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Today’s topic

<= Berkovits’ WZ.W-like theory !
§= J dt (Alp], 0 Alp))

0

- string field based on &n¢-system
Q : BRST operator

ne #0 where 5=, <, >:BPZ inner product
.t large gauge invariance A”[gﬂ] ; functional Of String ﬁ@ld S.t.

- varlous gauge conditions
N.Berkovits gave the following solution

<+ Unsolved gauge-fixing problem A Lol = (ne)e™

- how to gauge-fix it precisely? Algpl = (0,e?)e™"




But, why large space?
<= Why {n¢-system (not By-system)?

- String field theory in small space 1s easily gauge-fixable

Kroyter-Okawa-Schnabl-Torii-Zwiebach 2012

- By-system 1s rather geometrical

(’ [ ) [ ]
Gauge condition
: 1 bo®(_no) =0 (n>0),
- usual (geometrical) propagator | R
. do®(my =0 (n20),
Siegel gauge Propagator ety
bo ﬁh a’bO(I)(n—f—l,—m) + dO(I)(n+1,—(m+1)) =0 (1<m<n-1)
b =0 P, =—
0 n
n Ly i Propagator = s D
= Large gauge invariance enable us | Sl
d e Ut i e 10
to take various gauge conditions B e
# s (ail&o (aff)Lo 0
. (I 0 U
- unusual propagators available =
P (a+ Uodo) bo P, - (1+aQbo) i 43 TR b
2 Ly ) (a+1)Lg’ Lo ) (a+1)Lg Q, b¢]

(don’t have to be geometrical unlike [3y)




Motivation ot the “large” space

<= Partial gauge-fixing

- yields other SF15s

<= Large string field 1s interesting
- unusual (non-geo.) propagators

- to understand SF'T itself

Large space

[ WZW-like SFT J

Partial gauge fixing
(non-linear)

Small space .. =

s

other SF15s

t | EKS A /L, SFT Sen’s formulation

=~ ﬁeld re-detf. I "




Motivation ot the “large” space

<= Natural embedding

- every SF'1' can be large

Large-space techmque 1s applicable

to SF'T" defined 1n small space !!

Large space

.~ B
WZW-like SFT
L§ field re-def.
Large theory
. J
i Natural embedding
(linear)

Small space ..

o

other SF15s

t | EKS A /L, SFT Sen’s formulation

- o Deld re-def. e e




Motivation of the “large™ space

<+ Natural embedding

- every SI'I" can be large

Large-space techmque 1s applicable

to SF'T" defined 1n small space !!

BV string fields-antifields

don’t have to be small

Large space

8 h
| WZW-like SFT
% L<> field re-def.
Large theory
R -
! Natural embedding
(linear)

Small space ..

s

f EKS Ay/L, SFT

other SF15s

Sen’s formulation

s o Nleldre-def. g <




Motivation: Natural embedding
<+ (auge parameters can be large.
- e.o.m. of SFT in small space : Q¥ =0 where ¥ =0 .

- gauge variation must be small : 7(6%¥) =0

oY = QA; with small gauge parameter 7] /11 —H{
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Motivation: Natural embedding

<+ (auge parameters can be large.

- e.o.m. of SFT in small space : Q¥ =0 where ¥ =0 .

- gauge variation must be small : 7(6%¥) =0

oV = QA; with small gauge parameter 7 /11 =0

oA = Q4y

5)% = Q/ln+1

e

Field & Gauge parameters |

n,.o

.
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Motivation: Natural embedding
<+ (auge parameters can be large.

- e.o.m. of SFT in small space : Q¥ =0 where ¥ =0 .

- gauge variation must be small : 7(6%¥) =0

oV = QA; with small gauge parameter 7 /11 =0
oA = Oy

- Field & Gauge parameters |
R )

5/1n = Q/In+1

| Fields : {¥;¥,.%,, .. .¥,....} Antifields: {¥§; W}, ¥y, . WE, .

Ready-made procedure : Sz, ~ (v, Oy ) where y =%+ Z ¥+ Z A=

- — —
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Motivation: Natural embedding
<+ (auge parameters can be large.

- e.o.m. of SFT in small space : Q¥ =0 where ¥ =0 .

- gauge variation must be small : 7(6%¥) =0

We don’t have to use small A itself.
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Motivation: Natural embedding
<+ (auge parameters can be large.

