New solutions for any open string background

Carlo Maccaferri Torino University and INFN
to appear, with Ted Erler

OSFT CONJECTURE

Given OSFT defined on a given D-brane system

- Classical solutions describing any other D-brane system
- Background independence by expanding around the solution plus field redefinition
- EM solution (Erler, CM 2014)

$$
\Psi=\Psi_{\mathrm{tv}}^{0}-\Sigma \Psi_{\mathrm{tv}}^{*} \bar{\Sigma}
$$

- Equation of motion
$Q_{\mathrm{tv}} \Sigma=Q \Sigma+\Psi_{\mathrm{tv}}^{0} \Sigma-\Sigma \Psi_{\mathrm{tv}}^{*}=0$
$Q_{\mathrm{tv}} \bar{\Sigma}=Q \bar{\Sigma}+\Psi_{\mathrm{tv}}^{*} \bar{\Sigma}-\bar{\Sigma} \Psi_{\mathrm{tv}}^{0}=0$
$\bar{\Sigma} \Sigma=1$
- In 2014 we realised this structure as

$$
\begin{aligned}
& \Sigma=Q_{\mathrm{tv}}\left(\frac{1}{\sqrt{1+K}} B \sigma \frac{1}{\sqrt{1+K}}\right) \\
& \bar{\Sigma}=Q_{\mathrm{tv}}\left(\frac{1}{\sqrt{1+K}} B \bar{\sigma} \frac{1}{\sqrt{1+K}}\right)
\end{aligned}
$$

using identity-like insertions of weight zero matter bcc operators

$$
\begin{aligned}
& \sigma=U_{1}^{*} \sigma(0)|0\rangle \\
& \bar{\sigma}=U_{1}^{*} \bar{\sigma}(0)|0\rangle
\end{aligned}
$$

- Fundamental property to satisfy eom

$\bar{\sigma} \sigma=1$

achieved thanks to "time trick" (no collision, weight=0)

$$
\begin{aligned}
\sigma & =e^{i \sqrt{h} X^{0}} \sigma_{*}^{(c=25)} \\
\bar{\sigma} & =e^{-i \sqrt{h} X^{0}} \bar{\sigma}_{*}^{(c=25)}
\end{aligned}
$$

- Only static background (lumps, multiple branes, but no time dependence)
- Broken Lorentz invariance by "pure gauge" excitations in time CFT
- Potential associativity anomalies (real problem for superstring!)

$$
\sigma \bar{\sigma}=\frac{g_{*}}{g_{0}}=\frac{\langle 1\rangle^{\mathrm{BCFT}_{*}}}{\langle 1\rangle^{\mathrm{BCFT}_{0}}} \quad \rightarrow \quad(\sigma \bar{\sigma}) \sigma \neq \sigma(\bar{\sigma} \sigma)
$$

- Therefore we search for a new realisation of the EM basic ingredients
- First note that we can write

$$
\begin{array}{lr}
\Sigma=Q_{\mathrm{tv}}(A \tau) & Q_{\mathrm{tv}} A=1 \\
\bar{\Sigma}=Q_{\mathrm{tv}}(\bar{\tau} A) & A^{2}=0
\end{array}
$$

$$
\bar{\Sigma} \Sigma=Q_{\mathrm{tv}}(\bar{\tau} A) Q_{\mathrm{tv}}(A \tau)=Q_{\mathrm{tv}}\left(\bar{\tau} A Q_{\mathrm{tv}}(A \tau)\right)=Q_{\mathrm{tv}}(\bar{\tau} A \tau)=1
$$

Provided

$$
\bar{\tau} A \tau=A
$$

- Simplest (but too singular) realization

$$
\Psi_{\mathrm{tv}}=\sqrt{1-K} c \sqrt{1-K} \quad A=B
$$

$$
\bar{\sigma} B \sigma=B
$$

- More generally

$$
\begin{gathered}
\Psi_{\mathrm{tv}}=\sqrt{F} c \frac{K B}{1-F} c \sqrt{F} \quad A=B \frac{1-F}{K} \quad \bar{\tau}=\sqrt{\frac{1-F}{K}} \bar{\sigma} \sqrt{\frac{K}{1-F}} \quad \tau=\sqrt{\frac{K}{1-F}} \sigma \sqrt{\frac{1-F}{K}} \\
\bar{\tau} A \tau=A
\end{gathered}
$$

- So we are after $\bar{\sigma} B \sigma=B$
- Can $(\sigma, \bar{\sigma})$ be something else than identity-like?

