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Introduction

Black hole evaporation by the Hawking radiation

• Black hole is formed by gravitational collapse of matters. 
• Hawking radiation appears due to the quantum effects
• Black hole loses energy and finally evaporates. 

Information loss problem

In order to consider this problem, we take into account the back-
reaction from the quantum effects. 

We consider the Einstein equation in self-consistent manner. 

𝑅𝜇𝜈 − 𝑔𝜇𝜈𝑅 = 𝛼 𝑇𝜇𝜈

• Information cannot get out from the horizon if once it get 
inside the horizon

• Information will not be lost for quantum theory 



singularity

horizon

Hawking 
radiation

Collapsing shell

Negative 
energy 
flow

Hawking radiation from Bulk?

It is sometimes discussed that 
Hawking radiation appears in bulk

There is also ingoing negative energy flow 
to satisfy the conservation law.

In this picture, Hawking radiation does not 
take energy from the collapsing matters.

Because of the ingoing negative energy, 
black holes lose their energy and 
eventually evaporates in this picture.

However, the negative energy flow exists 
even in static backgrounds.



Boulware vacuum

𝑇𝑣𝑣 = 0

𝑇𝑢𝑢 = 0

𝑇𝑢𝑢 < 0

𝑇𝑣𝑣 < 0

𝐺𝜇𝜈
(4𝐷)

= 𝛼 𝑇𝜇𝜈
(4𝐷)

We consider semi-classical Einstein equation with quantum effects in 〈𝑇𝜇𝜈〉.

𝑢 𝑣
Vacuum state with 𝑇𝜇𝜈 = 0 in 𝑟 → ∞

Negative energy at finite 𝑟

𝑇𝑢𝑢 < 0 𝑇𝑣𝑣 < 0

Vacuum state for static star without horizon

“Divergence” of 〈𝑇𝜇𝜈〉 at horizon

We show that no divergence if 
back reaction from vacuum energy 
is taken into account



2D model for 4D black hole

Separate 4D metric to angular part and others

𝑑𝑠2 =  

𝜇=0,1,2,3

𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 =  

𝜇=0,1

𝑔𝜇𝜈
(2𝐷)

𝑑𝑥𝜇𝑑𝑥𝜈 + 𝑟2𝑑Ω2

We integrate out angular directions

For 𝜇, 𝜈 = 0,1 (= 𝑡, 𝑟) 𝑇𝜇𝜈
(4𝐷)

=
1

𝑟2
〈𝑇𝜇𝜈

(2𝐷)
〉

Semi-classical Einstein equation

𝐺𝜇𝜈
(4𝐷)

=
𝛼

𝑟2
〈𝑇𝜇𝜈

(2𝐷)
〉

Energy-momentum tensor in 4D and 2D are

𝑇𝜇𝜈
(4𝐷)

= −
2

−𝑔4𝐷

𝛿𝑆

𝛿𝑔𝜇𝜈
𝑇𝜇𝜈

(2𝐷)
= −

2

−𝑔2𝐷

𝛿𝑆

𝛿𝑔(2𝐷)
𝜇𝜈



2D model for 4D black hole

We focus on s-waves and approximate them by 2D scalar fields.

𝑇𝑢𝑣
(2𝐷)

= −
1

12𝜋𝐶2
𝐶𝜕𝑢𝜕𝑣𝐶 − 𝜕𝑢𝐶𝜕𝑣𝐶

𝑇𝑢𝑢
(2𝐷)

= −
1

12𝜋
𝐶  1 2𝜕𝑢

2𝐶−  1 2 + 𝑇(𝑢)

𝑇𝑣𝑣
(2𝐷)

= −
1

12𝜋
𝐶  1 2𝜕𝑣

2𝐶−  1 2 +  𝑇(𝑣)

Static spherically symmetric metric in null coordinates ( 𝑡, 𝑟 → (𝑢, 𝑣))

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑢𝑑𝑣 + 𝑟2𝑑Ω2

2D Weyl anomaly

Integrate 2D conservation law
Integration constants

𝑇 𝜇
2𝐷 𝜇

=
1

24𝜋
𝑅(2𝐷)