- e.o.m. of SFT in small space : Q¥ =0 where ¥ =0 .

- gauge variation must be small : 7(6%¥) =0

oY = O(nA,) with large gauge parameter /11 = }7/\1 =)

We don’t have to use small A itself.
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Motivation: Natural embedding
<+ (auge parameters can be large.
- e.o.m. of SFT in small space : Q¥ =0 where ¥ =0 .

- gauge variation must be small : 7(6%¥) =0
oY = Q(n/A) with large gauge parameter /11 = }7/\1 #* 0

ON| = ONy o+,

5Ag,p = QAg+1,p 5 nAg+1,p+1
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Motivation: Natural embedding
<+ (auge parameters can be large.
- e.o.m. of SFT in small space : Q¥ =0 where ¥ =0 .

- gauge variation must be small : 7(6%¥) =0

oY = Q(n/A) with large gauge parameter /11 = }7/\1 #* 0

Gauge parameters

ON| = ONy o+,

5Ag,p = QAg+1,p 5 nAg+1,p+1

Although string field i1s small, BV fields-antifields can be large !!
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Motivation: Natural embedding
<+ (auge parameters can be large.
- e.o.m. of SFT in small space : Q¥ =0 where ¥ =0 .

- gauge variation must be small : 7(6%¥) =0

oY = Q(n/A) with large gauge parameter /11 = 77/\1 #= 0

Gauge parameters

oA = ONy g+ iy,

5Ag,p = QAg+1,p 5 nAg+1,p+1

Although string field i1s small, BV fields-antifields can be large !!

Lakewwise, one can consider a large string field : 'V = n®

— — . —
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Motivation: “Large” theory

<= Embedding into “large” theory | SFTin small space
S[W] —(‘P oY)

Ker[ﬂ]

- every SF'Is can be large e
! Embedding

§ = ety

{ L th
= enlarged gauge Symmetry ! arge tneory

1
S[®] :5<<I>,Q;7<I>>+---

oD = QAI,O o 7’]A1’1 +

Even for very trivial embeddings, “WZW-like str.” arises.

Is this ““large” theory gauge-fixable ??

—— - — — e . ey
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loday’s topic : “large A,/L,’ theory

23 cc 59
Focus on “large A, theory

- Motivation 1 -

It 15 the simplest WZ W-like theory.

SFT in small space

| Large theory

SI¥] = ~ (¥, QW
(] =5 (¥ O g+

Embedding
3, VY=n¢d

1
S[P] =5<<I>,Q;7<I>>+---
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loday’s topic : “large A,/L,’ theory

23 cc 59
Focus on “large A, theory

- Motivation 1 -

It 15 the simplest WZ W-like theory.

- Motivation 2 -

SFT in small space

| Large theory

SI¥] = ~ (¥, QW
(] =5 (¥ O g+

Embedding
], P=nd

1
S[P] =5(q>,anI>)+---

It how to gauge-fix it 1s clarified, you can use some techniques
of the large Hilbert space for your small theory.
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loday’s topic : “large A,/L,’ theory

SFT in small space
1
S[¥] = E(W,Q\P)Kerm + .

23 cc 59
Focus on “large A, theory

- Motivation 1 - _:
{ Embedding
3, VY=n¢d

It 15 the simplest WZ W-like theory.

Large theory

1
SI®] = —(®,0n @) + -
- Motivation 2 -

It how to gauge-fix it 1s clarified, you can use “large” merits and
techniques of the large Hilbert space for your small theory.

- Motivation 3 -

It gives another representation of Berkovits’ WZ W-like theory.
(the same kinetic term and gauge reducibility)




loday’s topic : “large A,/L,’ theory

You can rewrite...

Large A= gives the following solution

S

A®] =7 G

1 —tnd

s

Al®] =7, G-

- Motivation 3 -

{ N.Berkovits gave the following solution

WZW-like SFT

1
Se= J dr (Algl,QA,le])

0

Q : BRST operator
<, >: BPZ mner product

A,le] : functional of string field s.t.

IS A9l —A el “A gl = 0

Aol = (ne)e™™

(dte“”)e_“”

At[éﬂ] =

It gives another representation of Berkovits’ WZ W-like theory.
(the same kinetic term and gauge reducibility)




... how to gauge-fix ??
SFT is infinitely reductble and now gauge symmetry is enlarged...