The idea of the Flags

- Multiplying in the order $\bar{\sigma} \star \sigma$: degenerating surface

$=\frac{1}{g_{*}}\left\langle\underset{(\text { normalization })}{ } \underset{\bar{\sigma}(0) \sigma(0)\rangle}{ } \times 1^{\left.1^{*}\right)}\right.$

$\bar{\sigma} \sigma=1$

- Multiplying in the order $\sigma \star \bar{\sigma}$: new kind of surface state

It looks like the identity string field towards the midpoint but it has a non degenerate boundary and it is "left/right" factorized towards the endpoints!
$\sigma \bar{\sigma}=$ projector

- Therefore we have a "new kind" of Partial Isometry

$$
\begin{gathered}
\bar{\sigma} \sigma=1 \\
\sigma \bar{\sigma}=P
\end{gathered}
$$

- Now associativity is OK (no multiple collisions)

$$
\begin{aligned}
& \bar{\sigma} \sigma \bar{\sigma}=\bar{\sigma} \\
& \sigma \bar{\sigma} \sigma=\sigma
\end{aligned}
$$

- But to have a solution we need $\bar{\sigma} B \sigma=B$

$$
B=\int \frac{d z}{2 \pi} b(z)
$$

$$
\bar{\sigma} B \sigma=B \bar{\sigma} \sigma-[B, \bar{\sigma}] \sigma=B-\bar{\sigma}_{b} \sigma
$$

But (see later) we have proven that
$\lim _{\epsilon \rightarrow 0} \bar{\sigma}_{b} \Omega^{\epsilon} \sigma=0$

$$
\bar{\sigma} B \sigma=B
$$

- So we have a solution of the EM form (correct energy and boundary state)

$$
\begin{gathered}
\Psi=\Psi_{\mathrm{tv}}^{0}-\Sigma \Psi_{\mathrm{tv}}^{*} \bar{\Sigma} \\
Q_{\Psi, 0} \Sigma=Q_{\mathrm{tv}} \Sigma=0 \quad Q_{0, \Psi} \bar{\Sigma}=Q_{\mathrm{tv}} \bar{\Sigma}=0 \\
Q_{\Psi}(\Sigma \bar{\Sigma})=Q_{\mathrm{tv}}(\Sigma \bar{\Sigma})=0
\end{gathered}
$$

- Fluctuations and background independence

$$
S^{(0)}(\Psi+\Sigma \phi \bar{\Sigma})=\frac{1}{2 \pi^{2}}\left(g_{0}-g_{*}\right)+S^{(*)}(\phi)
$$

- Field redefinition (see also Kishimoto, Masuda, Takahashi)

$$
\psi=\Sigma \phi \bar{\Sigma}, \quad(\ldots)
$$

MULTIBRANES

- Easily realized by orthogonal flags

$$
\bar{\Sigma}_{i} \Sigma_{j}=\delta_{i j}
$$

- Obtained by diagonalizing the matrix of inner products

$$
\delta_{i j}=\left\langle I \circ \bar{\sigma}_{i}(0) \sigma_{j}(0)\right\rangle
$$

- Universal multibranes: take $\left(\sigma_{i}, \sigma_{j}\right)$ in the matter Verma module of the identity and diagonalize the Gram matrix.

EXPLICIT REALIZATION OF THE FLAGS

- Take the flags to be horizontal semi-infinite strips (needed for having "simple" Schwartz-Christoffel map)
$\operatorname{Tr}\left[\Omega^{\beta} \bar{\sigma} \Omega^{\alpha} \sigma\right]=$

