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Introduction

Pure SU(N) or U(N) Chern Simons Theory

SCS =
k

4π

∫
d3x Tr

(
AdA +

2
3

A3
)
.

Topological. Interacting but exacty solvable.
Enjoys invariance under nontrivial strong weak coupling
level rank duality. N ↔ k . Wilson loops transposed under
duality. Rows↔ columns. Symmetriic↔ Antisymmetric
Couple matter. Bosons↔ fermions? Plenty of evidence
the answer is yes.
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Intro: The ‘standard’ Bose Fermi duality

Reg Fermions: SU(N)(k− 1
2 )

+
∫
ψ̄Dµγ

µψ

Crit Bosons: U(|k |)(−sgn(k)N) +
∫ (

Dµφ̄Dµφ+ σφ̄φ
)

Both theories CFTs. Key point: k integer so gauge
coupling 1

k cannot run. Mass only relevent operator - fine
tuned away, e.g. by using dimensional regularization order
by order in 1

N .
Conjecture: theories above dual.
Notatiton

NB = |k |, κB = −sgn(k)(N+|k |), λB =
NB

κB
= −sgn(k)

|k|
N + |k|

,

NF = N, κF = sgn(k)(N + |k|), λF =
NF

κF
= sgn(k)

N
N + |k|

Note λB − λF = sgn(λB), λF − λB = sgn(λF )
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Intro: How the conjecture was arrived at

The duality was first presented in the precise form stated in
the last slide by Aharony 1512.00161 Aharony. Interesting to recall
how this conjecture was arrived at.
Recall that 1980s and 1990s Vasiliev discovered a
consistent set of nonlinear equations of motion for the
propagation of a collection of higher spin fields in AdS4.
His equations had one parameter, θ ∈ (0, π2 ). Parity
preserved at end points but violated everywhere else.
Equations had higher spin symmetry - sometimes weakly
broken by boundary conditions.
In 2002 Klebanov and Polyakov proposed that Vasilev’s
equation at θ = 0 - and particular boundary conditions -
are dual to the singlet sector of vector like U(N) Wilson
Fisher theory.
Also in 2002 Sezgin and Sundell proposed Vasilev’s
equations at θ = π

2 are dual to free fermions. Then the
area went quiet for a bit.
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Intro: How the conjecture was arrived at

Giombi and Yin in 2009: explicit computational evidence
for the bulk boundary dualities above.
In 2011 two groups studied CS gauging of the boundary
theories above in the t’ Hooft large N limit to produce new
CFTs. TIFR + Harvard+Perimeter focussed on fermions
1110.4386 Giombi, S.M. Prakash, Trivedi, Wadia, Yin while the Weizmann group
analysed the bosons 1110.4382. Aharony, G. Gur-Ari, R. Yacoby. Both groups
found that while scaling dimensions of‘single trace’
operators are independent of λ, 3 point functions
dependent on λ.
The TIFR/Harvard/Peri group ‘explained’ this fact by
proposing that the bulk dual of the CS gauged boundary
theories are given by Vasiliev’s equations at non boundary
values of θ. Demonstrated by explicit computation that
δθ = π

2λ to first order in λ. Noted proposal implies strong
weak coupling. duality between the two Chern Simons
gauge theories.
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Intro: Concrete conjecture and its evidence

TIFR/Harvard group also demonstrated theories solvable
at large N at all λ and largely solved the fermionic theory.
Noted theories weakly broken higher spin symmetry.
Maldacena and Zheibodeov then showed that higher spin
symmetry of the two theories completely determines all
two and three pt functions of single trace operators upto
two parameters. Ñ and λ̃ 1112.1016, 1204.3882 Maldacena Zhiboedov

Aharony, Gur Ari and Yakobi combined our large N
Schwinger Dyson solutions with the results of Maldacena
Zhiboedov to determine Ñ and λ̃ in terms of NB, λB and
NF , λF . Used their results to propose the specific duality
map listed above at large N and k . 1207.4593 Aharony, Gur Ari, Yacobi

The thermal partition function of both theories was then
computed at conformality and in the un Higgsed phase
(see below) and shown to match on the two sides. 1110.4386

Giombi, S.M. Prakash, Trivedi, Wadia, Yin 1211.4843 Aharony, Giombi, Gur Ari, Maldacena Yacobi

1207.4593 Jain, S.M. , Sharma, Takimi, Wadia, Yokoyama
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Intro: Additional Evidence and finite N.