“the Antifield formalism” enables us to treat such a gauge theory.

Funad

“classieal BV master actlon”

and

“gawnge-fixing fermion”




loday’s plan

1. Conventional BV approach

1.1) Minimal set, usual string freld-antifielo breakdown

1.2) + some remediations (+ trivial gawge transformations)

2. Gauge fixing fermions

3. Gonstrained BV approach (if T have time)
BerkRovits’ constraint BV m almost (but not precisely) correct

+ mproved constraints m precisely correct for large theory




l. Conventional BV approach




;
|

y CHVAVSWWLS

(). 4-slides review of Batalin-Vilkovisky’s

Antifield formalism




4-slides review of BV (1/4)

Let us consider a Lagrangian Sg] = / A%z L(4", 0u¢"s s $'s -+ Our.in ') -

= 55 _ S o5 . 98
[ts e.0o.m. Ls gLven bﬁ 55 = g _8"8(8—M¢i) B =) 8“1"'“”8(8%,,“”@) =08

whew there Ls a gauge tnvariance

00 (x) = Rize® = / dy [Ria($a Y)e*(y) + R o(2,y)0u€® + - - - + RV (x5, y)%..me“(y)]

( 0.5 (B
5€§b —F&Raﬁ =0.

68
=

you fund the Noether Ldentities : 6.9

when 6.¢'(z) = Riae® gives a generating set of the gauge transformations,

1

g; R, =0 <= RY : null vectors exist.

So, for gauwge-fixing, we need ghosts

R'ye® = R, c*: ghost fields ¢* appear.

TR




4-slides review of BV (2/4)

If null vectors of (%Ra =0 are degenerate, its gauge symmetry s reducible.

1

R U, =0 < U, : further null vectors exist .

This “gauge symmetry of gauge symmetry” requires “higher ghosts”

e =U AN — U Coq” : ghosts for ghosts Cs,q” appear.

Likewtse, higher gauge symmetries need further higher ghosts.

The antifield formalism defines a BRST-like operation for these ghosts.

As BRS'T] the physical states are given by its cohomology.




4-shides review of BV (3/4)

In the above, we Lgwored a trivial but important symmetry.
05 ; 05 - >
= — — = W=
0pS = 5 L =0 with 6,¢" = wY ek W w’® .

Not only gauge theories, every theories have this gauge invariance.
It 1s called as “trivial gauge transtormations”

[trivial, Voauge transf.} = trivial

However, 1t may not be factorised and the gauge algebra may be open :

[non trivial , non trivial} = non trivial + trivial

Namely, one may find the following gauge commutator

7 Rle— = R]Ab)\ Ri, A, + —5¢

on-shell vanishing terms make Yyour BRST procedure tervible.

[0, 0b]0" = [

; 88 . . 58

”AV\/tLﬁeLds” YCSOL\/C Lt: w¢z Pep 5¢ m¢z)* s.t. 5BRST(¢’)* v 55
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4-shides review of BV (4/4)

a) Introduce appropriate (higher) ghosts, which we also call “fields” sz .

b) Introduce an “antifield” (¢*)* for each “field”.

c) Define the antibracket (, ) on the space of all fields and antifields

B 5. F 6G 5. F 6.G
(F, G) — Z [ 5¢i 5(¢z)* = 5(¢z)* 5¢z‘ '

)

d) Find a solution Sk = Skv[¢, ¢*] of the master equation,

(Sbv : Sbv) — 0 with the initial condition Sy,

pr=0 = O

“the BV master actlon” Spy is an intrinsic object of the gauge theory and

gives the generator of BRST : dgrsrF = (Shv, F) .

e) Fix your gauge by constructing appropriate gauge-fixing fermion F : (#)* =

oF (@]
0,




l. Conventional BV approach




Free SF'I' in small space

<= SF'I 1n small space gives a good exercise of BV.

We first consider a master action for SF'1' in small space.
- there 15 a ready-made procedure.

After that, we consider a master action for large theory.




