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Definition and Motivation

111 1 2
Sschw = —C [ dt {f, T} Where{f,r}:ff—,—%(ff—,> the
Schwarzian derivative
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Definition and Motivation

Sschw = —C [ dt {f, T} where {f, T} = % - % (%)2 the
Schwarzian derivative
Appears in:
» SYK model at low energies
Effective Action (master fields ¥, G) ~ N < suppressed at
N — oo, unless also fJ — oo = Schwarzian action
» Jackiw-Teitelboim (JT) 2d dilaton gravity
JT is holographically dual to Schwarzian theory — Dynamics
of wiggly boundary curve described by Sscpy,
Compare to CS / WZW, 3d gravity / Liouville topological
dualities
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The Schwarzian theory: goal

Main goal:
Compute all correlation functions:

1 c (Bdr f,T if’2
<0410z2--.>ﬁ=2/M [Df]O0n, O, ... € 15 dr ({ £ }+2277)

with M = Diff(5!)/SL(2, R), f(r+8)="Ff(r)+5
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The Schwarzian theory: goal

Main goal:
Compute all correlation functions:

Cfoﬂ dr ({ f77—}+2BL22f/2)

1
(04005 = 5 /M [DAOLO, ... e

with M = Diff(S!)/SL(2, R), f(r+8)="Ff(r)+p

Note: C — +o00 is A — 0 limit = semi-classical gravitational JT
bulk physics

Bilocal operators: <F = tan <7rf(7)>>

oy = (FEFR) (i) Y
o) = (e 2 o) ‘( S Z[F(m) (Tz)])
Think of this expression as two-point function

O¢(11,m2) = (O(11)O(72))cr1 of some 1D ‘matter CFT' at finite
temperature coupled to the Schwarzian theory
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Approaches to Schwarzian QM: an overview

Several approaches to obtain Schwarzian correlators exist (and are
being developed):
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Approaches to Schwarzian QM: an overview

Several approaches to obtain Schwarzian correlators exist (and are
being developed):

» 1d Liouville Bagrets-Altland-Kamenev '16, '17

> 2d BF bulk siommaert-TM-verscheide 18 — previous talk

» 2d Liouville CFT T Turiaci-Verlinde '17, TM 18 — this talk

» Particle in infinite B-field in AdS»> Maldacena-Yang (in progress), Kitaev-Suh (in
progress)
= related to representation theory of universal cover of
SL(2, R) lliesiu-Pufu-Wang (In progress)
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Partition function: Duistermaat-Heckman

Using Duistermaat-Heckman localization, Stanford and Witten
demonstrated that Schwarzian partition function is one-loop exact

Stanford-Witten '17.
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Partition function: Duistermaat-Heckman

Using Duistermaat-Heckman localization, Stanford and Witten
demonstrated that Schwarzian partition function is one-loop exact

Stanford-Witten '17.

Z(8) = (g>3/2exp (%2) = [ dik?sinh(2k)e K (C =1/2)

Density of states p(E) = sinh(2wvE)
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Partition function: Duistermaat-Heckman

Using Duistermaat-Heckman localization, Stanford and Witten
demonstrated that Schwarzian partition function is one-loop exact

Stanford-Witten '17.
3/2
Z(p) = (%) exp (%f) = [;F°° dk?sinh(2rk)e P¥*  (C =1/2)

Density of states p(E) = sinh(2wvE)
= Cardy scaling at high energies p(E) ~ e?mVE
= 2d CFT origin ?

What about correlators 7 Need other techniques
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Partition function: Vacuum character

Observation:

1-c
Tro(g%) = xo(q) = 52 2 (1)_‘7) - T 0 q=e 2"t

n(r
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Partition function: Vacuum character

Observation:

1-c
Tro(g") = xo(q) = L2459 ((1)_‘7) = 7 0 g=e2m

mT
Take double-scaling limit ¢ — oo, t=1278/c — 0
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Partition function: Vacuum character

Observation:

1-c
Tro(g") = xo(q) = L2459 ((1)_‘7) = 7 0 g=e2m

mT
Take double-scaling limit ¢ — oo, t=1278/c — 0

20~ (3) oo (5)
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Partition function: Vacuum character

Observation:

1-c
Tro(g") = xo(q) = L2459 ((1)_‘7) = 7 0 g=e2m

mT
Take double-scaling limit ¢ — oo, t=1278/c — 0
3/2 ,
Z(B) ~ (%) exp (%)
Schwarzian limit from 2d CFT: Cylinder radius — 0 while ¢ — o
keeping product fixed
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Partition function: Vacuum character

Observation:

1-c
Tro(g%) = xo(q) = 52 2 (1)_‘7) - T 0 q=e 2"t

n(r
Take double-scaling limit ¢ — oo, t=1278/c — 0
3/2 2
Z(B) ~ (%) exp (%)
Schwarzian limit from 2d CFT: Cylinder radius — 0 while ¢ — o
keeping product fixed

From Liouville perspective:

x0(q) = Cyl. amplitude of Liouville between ZZ = (ZZ|§%|2Z)

2

[o.¢] o0 — L
1ZZ) = [°dPVzz(P)|P)) = xo= [ dP|Wzz(P)P e 7w
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Partition function: Vacuum character

Observation:

1-c
Tro(g") = xo(q) = L2459 ((1)_‘7) = 7 0 g=e2m

mT
Take double-scaling limit ¢ — oo, t=1278/c — 0
3/2 ,
Z(B) ~ (%) exp (%)
Schwarzian limit from 2d CFT: Cylinder radius — 0 while ¢ — o
keeping product fixed

From Liouville perspective:

x0(q) = Cyl. amplitude of Liouville between ZZ = (ZZ|§%|2Z)

2

[o.¢] o0 — L
1ZZ) = [°dPVzz(P)|P)) = xo= [ dP|Wzz(P)P e 7w

with density
Wyz(P)|? = sinh(27bP) sinh(% c=1+6(b+ 1)
In Schwarzian limit: P = bk, b — 0
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Path-integral link Liouville and Schwarzian

One can prove via Liouville phase space path integral between
ZZ-branes:

Jo(o)=o(r) [P [P7g] oJo dr [ do(imgd—H(d,m4))
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Path-integral link Liouville and Schwarzian

One can prove via Liouville phase space path integral between

ZZ-branes:
f¢(0) o(T [D¢] [Dﬂ¢] efo dedU(”Tgb(ﬁ H(¢,w¢))
> Fleld redef|n|t|on (¢,7T¢) (A, B) Gervais-Neveu '82:
AsB A B A +B
o _ _g 970 _ oo Boo 50 -

=H = —ﬁ {A(Ua 7_)’ U} - ﬁ {B(U’T)’ U}
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Path-integral link Liouville and Schwarzian

One can prove via Liouville phase space path integral between

ZZ-branes:
f¢(0) o(T [D¢] [Dﬂ¢] efo dedU(”Tgb(ﬁ H(¢,w¢))
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» Schwarzian limit: my¢ — 0

» ZZ-brane boundary conditions: A, B written in terms of 1
doubled field F
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Path-integral link Liouville and Schwarzian

One can prove via Liouville phase space path integral between

ZZ-branes:
f¢(0) o(T [D¢] [Dﬂ¢] efo dedU(”Tgb(ﬁ H(¢,w¢))
> Fleld redef|n|t|on (¢,7T¢) (A, B) Gervais-Neveu '82:
AsB A B A +B
o _ _g 970 _ oo Boo 50 -

= H = —5;-{Al0,7),0} — 5%-{B(o,7),0}

» Schwarzian limit: my¢ — 0

» ZZ-brane boundary conditions: A, B written in terms of 1
doubled field F

Liouville-Schwarzian Dictionary:
> T(w) = —5z{F(0),0}

¢
_ 20 FiF;
» Vg =e — <—§(F1—F2)
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Path-integral link Liouville and Schwarzian

One can prove via Liouville phase space path integral between

ZZ-branes:
f¢(0) o(T [D¢] [Dﬂ¢] efo dedU(”Tgb(ﬁ H(¢,w¢))
> Fleld redef|n|t|on (¢,7T¢) (A, B) Gervais-Neveu '82:
AsB A B A +B
o _ _g 970 _ oo Boo 50 -

=H = —ﬁ {A(o, 7.-)’0} — ﬁ {B(o,7),0}
» Schwarzian limit: my¢ — 0
» ZZ-brane boundary conditions: A, B written in terms of 1

doubled field F
Liouville-Schwarzian Dictionary: Liouville = cylinder ~ampli-
tudes with Vj's between

S T(wW) & 55 {F(0).0} o

¢ . :
» V=2 (%) — Schwarzian bilocal cor-
relators
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2-point correlator

dea: Vy(11,72) = e29m72) e Oy(71,72)
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2-point correlator

dea: Vy(11,72) = e29m72) e Oy(71,72)

(22| Vi |2Z) = [ dPdQ W7, (P)Vzz(Q){(PIIVLIIQ))
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2-point correlator

dea: Vy(11,72) = e29m72) e Oy(71,72)

(22| Vi |2Z) = [ dPdQ W7, (P)Vzz(Q){(PIIVLIIQ))

Schwarzian limit: ||Q)) — |Q)
= 3-point function on sphere = large ¢ limit of DOZZ formula
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2-point correlator

dea: Vy(11,72) = e29m72) e Oy(71,72)