Additional evidence for the duality was obtained by
computing the S matrices on both sides of the duality in
the un Higgsed - and matching the final results . 1404.6373,

1505.6371 Jain, Inbasekar, Mandlik, Mazumdar, S.M. Takimi, Wadia, Umesh, Yokoyama

The first clear argument that the duality applies at large but
finite N was presented in 1305.7235 Jain, S.M., Yokoyama, 1507.04378 Gur Ari,

Yacoby constructing dual pairs of RG flows from the susy
theory to the two theories described above and using the
known finite N duality of the susy theories.
Additional evidence for the duality at finite N was obtained
by matching the spectrum of baryons and monopoles on
the two sides 1511.01902 Radicevic

By late 2015 when the duality was summarized by
Aharnoy, the detailed calculational evidence (4 years and
perhaps 50 papers of work) for it was overwhelming. About
2 years ago - connection to dualities indepdently proposed
by condensed matter physicists, and the field took off.
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Intro: Massive deformations and phases.

Duality between two CFTs. Each of the CFTs admits a
single relevant deformation: the boson or fermion mass.
The long distance effective theory is pure Chern Simons
theory which is a topological field theory. Moreover
masses of different signs lead to different pure CS theories
so different TFTs.
Fermions: kIR = kUV + sgn(m)

2 . Two cases. Case A:
sgn(m) = sgn(kUV ). Case B: sgn(m) = −sgn(kUV ) Clearly

|kB
IR| = |kA

IR| − 1

Bosons. No effect on levels. However two cases. Case A,
mcri

B > 0. Bosons dont condense. Case B; mcri
B < 0.

Bosons condense breaking SU(N) to SU(N − 1). Clearly

NB
IR = NB

IR − 1.

Matches under level rank duality.
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Intro: Matching of Excitations

Spin of an elementatry fermionic excitation naively sgn(m)
2 .

Spin of an elementary bosonic excitation naively zero.

Field contribution to spin of excitations, sstat = c2(R)
2κ .

Duality requires sintrinsic + sstat matches on the two sides.
Using the explicit formula for c2(R) and the rules for the
mapping of R under duality it is easy to check that

sF
stat − sB

stat = sgn(kF )
n
2

where n is the number of boxes in the Young Tableaux of
the representation in which the Fermion and Boson
appear. i.e. duality demands that

sB
intrinsic =

1
2

(sgn(mF )− n sgn(kF )) .
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Intro: Spins of Excitations

sB
intrinsic =

1
2

(sgn(mF )− n sgn(kF )) .

Several conclusions. First if n ≥ 3 we have |sB
intrinsic | ≥ 1.

Seems impossible to obtain from the mass deformation of
a relativistic CFT whose elementary fields are the effective
excitations.
Current situation, n = 1. Prediction: sB

intrinsic = 0 when
sgn(kF ) = sgn(mF ). Makes sense. Bosonic excitations in
the uncondensed phase have zero intrinsic spin.
Other prediction: sB

intrinsic = sgn(kB) when
sgnkF = −sgn(mF ). Simple interpretation. Effective
excitation around the Higged phase are W bosons with
spins sgn(kB) (see below). That is fermions map to W
bosons in the condensed phase. This talk: quantitative
confirmation from thermal partition functions.
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Theories

Mass deformed Regular Fermion theories are defined by the
Lagrangian

SRF[ψ] = SCS +

∫
d3x

(
ψ̄γµDµψ + mreg

F ψ̄ψ
)
. (1)

Mass deformed critical Boson (CB) theories are defined by the
Lagrangian

SCB[φ, σB] = SCS +

∫
d3x

[
Dµφ̄Dµφ+ σB

(
φ̄φ+

NB

4π
mcri

B

)]
.

(2)
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Thermal partition functions at large N

Earlier work: thermal partition functions in matter CS
theories can be evaluated via 2 step procedure. First
consider theory on R2 × S1. Compute partition function as
a function of zero mode of holonomy around S1. Obtain
v [U] defined by

e−V2T 2v [U] =

∫
R2×S1

[dφ] e−S[φ,U] . (3)

Next evaluate

ZS2×S1 =

∫
[dU]CS e−V2T 2v [U]. (4)

where V2 is the volume of S2 and [dU]CS is a particular
measure. This talk: study only the first step.
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Duality Map

Parameter Map

κF = −κB , λF = −sgn(λB) + λB . (5)

At least at larve N
mreg

F = −λBmcri
B . (6)

Map of Holonomies

|λB|ρB(α) + |λF |ρF (π − α) =
1

2π
. (7)

Implies

λBS = λFC −
sgn(λF)

2
max(|cF |, |ν|) ,

λFC = λBS −
sgn(λB)

2
max(|cB|, |ν|) .