Free SF'I' in small space

1
Free action : S[¥] = §< U, QU >Ker[n] where U =0 .

It yields an infinite tower of gauge transtormations.

oV = QN OA_g=QA 14 s 5(6A_y) =0

We find the spectrum of “string fields-antifields” as

Fields /) Anti-fields
e R e A e = = g-label

Then, the master action is given by just replacing & with ¥ :

Sb\,:%<¢,@¢> where wz\I!—kZ\I/_ng Z (T_,)*

ghost antifield




Free SF'I' in small space

. 1
Free action : S[\Ij] == §< \Ij7 Q v >Ker[77] where il =20 ((linear) A

Q)

It yields an infinite tower of gauge transtormations. 0’ =0

=g e e e eSS I (] 4

AR DN ‘#

We find the spectrum of “string fields-antifields” as

Fields S\ Anti-fields

CBADR ASR PSS S osan cug s Gue

{ Then, the master action is given by just replacing & with ¥ :

Sb\,:%<¢,@¢> where wz\I!—kZ\I/_ng Z (T_,)*

‘ ghost antifield

o - -

Likewise, one can find interacting BV master action.
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Interacting SF'1' 1in small space

1
: 1 1 1
Action : S[¥ =‘ dt<‘P,M > — (P, 0¥ + (P, M (P2
[ ] 0 1 —— I‘P ker[ﬂ] 2 < Q >ker[’7] 3 < ( )>ker[77]

nonlinear A __
An infinite tower of gauge transtormations:

We find the same spectrum of “string fields-antifields” as

Fields S\ Anti-fields

Likewise, the master action is given by just replacing & with ¥ :

1 ;
1
Spyly] = J dt <l//aM > where y =Y+ Z L Z L |
0 1 — 1w/ kerfy] 77
ghosts antifields ﬁ
b

S U AR DU




How about “Large” theory...2?

we want to ﬁwd

BV master action
wn the Large Hilbert space

recall natural embeddings
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S v ———————— — ——— -——

Recall natural embedding

EKS open SFT in the small Hilbert space :

1

1 2 1
S[\IJ] = §< v, Q¥ >Ker[77] - §< v, My (\IJ) >Ker[77] -

(v My (0)")

Ker[n]+“'
nv =20

U =nd where & € large Hilbert space

We consider “large SFT” obtained by this trivial embedding :

510] = (@, Qnd) + (&, My(®)?) + (@, Ms(n@)*) + -

This embedded theory has “large gauge symmetries”.

Although this replacement looks very trivial, gauge-fixing 1s highly complicated.

Kinetic term iS the same as Berkovits g one Kroyter-Okawa-Schnabl-Torii-Zwiebach 2012
JHEP 03 (2012) 030

% free BV master action is know.

— —

— - — — -



Free SF'1 1n large space

. 1 Kroyter-Okawa-Schnabl-Torii-Zwiebach 2012
Embedded free action:  S[®] = §< D, Qnd) JHEP 03 (2012) 030
Large gauge invariances : 0O =nA_11+QA 1 R — s
(linear) A__ pair |
An 1nfinite tower of large gauge transtormations. 0°=0 n2=0 |
§5(6A_gp) =0 with SA g, =0A_1_gpr1 + QA 1_g, Ol
e - —

We find the spectrum of “string fields-antifields” as

, s D- lab el

T T R

S —— g—label
Anti-fields

Then, the master action 1s NOT given by just replacing P :

1 g
Shyr= §<q)7 Qn (I)> - Sj Sj S: <(q)—g,p)*o @ (I)—l—g,p i) (I)—l—g,p+1>

g>0 p=0
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Interacting SF'I' 1n large space

We try to construct a master action for the large SF'1":

S[9] = £(@, Q@) + (&, Ma(n®)®) + (& My(n@)") + -

Large gauge symmetry: §@ =nA +QA+My(n®,A)+My(A,n®)+---
N
Mutually commutative A__ pair: M>=0 1n°=0 [M,5] =0

The same BV fields-antifields as the free theory

As usual, we try to construct a BV master action under

| (1) usual string fields-antifields
(2) usual gauge generators M and n

(3) no £ , no other products, no other (non-minimal) fields

— - — — - o ————



Conventional BV approach breaks down

One can perturbatively construct its BV master action :

S(l)[q), d*) = <(I);’_1, n®_11+mM®_; — ;@OO;\
SbV:S+S(1)_|_S(2)_|_

P 190

O (n®_10) + & ] ——
—1,0 =205 =
& 1 —n%o,0

52 (D, D*] = <(I)§7_1, n®_o1+m M|: 5

& 1, 1
P >_ M| Z=LO VP >
i < 82 P22+ M [ 2 1’0] 1—=nPop

e . P10 x :
528 mM [4’2"1 7 IRl ‘1’2"1@_2’0] = n<1>0,0>/

However, there is no solution for S (3) and higher parts !!