(22| Vi |2Z) = [ dPdQ W7, (P)Vzz(Q){(PIIVLIIQ))

Schwarzian limit: ||Q)) — |Q)
= 3-point function on sphere = large ¢ limit of DOZZ formula
Result:

_ka—(ﬂ—T)kg r(ﬁ :l: I(kl :l: kz))
2/ (20)

Gf(7'177'2) = ﬁ/d#(kl)dﬂ(lQ)e

du(k) = dk?sinh(27k)
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Application: Semiclassics for light operators

Semi-classical regime C — 00, £ < C: ki ~ ko > 1
Redefine k2 M+ w, k2 =M, M>w

~ Jee dMe2™V M-z Mfdw iewtm s 226\()(2\/_)213 1
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Application: Semiclassics for light operators

Semi-classical regime C — 00, £ < C: ki ~ ko > 1
Redefine k? = M + w, k3 = M, M>w
T £ W +isrwtT 4= )
~ Jee dMe2™VM 2CMf d sewtmyes T 222)ﬁ (2v/M)2-1
Interpretation:
» M-integral has saddle: My = 472C?//3?, the JT black hole

E(T)-relation
Remaining w-integral is done explicitly to yield:

Gi,c/( )_ s 2
¢ \71,72) = Bsinh 2112

an and black hole physics Thomas Mertens



Application: Semiclassics for light operators

Semi-classical regime C — 00, £ < C: ki ~ ko > 1
Redefine k2 M+ w, k2 M, M>w

_8 )
f dl\/lezmﬁ 2CMf dw ilzcw+7r2\/— 226\)ﬁ (2\/—)25 1
Interpretation:
» M-integral has saddle: My = 472C?//3?, the JT black hole
E(T)-relation
Remaining w-integral is done explicitly to yield:

Gi,c/( )_ s 2
¢ \71,72) = Bsinh 2112

» [-functions give poles: ¢ — im =-—n
Matches with quasi-normal modes of AdS, BH metric:
w= —i%”(n +7)
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Application: Semiclassics for light operators

Semi-classical regime C — 00, £ < C: ki ~ ko > 1
Redefine k2 M+ w, k2 M, M>w

_8 )
f dl\/lezmﬁ 2CMf dw ilQCw+7T2\/— 22(( (2\/—)25 1
Interpretation:
» M-integral has saddle: My = 472C?//3?, the JT black hole
E(T)-relation
Remaining w-integral is done explicitly to yield:

Gi,c/( )_ s 2
¢ \71,72) = Bsinh 2112

» [-functions give poles: ¢ — im =-—n
Matches with quasi-normal modes of AdS, BH metric:
w=—i% 5 (n+10)

» Quantum black hole M emits and reabsorbs excitation with
mass ~ £ and energy w
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Time-ordered 4-point function

(ZZ| Ve, Vi, | ZZ)
Evaluated using Conformal blocks
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Time-ordered 4-point function

(ZZ| Ve, Vi, | ZZ)
Evaluated using Conformal blocks

Q Q
— /1 fp —
Gura = [ dPAQP. Wi (PYV(Q) x |P % .
— /> by ——
P P
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Time-ordered 4-point function

(ZZ| Ve, Vi, | ZZ)
Evaluated using Conformal blocks

Q Q
— /1 fp —
Gura = [ dPAQP. Wi (PYV(Q) x |P % .
— /> by ——
P P

Conformal blocks dominated by primary in the intermediate
channel = reduce to DOZZ OPE coefficients
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Time-ordered 4-point function

(ZZ| Ve, Vi, | ZZ)

Evaluated using Conformal blocks

Q Q
— /1 fp —
Gura = [ dPAQP. Wi (PYV(Q) x |P % .
— /> by ——
P P

Conformal blocks dominated by primary in the intermediate
channel = reduce to DOZZ OPE coefficients

Gy, = [ dk¥dk3dk? sinh 27y sinh 2mky sinh 27k

% e—klz(Tg—Tl)—kf(T4—T3)—k52(5—72+7'3—7'4+’r1) I (Latikediks) T (L1Eikytiks)
r(2¢1)r(2¢62)
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Diagrammatic decomposition

Rules:
>
k k
/\ — = K (2—m) I ' — ke ko) = [T UEikitiko)
kp) a1 , —’W( 1, 2) =\ rtey
ko

> Integrate over intermediate momenta k; with measure
du(k) = dk? sinh(27k)
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Diagrammatic decomposition

Rules:
>
k k
/\ — = K (2—m) I ' — ke ko) = [T UEikitiko)
kp) a1 , —’W( 1, 2) =\ rtey
ko

> Integrate over intermediate momenta k; with measure
du(k) = dk? sinh(27k)
Examples:

Z(B) = O (Ou(r1,72)) = 72@71

{On(71,72) Op(73,12)) = ()