(8)

(8), (5) and (6) easily show vF maps to vB provided
sgn(XF )sgn(λF ) ≥ 0. However no known dual to fermionic
results for sgn(XF )sgn(λF ) < 0. Purpose of this talk.
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Setting up the computation

SE = SCS + SB ,

SCS =

∫
d3x iεµνρ

κB

4π
Tr(Xµ∂νXρ −

2i
3

XµXνXρ) ,

SB = Dµφ̄Dµφ+ σB

(
φ̄φ+

NB

4π
mcri

B

)
.

(9)

where Dµφ = ∂µφ− iXµφ.
Sigma equation of motion

φ̄φ = −NB

4π
mcri

B , (10)

When mcri
B < 0

|κB|v2 = −NB

4π
mcri

B =⇒ v2 = −|λB|
4π

mcri
B (11)
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Unitary Gauge and W bosons

Work in unitary gauge

φi = δiNB v
√
|κB| = δiNB

√
NB

4π
|mcri

B | (12)

φ field is completely determined- no dynamics.

(Xµ)a
NB

=
W a
µ√
κB
, (Xµ)NB

b =
(W̄µ)b√
κB

,

(Xµ)NB
NB

= Zµ, (Xµ)a
b = (Aµ)a

b −
Zµ

NB − 1
δa

b

(13)

Action

SE[A,W ,Z ] =
iκB

4π

∫
Tr(AdA− 2i

3
AAA)

+
i

4π

∫
[2W̄DW + κBZdZ − 2iZW̄W ] (14)

+ sgn(κB)v2
∫

d3x
√

g (κBZµZµ + W̄µWµ) (15)
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Linearized solutions

iεµνρ

4π
2∂νWρ + sgn(κB)v2Wµ = 0, (16)

W a
µ (x) =

∫
d3q

(2π)3 eix ·qW a
µ (q) . (17)

Equation becomes(
εµνρqν

2π
+ sgn(κB)v2gµρ

)
W a
ρ (q) = 0

Solution when

− gµνqµqν = (2πv2)2 ≡ m2
W (18)

Plugging into the equation, easy to check that the spin of
onshell solution given by sgn(κB), as expected (beginning of
talk)
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Integrating out Z and A
Gauge A− = 0. Integrate out qudratic fields Aµ and Zµ. Find

SE[W ] =

∫
D3p

(2π)3 W̄µ(−p) Kµρ
W (p) Wρ(p)

− 1
2

∫
D3p

(2π)3
D3q

(2π)3
D3q′

(2π)3 [W̄αWβ](q,−p) Λαβα
′β′

(q − q′,p) [W̄α′Wβ′ ](q′,p) ,

(19)

K−1
µ̃ν̃ (p) =

2π
κBp−

εµ̃−ν̃ ,

K−1
Z ,µν(p) =

−2πmZ

|κB|(p2 + m2
Z )

(
δµν − sgn(κB)εµνρ

pρ

mZ
+

pµpν
m2

Z

)
,

Λαβα
′β′

(q − q′,p) = Λαβα
′β′

A (q − q′) + Λαβα
′β′

Z (p) ,

Λαβα
′β′

A (q − q′) =
1

(2π)2 ε
βα′µ̃K−1

µ̃µ̃′(q − q′)εµ̃
′β′α ,

Λαβα
′β′

Z (p) =
1

(2π)2 ε
αβµK−1

Z ,µµ′(p)εµ
′α′β′

.
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Action for singlets
Next we introduce two bilocal singlet fields, α and σ into the
path integral

1 =

∫
Dα δ

(
κBαµν(q,p) + [W̄µWν ](q,p)

)
=∫

DαDΣ exp

[∫
D3p

(2π)3
D3q

(2π)3 iΣνµ(−q,−p)

(
κBαµν(q,p) + [W̄µWν ](q,p)

)]
(20)

Roughly speaking, α is the W propagator while Σ is its self
energy. Action can be rewritten as

SE [α,Σ,W ]

NB
= − i

λB

∫
D3p

(2π)3
D3q

(2π)3 Σνµ(q,p)αµν(−q,−p)

+
1

NB

∫
D3q

(2π)3
D3p

(2π)3 W̄µ(−q − p
2 ) Qµν(q,p) Wν(q − p

2 )

− 1
2λB

∫
D3p

(2π)3
D3q

(2π)3
D3q′

(2π)3 αµν(q,−p) κBΛµνµ
′ν′

(q − q′,p) αµ′ν′(q′,p) .