Conventional BV approach breaks down

One can perturbatively construct its BV master action :

S(l)[¢,¢*] iy <<I);,_1, n®_11+ 7r1M<I)_1701 — $¢OO>‘\
SbV:S+S(1)+S(2)+

P 9

1
: (I'—l,O + (I)—2,0:| —>
(n ) ES

S12,0) = (5 1, 11 +m M| T

& ., 1
o, nd_ M| Z=O0MP >
i < 82 P22+ M [ 2 1’0] 1—=nPop

e . P10 x :
528 mM [@2"1 g ol ‘1’2"1{)_2’0] = n<1>0,0>/

However, there is no solution for S (3) and higher parts !!

But, why?? — If gauge algebra is generated by M and n only,

we could construct it without using & .
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Conventional BV revisited

1

= Revisit the gauge invariance of the free theory : S[®] = 5( D, Qnd)

- Inv. under the gauge transt. 6® =nA; ;| + QA

We should have used...

5(1) — 7]A1,1 i 7]5 QAI,() o ‘:77 QAl,O '
—= i (Al,l = éQAl,()) = éQ (_’7A1,0)

If we define “new gauge parameters” as 60 =y A" + SO0 (AT)
we find the following (factorised) gauge transformations :
AT = A +EQ ALY )

5A§39W = Agivi],pﬂ (p>0)

Actually, vanishing “$-parts of p>0” generate “trivial transformations™ !!

— - — — o




g

- ——— — - ——

To see 1t ex]

Irivial transtormations appear !!

dlicitly, let us consider the interacting case :

1 1

5(13271'1[

Re-definition : A™M% =A%, A, =m&[M, A%, ] .

:M’ A—1,0]] 1—nd R mt} 0gA—gp =T [[Mv A—g—l,p]

old
e o)

1—nd

Then, é-part of the gauge variation generates a trivial transformation !!

1

_ 1
SAREW, — M. § Aold 5 Aold
== 1 € | ) —1,0]] = n d s —1,1
T 1 1
_fT( 2o1) + A,
= 1
As a result, we obtain OAZTo = m & [M,n A7 4] 0 ST e

O =N AT 1 b1t P>0)

— —

————— e o ————
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BV master action 1n large space

<= We consider the sum of fields carrying fixed picture number p: ¢, = Z D_gp
g=p

<= Decompose 1t into n- and &-exacts : @p = 90160 s 902

= Introduce their antifields separately :  (¢5)* = Z(fbfg,p)* SEE =
g=p 9=p

<= BV master action is a functional of these : Spv = Sbv[®, (05)*(¢")*]

1 0S 0S oS 0S

bv bv bv bv
T V7 \V/ o p— © | 9 — O
0 (Sb Sb )mm 0ps  O(ps)* 0 O(pn)*

It generates appropriate BV-BRST transformations :

1

dpo = (@gJﬂﬁg, R

Spp = (05 + ¢, Sbv ), .. =NPpt1, 8(p)* = ((0B)* + (@0)* s Sbv ) s, = 1 (07 1)* -

T—n(po+E(p)) OV 5(p0)* = ((#6)* + (98)" s Sbv ) i = MM

1—n(po+&(po)*)’

— —

— - — — ————



Summary

<= Naive conventional approach works up to antifield number 2.

<+ (Gauge algebra 1s generated by M and 1, but -parts generate

“trivial transformations”.

<= T'herefore, ¢’ must appear in the BV master action.

Comments

<= Since string-field redefinitions connect different SF'1s, other BV master
actions are obtained via BV canonical transformation of this master action.

= Liven for Berkowvits’ theory, “&” generates “trivial transformations”.

(Thus, we need “&” even for the BV master action for Berkovits’ theory)




2. Gauge-fixing fermions




-

- ——— —

— — -

Partially gauge-hixing fermion

<= QOur “large” BV master action reduces to known “small” BV master action.