Note: non-perturbative in Schwarzian coupling C
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OTO four-point correlator (1)

Swapping two operators in 4-point correlator, means the conformal
block is dominated by its primary in a different channel:

Frl131(z') = [dP: Rep, [12] Frl331(1/2)

The Schwarzian and black hole physics Thomas Mertens
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Frl131(z') = [dP: Rep, [12] Frl331(1/2)

Blocks unknown in general, but R-matrix is known as quantum
6j-SymbO| Of Uq(SL(2, R)) Teschner-Ponsot '99
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with 4 continuous and 2 discrete SL(2,R) labels

an and black hole physics Thomas Mertens



OTO four-point correlator (1)

Swapping two operators in 4-point correlator, means the conformal
block is dominated by its primary in a different channel:

Frl131(z') = [dP: Rep, [12] Frl331(1/2)

Blocks unknown in general, but R-matrix is known as quantum
6j-symbol of Uqg(SL(2,IR)) Teschner-Ponsot 99

= Schwarzian limit of quantum 6j-symbol is 6j-symbol

with 4 continuous and 2 discrete SL(2,R) labels

Explicitly:
23 b ko ks
Re.p, [12] ~ { o ko kt}

[ (01t ik iks )T (03— iky L ike )T (01— ikaEike )T (£3+ ika Eiks)
T (01— koL iks )T (C3+ ko ike )T (€1 ikaEike )T (£3— ks Eiks)

“ ’f du T(0) (u-2ike) (i i se) U (t-ik o) (Ertiks ) (Estiks —su)
T (uH1—iks—2 ) (tHl3—iks—4)

—ioco

The Schwarzian and black hole physics Thomas Mertens



OTO four-point correlator (2)

At the Schwarzian level, this procedure is captured by the diagram:

ek (13—m1)—kE(r3—72)— ki (ra—72) — k2 (B—Ta+T1)
erl(kl’ ks)’)/zz(ks’ k4)')’£1(k4, kt)’YKQ(kh kl) X { g; ﬁzll ﬁi}
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Application: Shockwaves from semiclassics

yals Time delay:
tz tz —ty ~ e’\M(t2 tl) A = é—;’

t
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Application: Shockwaves from semiclassics

yals Time delay:
tz By — tp ~eml=t) Ny = é—; W,

Shenker-Stanford: OTO-correlator

(Vi W3V W,) in boundary theory Vs
: . v,

ca threS thls behaV|O|’ Shenker-Stanford '15

Thomas Mertens
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Application: Shockwaves from semiclassics

yals Time delay:
tz By — tp ~eml=t) Ny = B W,

Shenker-Stanford: OTO-correlator

(Vi W3V W,) in boundary theory Vs
t Captures thls behaViOl’ Shenker-Stanford '15 Vi

1

(Vi W3 Vo Wy), written using shockwaves in the AdS; bulk as

Jo ™ das Jo dp-
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Application: Shockwaves from semiclassics

yals Time delay:
tz By — tp ~eml=t) Ny = B W,

Shenker-Stanford: OTO-correlator

(Vi W3V W,) in boundary theory Vs
t Captures thls behaViOl’ Shenker-Stanford '15 Vi

1

(Vi W3 Vo Wy), written using shockwaves in the AdS; bulk as
Jo ™ das [o° dp-Wi(ar)®3(p-)S(p-, q+)Wa(q+)Pa(p-)

» VU & = Kruskal wavefunctions = bulk-to-boundary
propagators

> S =exp (% p_q+) the Dray-'t Hooft shockwave S-matrix
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Application: Shockwaves from the exact OTO correlator

Large C limit of complete OTO 4-point function, with light 2,
gives full eikonal shockwave expressions

Exact match = Derived full shockwave in semiclassical regime!
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Conclusion

Schwarzian QM is relevant as

» Low-energy universal gravity sector of all SYK-type models
Cfr. Liouville compared to holographic 2d CFT
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Conclusion

Schwarzian QM is relevant as

» Low-energy universal gravity sector of all SYK-type models
Cfr. Liouville compared to holographic 2d CFT

» holographically dual to JT dilaton gravity
Theory is exactly solvable and displays a wide variety of black hole
quantum physics:

» Virtual black hole intermediate states

» Quasinormal modes and shockwaves in the semi-classical
regime
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Conclusion

Schwarzian QM is relevant as

» Low-energy universal gravity sector of all SYK-type models
Cfr. Liouville compared to holographic 2d CFT

» holographically dual to JT dilaton gravity

Theory is exactly solvable and displays a wide variety of black hole
quantum physics:

» Virtual black hole intermediate states

» Quasinormal modes and shockwaves in the semi-classical
regime

Naturally embedded within Liouville theory
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Thank you!
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