Energy-momentum tensor for 2D scalar fields

𝑇𝜇𝜈
(4𝐷)

=
1

𝑟2
〈𝑇𝜇𝜈

(2𝐷)
〉 𝑇𝜃𝜃

(4𝐷)
= 0



2D model for 4D black hole

𝑇𝑢𝑣
(2𝐷)

= −
1

12𝜋𝐶2
𝐶𝜕𝑢𝜕𝑣𝐶 − 𝜕𝑢𝐶𝜕𝑣𝐶

𝑇𝑢𝑢
(2𝐷)

= −
1

12𝜋
𝐶  1 2𝜕𝑢

2𝐶−  1 2 + 𝑇(𝑢)

𝑇𝑣𝑣
(2𝐷)

= −
1

12𝜋
𝐶  1 2𝜕𝑣

2𝐶−  1 2 +  𝑇(𝑣)

come from Weyl anomaly and 
does not depend on physical state.

Negative energy is not physical 
excitation but simply the 
vacuum has negative energy, 
like Casimir effects.

Integration constants which 
depend on physical state.

We consider static black holes 
without incoming or outgoing 
energy flow at infinity

𝑇 𝑢 =  𝑇 𝑣 = 0



Vacuum energy without back reaction

We consider the fixed background of Schwarzschild BH

𝑑𝑠2 = − 1 −
𝑎0

𝑟
𝑑𝑡2 +

1

1 −
𝑎0
𝑟

𝑑𝑟2 + 𝑟2𝑑Ω2

Quantum effects in energy-momentum  tensor

𝑇𝑢𝑣
(2𝐷)

=
𝑁

48𝜋

𝑎0
2

𝑟4
−

𝑎0

𝑟3

𝑇𝑢𝑢
(2𝐷)

=
𝑁

48𝜋

3𝑎0
2

4𝑟4
−

𝑎0

𝑟3
+ Const.

𝑇𝑣𝑣
(2𝐷)

=
𝑁

48𝜋

3𝑎0
2

4𝑟4
−

𝑎0

𝑟3
+ Const.

𝑑𝑢 = 𝑑𝑡 −
𝑑𝑟

1 −
𝑎0
𝑟

𝑑𝑣 = 𝑑𝑡 +
𝑑𝑟

1 −
𝑎0
𝑟



Vacuum energy without back reaction

Quantum effects give energy flow in 𝑟 → ∞ (Hawking radiation)

〈𝑇𝑢𝑣
2𝐷

〉 〈𝑇𝑢𝑢
2𝐷

〉

No incoming or outgoing energy at the horizon

Hawking radiation
𝑇𝑢𝑢 = 0
at horizon



Vacuum energy without back reaction

Quantum effects give negative energy outside the horizon

〈𝑇𝑢𝑣
2𝐷

〉

No incoming or outgoing energy in 𝑟 → ∞

〈𝑇𝑢𝑢
2𝐷

〉

𝑇𝑢𝑢 = 0
in 𝑟 → ∞

Negative energy at horizon



Breakdown of perturbative expansion

Perturbative expansion around classical solution

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑡2 +
𝐶 𝑟

𝐹2 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2

𝐶 𝑟 = 𝐶0 𝑟 + 𝛼𝐶1 𝑟 + ⋯

𝐶0 = 𝐹0 = 1 −
𝑎0

𝑟
The leading term 𝐶0 𝑟 is classical solution 

𝛼: Newton constant 
+ numerical factor

By using expansions of Einstein tensor and energy-momentum tensor

𝐺𝜇𝜈
(4𝐷)

= 𝐺𝜇𝜈
(0)

+ 𝛼𝐺𝜇𝜈
(1)

+ ⋯

𝐺𝜇𝜈
(0)

= 0

semi-classical Einstein equation is expanded as 

𝐺𝜇𝜈
(1)

