2}+\epsilon^{2}-\frac{20 \epsilon^{3}}{3}+\left(\frac{472}{9}+\frac{\pi^{2}}{3}\right) \epsilon^{4}+\left(7 \zeta(3)-\frac{12692}{27}-\frac{56 \pi^{2}}{9}\right) \epsilon^{5}+O\left(\epsilon^{6}\right)$
- For $d=2.9$ find numerically

$$
\Delta_{\phi}=0.456264, \quad \Delta_{\chi}=1.53121
$$

- Graphical solution for dimensions of bilinear operators in d=2.9

- The first root is

$$
\Delta_{\phi^{2}}=1-\epsilon+32 \epsilon^{2}-\frac{976 \epsilon^{3}}{3}+\left(\frac{30320}{9}+\frac{32 \pi^{2}}{3}\right) \epsilon^{4}+O\left(\epsilon^{5}\right)
$$

- For d<2.8056, $\Delta_{\phi^{2}}$ becomes complex.

Renormalized Perturbation Theory

- For 2.8056 < d <3 the large N theory is stable.
- To make the theory renormalizable in d=3 need to add 7 more $\mathrm{O}(\mathrm{N})^{3}$ invariant terms.
- The 8 coupled beta functions have a nontrivial real fixed point.
- The resulting epsilon expansions agree in the large N limit with the solutions of the Schwinger-Dyson equations.

Conclusions

- The vector and matrix large N limits have been used extensively for many years in various theoretical physics problems.
- The tensor large N limits for rank 3 and higher are relatively new.
- The $\mathrm{O}(\mathrm{N})^{3}$ fermionic tensor quantum mechanics seems to be the closest counterpart of the basic SYK model for Majorana fermions. Yet, there are some important differences between the two.
- Gauging the $\mathrm{SO}(\mathrm{N})^{3}$ symmetry leaves interesting spectra of operators and eigenstates.
- Energy gaps should become very small already for $\mathrm{N}=6$.
- Higher dimensional generalizations are possible, e.g. a stable sextic scalar theory in $2.8056<d<3$, which is solvable in the large N limit.
- In 3-8 dimensions it may be studied for finite N using standard perturbation theory.
- Vector: CFTs are dual to higher spin quantum gravity in AdS; e.g. the O(N) Wilson-Fisher Model coupled to Chern-Simons is dual to the Vasiliev theory in AdS_{4}. One Regge trajectory.
- Matrix: $\mathcal{N}=4$ Super-Yang-Mills is dual string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$. An infinite number of Regge trajectories.
- Tensor: Vastly more operators than in the matrix case. Hagedorn temperature vanishes for large N.
What quantum gravity theories are they dual to?