Qµν(q,p) = (2π)3δ(p)Kµν
W (q)− iΣνµ(q,p)

(21)
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Action in terms of singlets: contd

The action is now quadratic in W. Integrating out the W fields
yields

Seff[α,Σ] = NB

(
− i
λB

Σ · α + log det Q + V [α]

)
. (22)

where

V [α] = − 1
2λB

∫
D3p

(2π)3
D3q

(2π)3
D3q′

(2π)3 αµν(q,−p) κBΛµνµ
′ν′

(q−q′,p) αµ′ν′(q′,p) .

(23)
The factor of NB outside (22) ensures that the path integral

over α and Σ is classical at large NB. Path integral obtained by
extremizing action w.r.t. α and Σ. If we assume the saddle point
is translationally invriant we have

Σµν(q,p) = (2π)3δ(p)Σµν(q) ,

αµν(q,p) = (2π)3δ(p)αµν(q) .

Q(q,p) = (2π)3δ(p)Q(q) , with Q(q) = KW (q)− iΣT (q)

(24)
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Gap Equations

ανµ(q) = λB

(
1

KW (−q)− iΣT (−q)

)
µν

.

Σνµ(q) = i
∫
D3q′

(2π)3

(
κBΛµνµ

′ν′
(q′ − q,0) + κBΛµ

′ν′µν(q − q′,0)
)
αµ′ν′(−q′)

(25)

RHS of 2nd equation indep of q3. Thus Σ a function only of q−
and q+. SO(2) charge conservation determines ‘charge’ of all
components of Σ. Unknown functions of single variable, |q|.
Can show that the term on the RHS of the gap equation with
origin in Z boson exchange vanishes identically. Can also show
that

Σµν(q) = Σνµ(−q), α(q)µν = ανµ(−q)
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Gap equations contd

Follows that

Σ−−(q) =
1

2πq2
−

F1(w) ,

Σ+−(q) = +Σ−+(q) =
1

2π
F2(w) ,

Σ3−(q) = −Σ−3(q) =
1

2πq−
F3(w) ,

Σ3+(q) = −Σ+3(q) =
q−
2π

F4(w) .

(26)

where
w = q2

s = 2q+q− . (27)

Qµν(q) =
1

2π

 0 −i(F2 + im + q3) iq−(1− F4)

−i(F2 + im − q3) − i
q2
−

F1(w) − i
q−

(F3 + w
2 )

−iq−(1− F4) i
q−

(F3 + w
2 ) m

 .

(28)
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Gap equations contd

det Q = − m
8π3 (q2 + M2(w))

q2 = w + q2
3

M2(w) = −(F2 + im)2 − i
m F1(1− F4)2 − i

m (F2 + im)(w + 2F3)(1− F4)− w .

(29)

F1(w) = − λB

(2π)2

∫ w

0

dw ′

4π
χ(w ′) (2F1(1− F4) + (F2 + im)(2F3 + w ′)) ,

F2(w) =
λB

(2π)2

∫ ∞
w

dw ′

4π
χ(w ′)(1− F4)(F2 + im) ,

F3(w) =
λB

(2π)2

∫ w

0

dw ′

4π
χ(w ′)

(
(F3 + w ′

2 )(1− F4)− im(F2 + im)
)
,

F4(w) =
λB

(2π)2

∫ ∞
w

dw ′

4π
χ(w ′)(1− F4)2 . (30)
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Gap Equations contd

χ(z) ≡ − (2π)3

mβ

∫
dαρB(α)

∑
n∈Z

1
(2π n

β + α
β )2 + (z + M2(z))

, (31)

= −2π3

m

∫
dαρB(α)

1√
z + M2(z)

×

×
(

coth(β2 (
√

z + M2(z) + i αβ )) + coth(β2 (
√

z + M2(z)− i αβ ))

)
,

Equations above explicit, but highly nonlinear coupled integral
equations. Look hopeless. Quite remarkably, however, one can
use physics intuition to solve these equations exactly. Key point
is that zeroes of detQ are physical so detQ should be simple.
The integral of ξ(z), the integral of χ(z), plays an important role

ξ(z) =
1

2mβ

∫
dαρB(α)