= 𝛼 𝑇𝜇𝜈 0

𝐹 𝑟 = 𝐹0 𝑟 + 𝛼𝐹1 𝑟 + ⋯

⋮

𝐺𝜇𝜈
(4𝐷)

= 𝛼 𝑇𝜇𝜈
(4𝐷)

𝑇𝜇𝜈
(4𝐷)

= 𝑇𝜇𝜈 0 + 𝛼 𝑇𝜇𝜈 1 + ⋯



Breakdown of perturbative expansion

First order correction of Ricci tensor

𝑅𝜇𝜈
(4𝐷)

= 𝑅𝜇𝜈
(0)

+ 𝛼𝑅𝜇𝜈
(1)

+ ⋯ 𝐺𝑢𝑢
(1)

= 𝑅𝑢𝑢
(1)

is calculated as 

𝑅𝑢𝑢
(1)

= 𝛼 𝑇𝑢𝑢 0 = −
𝛼

8𝑎0
4

Leading vacuum energy for Boulware vacuum

 𝑇𝑢𝑢 0
𝑟=𝑎

=  𝑇𝑣𝑣 0
𝑟=𝑎

=
1

8𝑎0
4

Square of Ricci tensor is

𝑅𝜇𝜈𝑅𝜇𝜈 ∼ 2𝛼2𝑔𝑢𝑣𝑅𝑢𝑢
(1)

𝑔𝑢𝑣𝑅𝑣𝑣
(1)

=
𝛼2

32

1

𝑎0
6 𝑟 − 𝑎0

2
+ ⋯

𝐺𝑣𝑣
(1)

= 𝑅𝑣𝑣
(1)

𝑅𝑣𝑣
(1)

= 𝛼 𝑇𝑣𝑣 0 = −
𝛼

8𝑎0
4

Perturbative correction diverges at the horizon 𝑟 = 𝑎0.

𝑔𝑢𝑣 = −
𝑟 − 𝑎0

𝑟

We cannot use 𝛼-expansion near 𝑟 = 𝑎0.

We solve the Einstein equation without using 𝛼-expansion.



Self-consistent Einstein equation

We solve semi-classical Einstein equation for 𝑔𝜇𝜈 and 〈𝑇𝜇𝜈〉

𝐺𝜇𝜈
(4𝐷)

=
8𝜋𝐺

𝑟2
〈𝑇𝜇𝜈

(2𝐷)
〉 𝜇, 𝜈 = 0,1 𝐺𝜃𝜃 = 0

where metric and 〈𝑇𝜇𝜈
2𝐷

〉 are given by

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑢𝑑𝑣 + 𝑟2𝑑Ω2

𝑇𝑢𝑣
(2𝐷)

= −
1

12𝜋
𝐶𝜕𝑢𝜕𝑣𝐶 − 𝜕𝑢𝐶𝜕𝑣𝐶

𝑇𝑢𝑢
(2𝐷)

= 𝑇𝑣𝑣
(2𝐷)

= −
1

12𝜋
𝐶1/2𝜕𝑢

2𝐶−1/2



Results

Define 𝜌 by 𝐶 𝑟 = 𝑒2𝜌

𝜌 satisfies

𝑟𝜌′ + 2𝑟2 + 𝛼 𝜌′2 + 𝛼𝑟𝜌′3 + 𝑟2 − 𝛼 𝜌′′ = 0

Numerical result for 𝐶(𝑟)

Non-zero at 
Schwarzschild 
radius 𝑟 = 𝑎

Asymptotically flat

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑡2 +
𝐶 𝑟

𝐹2 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2where 



By semi-classical Einstein equation, 𝐹(𝑟) is related to 𝐶(𝑟) as 

Numerical result for 𝐹(𝑟)

Goes to zeroAsymptotically flat

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑡2 +
𝐶 𝑟

𝐹2 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2

𝐹 𝑟 =
𝐶3/2(𝑟)