$z=F(u)=\frac{2 \ell}{\pi}\left[\frac{A\left(1+B^{2}\right)}{B^{2}-A^{2}} \tan ^{-1} u+\tanh ^{-1} \frac{u}{A}\right]$

$$
\frac{d z}{d u}=F^{\prime}(u)=\frac{2 \ell A}{\pi} \frac{1+A^{2}}{B^{2}-A^{2}} \frac{u^{2}-B^{2}}{u^{2}-A^{2}}
$$

$$
\alpha=\frac{4 \ell}{\pi}\left[\frac{A\left(1+B^{2}\right)}{B^{2}-A^{2}} \tan ^{-1} B+\tanh ^{-1} \frac{A}{B}\right]
$$

$$
\alpha+\beta=\frac{2 \ell A\left(1+B^{2}\right)}{B^{2}-A^{2}}
$$

Basic properties of the "strip" flags

$$
\begin{gathered}
\lim _{\epsilon \rightarrow 0} \bar{\sigma} \Omega^{\epsilon} \sigma=1 \\
\lim _{\epsilon \rightarrow 0} \bar{\sigma} B \Omega^{\epsilon} \sigma=B
\end{gathered}
$$

This is all very good, but one has to be careful with the c ghost

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} c \Omega^{\epsilon} \bar{\sigma}=0 \\
& \lim _{\epsilon \rightarrow 0} \sigma \Omega^{\epsilon} c=0
\end{aligned}
$$

These anomalies can be consistently avoided by uplifting the c ghost in the bulk

$$
c_{i \epsilon} \bar{\sigma} \sigma=\bar{\sigma} \sigma c_{i \epsilon}=c_{i \epsilon}, \quad c_{i \epsilon} \equiv e^{i \epsilon K} c e^{-i \epsilon K}, \quad \forall \epsilon>0
$$

FOCK SPACE COEFFICIENTS

- The solution is concretely defined if we can expand it in Fock space

$$
\Psi=\sum_{i} \psi_{i} c \phi^{i}(0)|0\rangle+(\ldots)
$$

- From the very structure of the solution we will have that

$$
\psi_{i}=K\left(h_{i}, h_{\sigma}\right) C_{i \sigma \bar{\sigma}}
$$

- \boldsymbol{K} is a universal function which depends on the choice of tachyon vacuum and on the details of the Schwarz-Christoffel map (quite complicated)
- We started analysing the following ghost number zero toy model

$$
\Psi_{\mathrm{toy}}=\frac{1}{\sqrt{1+K}} \sigma_{1} \frac{1}{1+K} \bar{\sigma}_{1} \frac{1}{\sqrt{1+K}}-\frac{1}{\sqrt{1+K}} \sigma_{*} \frac{1}{1+K} \bar{\sigma}_{*} \frac{1}{\sqrt{1+K}}
$$

TOY MODEL MARGINAL DEFORMATIONS

- Coefficients of the marginal field and the tachyon

$$
\Psi_{\text {toy }}^{(\operatorname{marg})}(\lambda)=t(\lambda)|0\rangle+\lambda_{\mathrm{SFT}}(\lambda) j_{1}|0\rangle+(\ldots)
$$

- Same qualitative behaviour as in (Schnabl-CM'15) for the solution (CM)

$$
\Psi=\frac{1}{1+K} Q \sigma \frac{1}{1+K} \bar{\sigma}+Q(\ldots)
$$

- This behaviour seems generic

TOY MODEL LUMPS

- Choose the bcc to be the well known ND twist fields $(h=1 / 16)$ at radius R

(POSITIVE ENERGY)

Same qualitative behaviour as in Siegel gauge and previous EM.

Zero momentum coefficient not always negative for positive energy solutions

FINAL COMMENTS

- Our previous construction is now realized in a fully associative way.
- The old realization can be obtained in a limit where flags degenerate (changing the flags is a gauge transformation)
- Solutions can be consistently composed using multi-flags.
- Partial isometries play a structural role (cfr GMS, Schnabl,... 2000): solution generating technique from the tachyon vacuum.
- This is the first concrete analytic solution outside the wedge (or related) algebra (generalizations?)
- Do we necessarily have to pass through the TV?
- More general (and mysterious) solutions are available (see Ted's talk at SFT@HRI Feb 2018)
- This is a better starting point for generalization to the superstring (ULTIMATE GOAL) THANK YOU!

The Galileo Galilei Institute For Theoretical Physics
 Arcetri, Firenze

String Theory from a Worldsheet Perspective

Mar, 25 2019- May, 102019

Organizers

 London) M. Schnabl (Czech Academy of Science) B. Zwiebach (MIT)

- 25-29 March 2019: Review Lectures on worldsheet aspects of String Theory
- 15-19 April 2019: Focus Week
- 6-10 May 2019Int. Conference on String Field Theory and String Perturbation Theory

> APPLY AT https://www.ggi.infn.it/workshops.html