- Consider the following trivial pairs and (partially) gauge-fixing fermion :

Strivial — Z [<N1n_g7p_17 50 (\Ij2+g,—1—p)*> 25 <N—£1—g,1-|—p7 (C—l—g,l—l—p)*ﬂ :

9,P

— Z {<CI>_g,p, \I!2+g,_1_p> S <C—1—g,1—|—p7 4 ‘I’2+g,—1—p>}
g:p

After some computations, we find

(Sov + Strivial) | = Sou[t] = /01 dt<¢’ S _1tzp>

oo g
where P is given by ¢v=) > b0 [\Ill_g,p_l + \IIQ—I—g,—l—p} :




gy

— . — — ——— -

Gauge-hixing fermions

<= (Gauge conditions studied by S.Torii - -

(I)—n,() Yn C{SL Ln bO ;
. — Yn Gy Znb
IB%—(n+2) : =0 B (ni2) = 3 : )
(I)—n n n
= — Yn Co Tn, bo
e Oy

1s given by the following trivial pairs and gauge-fixing fermion :

Strivial —= Z <]B—(n—|—2) Nn—|—3 9 (\Ijn—|—2)*> i <(C2)* 9 N2> == Z <(O—n)* ; N—n>
n=0 n=0
F=> (P, Unia) +(Co, &0 V2) + > (Cn, B_(ny2) Unya)
n=0 n=0

You can apply technique of large-space to your SFI in small-space !!




Conclusion

<= BV master action in large space

We can gauge-fix SI'T having “large gauge symmetries”.
You can apply large-space technique to SF'1" defined in small space via embeddings.

(Constrained BV gives elegant constructions of BV master actions.)

= (auge-fixing fermion
Large theory indeed reduces to the original small theory by partial gauge fixing.

Gauge-fixing fermion imposing [KOSTZ]’s gauge-conditions was constructed.




Thank you for Yowr attentions




3. Constrained BV approach
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Re-assembling “string field-antifields”™

Note that the BV formalism tells nothing about how to assemble “string antifields”
unlike ghost string fields which are naturally determined from gauge parameter
string fields: It just assigns an appropriate space-time antifield to each space-time

ohost field which 1s a coetficient of given ghost string field.

Cgp=) |2l = {(#,)10<9,0<p<greN}

As a simple resolution, we take the constrained BV approach and determine the
string antifield assembly utilizing the constrained BV master equation itself. We
write Amin = {P_gp, (P_4p)*} for the minimal set.

a) Introduce “extra” fields-antifields Aex = {®5 ,, (25 )"}

b) Impose appropriate constraints I'[¢] =0 where ¢ € Apin @ Aex

Amin S> Aex
I'|¢]

Then, we consider (S, Spy) =0 on

’ not (SbV7 Sbv) =0 on Anin




Constrained BV master action

We found that Berkovits’ proposal works well: We start with the action consists of

string fields only

1

1 1
Sbv[¢]=§<so,62w>+ 2

3(0 Ma(n9)°) + 70, Ma(n9)") + -+

Sum of all siting fields : ¢ = <I>+ZZ<I>_gp+ZZCI>1+g =7

g>0 p=0 g>0 p=0

and 1mpose the constraint equations Lyp = (Pgp) — 1P,

They split into the first and second classes: Our action 1s invariant under the first
class I', and the second class I" defines the Dirac anti-bracket

(PO = ) e T P 0 )

a,b

Then, anti-string fields are introduced 1n the action via constraints, and the master
equation holds on the constrained subspace.

SR Z<Mk ) £Mz(w)l>=0-




—

Berkowvits’ 1" 1s for partially gauge-fixed theory

BV Master action on 1" :

Senldllr = 3(2, Q®) + 30D ((B-4p)", QB-1g) + 3D (@), S Maln (0 +97))").

g=>0p=0 g>0 p=0 n>1

Note that ®—g4p=¢ for ¢ >0 behave as auxiliary string fields.
& p-label

How to resolve it

1. These string fields can have their kinetic terms when we take a bit more

complicated constraints. ( See JHEP 05 (2018) 020. )

I 2. One can also remedy it by using unusual assembly of string antifields.

3. You can start with different (unconstrained) master action resolving this problem. |




Thank you so mueh 1l