4𝐶2 𝑟 + 4𝑟𝐶 𝑟 𝐶′ 𝑟 + 𝛼𝐶′2

Results

The other component 𝐹 𝑟 in



Near “horizon” behavior 

Killing horizon 𝐶 𝑟 = 0 𝜌 → −∞

𝐶 𝑟 = 𝑒2𝜌

Differential equation for 𝜌 is approximated as 

𝛼𝑎𝜌′3 + 𝑎2 − 𝛼 𝜌′′ = 0

𝑟𝜌′ + 2𝑟2 + 𝛼 𝜌′2 + 𝛼𝑟𝜌′3 + 𝑟2 − 𝛼 𝜌′′ = 0

𝜌′ → ∞

𝐶(𝑟), 𝐹(𝑟) behaves near 𝑟 = 𝑎 as

𝐶 𝑟 = 𝑐0𝑒2𝑘 𝑟−𝑎 𝐹 𝑟 =
1

𝑘
4𝑐0 𝑟 − 𝑎

𝜌′ ∼
𝑘

𝑟 − 𝑎
Then, 𝜌′ behaves as 

Assume 𝜌′
𝑟→𝑎

∞, at some point 𝑟 = 𝑎,

𝑘 ∼
2𝑎

𝛼

2

where

𝐶 𝑟 = 𝑎 ≠ 0 No Killing horizon (𝐶 = 0) at any finite 𝑟 = 𝑎



Near “horizon” geometry

𝑑𝑠2 ∼ −𝑐0𝑑𝑡2 +
𝑘𝛼 𝑑𝑟2

4 𝑟 − 𝑎
+ 𝑟2𝑑Ω2

metric near 𝑟 = 𝑎 This is wormhole metric

Tortoise coord. 𝑥 by 𝑟 = 𝑎 +
𝑐0

𝛼𝑘
𝑟∗

2

𝑑𝑠2 ∼ −𝑐0 𝑑𝑡2 − 𝑑𝑟∗
2 + (𝑎2 + 𝑐1𝑟∗

2)𝑑Ω2

Metric is given by

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑡2 +
𝐶 𝑟

𝐹2 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2

Assuming 𝜌′ → ∞ at 𝑟 → 𝑎,  𝐶(𝑟), 𝐹(𝑟) behave near 𝑟 = 𝑎 as

𝐶 𝑟 = 𝑐0𝑒2𝑘 𝑟−𝑎 𝐹 𝑟 =
1

𝑘
4𝑐0 𝑟 − 𝑎



Numerical result 𝑑𝑠2 = −𝐶 𝑟∗ 𝑑𝑡2 + 𝐶 𝑟∗ 𝑑𝑟∗
2 + 𝑟 𝑟∗ 𝑑Ω2

𝐶(𝑟∗) 𝑟(𝑟∗)

𝐶(𝑟∗) does not go to zero 𝑟(𝑟∗) has local minimum



Back reaction from negative vacuum energy

For fixed background of Schwarzschild, negative vacuum energy 
is finite from the viewpoint of fiducial observer.

For freely falling observer, the negative vacuum energy is infinitely large.

Vacuum energy becomes 
very large near horizon

Back reaction from vacuum energy 
is no longer negligible.

By taking the back reaction into account, the horizon cannot appear 
if there is negative vacuum energy.

Local minimum of radius 𝑟, as wormhole, 
appear instead of the Killing horizon.



Interior of wormhole

Wormhole like solution is vacuum solution without matters of the star.

𝑟𝑟

Neck of wormhole

Singularity at 𝑟 → ∞, 
instead of 𝑟 = 0

For physical situation, there is a star, where matters are distributed

𝑟

Neck of wormhole

Matters of the star
𝑟 goes to zero at center



Geometry of interior of black hole

We put the surface of the star at 𝑟 = 𝑟𝑠

Energy-momentum tensor

𝑇𝜇𝜈 = 𝑇𝜇𝜈
Ω + 𝑇𝜇𝜈

𝑚

𝑇𝜇𝜈
Ω =

1

𝑟2
𝑇𝜇𝜈

(2𝐷)

Energy-momentum 
tensor of matters

Energy-momentum 
tensor of vacuum

We consider incompressible fluid

𝑇𝜇𝜈
𝑚 = 𝑚0 + 𝑃 𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈

𝑚0: Density (constant)

𝑃: Pressure

Fluid

𝑟∗

𝑟 = 𝑟𝑠

𝑟 = 𝑎

Vacuum with 
negative energy

𝑇𝜇𝜈
𝑚 = 0

𝑇𝜇𝜈
𝑚 ≠ 0

Fluid fills inside 𝑟 = 𝑟𝑠

Outside: vacuum solution

Inside: solution with 𝑇𝜇𝜈
𝑚 ≠ 0



Pressure in classical limit

𝑃 𝑟 = 8𝜋𝐺
3 − 8𝜋𝐺𝑚0𝑟2 − 3 − 8𝜋𝐺𝑚0𝑟𝑠

2

3 3 − 8𝜋𝐺𝑚0𝑟𝑠
2 − 3 − 8𝜋𝐺𝑚0𝑟2

Condition for non-singular pressure

𝑚0 <
1

3𝜋𝐺𝑟𝑠
2 𝑟𝑠 >

9

8
𝑎

Classical star of incompressible fluid

Relation between 𝑎 and 𝑚0

𝑎0

2
=

4𝜋

3
𝑚0𝑟𝑠

3

In classical limit, there is no static star with 𝑟𝑠
2 >

1

3𝜋𝐺𝑚0

There are no such condition if quantum effects is taken into account



Semi-classical geometry of interior

Assumption: 𝑇𝜇𝜈
Ω and 𝑇𝜇𝜈

𝑚 are conserved independently.

𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2

𝑇𝑢𝑣
Ω = −

𝑁

12𝜋𝑟2
𝐶𝜕𝑢𝜕𝑣𝐶 − 𝜕𝑢𝐶𝜕𝑣𝐶

𝑇𝑢𝑢
Ω = 𝑇𝑣𝑣

Ω = −
𝑁

12𝜋𝑟2
𝐶1/2𝜕𝑢

2𝐶−1/2

Vacuum energy-momentum tensor (approx. by 2D scalar)

Energy-momentum tensor for incompressible fluid

Conservation law 𝑃 = 𝑃0

𝐶 𝑟𝑠
𝐶 𝑟

 1 2

− 1

Tortoise coordinate 𝑟∗ is convenient to see interior

𝑟𝑠: surface of star



Case III: approx. appropriate density (𝑚0 ∼  𝑚0)

𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2

Numerical result for 𝐶 𝑟∗

𝐶(𝑟∗)

𝑟∗



Quantum
Schwarzschild radius

𝑟 = 𝑎

Surface of 
the star

Goes to 𝑟 = 𝒪(ℓ𝑝)

𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2Numerical result for 𝑟 𝑟∗

𝑟(𝑟∗)



Pressure 𝑃 𝑟∗

𝑃

𝑟∗

𝑃 ≠ 0
at 𝑟 ∼ 𝒪(ℓ𝑝)

Pressure is zero at 
the surface 𝑟 = 𝑟𝑠



Surface at deeper place

Relation between 𝑚0 and 𝑟𝑠 for 𝑎 = 10

𝑚0 log𝑚0

𝑟𝑠 𝑟𝑠

Surface is inside of 𝑟 = 𝑎

• Density 𝑚0 increases exponentially as surface moves inside

• Difference between local minimum and local maximum of 𝑟
would be of Planck scale. 



Density for 𝑟𝑠 = 𝑎
Density 𝑚0 for the star with surface at neck of “wormhole”

𝜅𝑚0

𝑎0

𝜅𝑚0

2𝛼

• Density 𝑚0 is independent of mass of black hole 𝑎0

• Density is very large: 𝑚0 ∼ 𝒪 𝜅−1𝛼−1 ∼ 𝒪 ℓ𝑝
−4

𝑚0 <
1

3𝜋𝐺𝑟𝑠
2Classical regularity condition for pressure can be 

violated by arbitrary small 𝑚0

Arbitrarily large star can be non-singular



Mass of fluid and black hole

Komar mass calculated from fluid density and pressure

𝑀fluid = −  𝑑3𝑥 −𝑔 2𝑇0
0 − 𝑇𝜇

𝜇
= 4𝜋  𝑑𝑟∗ 𝑟2𝐶 𝑚0 + 3𝑃

𝜅

4𝜋
𝑀fluid

𝑎0

𝜅

4𝜋
𝑀fluid

𝑟𝑠 = 𝑎

𝑟𝑠

𝑎 = 10

• Komar mass of fluid almost reproduce black hole mass
• Fluid mass is slightly larger than BH mass because of negative vacuum energy



Entropy of fluid and Bekenstein-Hawking

Entropy density from the local thermodynamic relation

𝜅

8𝜋2
𝑆fluid

𝑎0
2

𝜅

8𝜋2 𝑆fluid

𝑟𝑠 = 𝑎

𝑟𝑠
2

𝑎 = 10

Entropy of fluid agrees with Bekenstein-Hawking entropy

𝑚0 + 𝑃 = 𝑇𝑠

𝑆fluid =  𝑑3𝑥 𝑔3𝐷 𝑠 = 4𝜋 2  𝑑𝑟∗ 𝑎0𝑟2𝐶 𝑚0 + 𝑃

Entropy of fluid is calculated by integrating entropy density



Incompressible fluid

Wormhole-like structure (local minimum of 𝑟) 
instead of the Killing horizon

Local maximum of 𝑟 is slightly inside 
the surface of the fluid. 𝑟 is almost 
same to that at local minimum.

𝑟 goes to zero at the center. 
Proper distance from Schwarzschild radius 
to 𝑟 = 0 is of order of Planck length.  

• There is no horizon for arbitrary density and position of the surface.
• Pressure and density are very large but finite.
• The surface is outside the Schwarzschild radius if density is not very large.
• Entropy of the fluid agrees with Bekenstein-Hawking entropy. 

We consider (classical) incompressible fluid + vacuum energy from 2D scalar.



singularity

Collapsing shell

horizon

Evaporation by Hawking radiation

If we introduce the Hawking radiation, neck of wormhole decreases 
since mass decreases due to Hawking radiation.

Inside the neck, 𝑟 decreases along outgoing null line, 
𝜕𝑟

𝜕𝑣
< 0

Inside but around the neck, 𝑟 slightly increases along ingoing null line, 
𝜕𝑟

𝜕𝑢
≳ 0

If the neck reduces with time, 𝑟 decreases along both outgoing and ingoing lines

Neck is apparent horizon

At some constant-𝑢 slice, the geometry is given by 

Local maximum of 𝑟

?

𝜕𝑟

𝜕𝑣
< 0 and 

𝜕𝑟

𝜕𝑢
< 0



Apparent horizon as shrinking neck of wormhole

Apparent horizon appears simply because the neck is shrinking.

Result for fluid implies that neck and local maximum of 𝑟 are almost same

Interior might be disconnected from the outside of black hole after evaporation.

In this case, interior will be of Planck scale when the neck is of Planck scale.

Full quantum effects of gravity becomes important and 
geometry will simply goes to flat space.



Conclusion
• Quantum energy-momentum tensor for Boulware vacuum diverges at 

horizon of classical black hole geometry.

• Taking back reaction of quantum effects, there are no divergence even for 
Boulware vacuum.

• Because of the back reaction from the vacuum energy, static black holes 
also do not have Killing horizon. 

• Geometry has wormhole-like structure.

• Singularity in the other side of wormhole comes from infinitely high density 
of matter, and will be absent for star with finite size.

• Apparent horizon appears simply because the neck of the wormhole-like 
structure is shrinking. It is time-like and nothing is trapped. 

• The event horizon appears if the interior is disconnected from the outside 
after the evaporation. This would be no problem for unitarity.

• result for incompressible fluid implies that the interior is also shrinking and 
everything becomes of Planck scale before interior is disconnected from 
the outside.



Thank you