[
log 2 sinh(β2 (

√
z + M2(z) + i αβ ))+

log 2 sinh(β2 (
√

z + M2(z)− i αβ ))

]
.
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Solution

Turns out that M(z) is a constant = M = cB. In terms of this M
we find

F4 = 1− 1
1 + λBξ(w)

F2(w) = imλBξ(w)

F3(w) = −w
2 +

1
g(w)

(
1
2
I(w)− m2

3
(g(w)3 − g(0)3)

)
F4(w) = img(w)

(
M2(g(w)− g(0))− m2

3
(g(w)3 − g(0)3)

+ wg(w)− I(w)
)

g(w) = λBξ(w) + 1

I(w) =

∫ w

0
g(z)dz

(32)
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Soln Contd

The functions presented above solve the gap equations
provided that the constant M = cB is chosen to obey the
equation

(2cB)2 =
(
−λBm̂cri

B + 2λBS
)2

=
(
−|λB|m̂cri

B + 2|λB|S
)2

(33)

Turns out that this equation exactly matches fermionic gap
equation - translated into bosonic language using the duality
map - in the case that λF XF < 0, i.e. the case for which,
previously, there was no known bosonic dual.
Moreover the free energy of the bosonic theory can also be
computed onshell. It is given by

V0[α] =
1
2
δV0

δα
· α =

1
2

i
λB

Σ · α . (34)

Plugging our explicit solutions into this expression we are able
to demonstrate that it matches exactly with the fermionic free
energy recast into bosonic language.
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Discussion

The fact that the fermionic thermal mass and the W boson
thermal mass agree exactly under the duality map
demonstrates that the fermions map to W bosons in this
phase.
What about the Z boson? What is its fermionic dual? We
get a clue for this from the following fact: in the classical
theory the mass of the Z boson is exactly twice that of the
W boson.
This suggests that the Z boson is a ‘bound state at
threshold’ of the fermions in the classical theory. As the
bosonic coupling is increased, this threshold bound state
could turn into either a genuine bound state or a
resonance. A calculation that would shed light on all of this
is the S matrix of 4 fermions W bosons and the
comparison to the S matrix of 4 fermions. We believe all
computations can be done exactly at large N. Work in
progress.
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Discussion

As we have explained in the intro, at zero temperature the
condensed and uncondensed phases are separated by a
phase transition. At finite temperature, however, there is no
order parameter separating these two phases and we
should expect the free energies of our system to be
analytic functions of the boson and fermion masses.
In the fermionic theory this happens as one might expect -
the calculation - as well as the answer - is a smooth
function of the field theory parameters.
On the other hand in the bosonic theory the computation -
atleast the way we have done it - undergoes a phase
transition when XB = 0. On the two different sides of this
phase transition we have completely different
computations. Completely remarkably, when the dust
settles, the final answers (at nonzero temperature) on the
two sides, are analytic continuations of each other as
expected on general grounds.
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Discussion

Though I have not emphasized this in the talk, all our
computations can be carried out at nonzero chemical
potential. The agreement continues to work - upto a
potential subtlety that I will ignore here.
I think it would be interesting to study the duality more
carefully in this context from the physical point of view. This
becomes from the following consideration. At very low
temperatures, the theory at weak fermionic coupling must -
and does - behave like a weakly coupled Fermi sea. On
the other hand at very weak bosonic coupling, the system
must - and in an appropriate range of parameters does -
behave like a weakly coupled Bose gas trying to Bose
condense. The interpolation between these two behavious
sounds intersting, and probably warrants further study.
Finally, though I swept all such issues under the rug, the
ingegral equations we had to solve for the W boson theory
had divergences. We had to regulate these divergences in
a reasonable - but very particular way - to get a sensible
solution. It would be interesting to better understand the
physical basis for this choice of regulation scheme.
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Thermal partition function: known results for fermions
Explicit summation of leading large N graphs

vF (|cF |, ρF ) =
NF

6π

[
|cF |3

(λF − sgn(XF))

λF
+

3
2λF

m̂reg
F c2

F

− 3
∫ π

−π
ρF (α)dα

∫ ∞
|cF |

dyy
(
log
(
1 + e−y−iα−ν)+ log

(
1 + e−y+iα+ν)) ] .

(35)

cF is offshell thermal mass in units of temperature. Extremizing
w.r.t |cF | gives the gap equation

|cF | = sgn(XF )
(
2λFC(|cF |, ν) + m̂reg

F

)
(36)

where

C(|cF |, ν) =
1
2

∫
dαρF (α)

(
log(2 cosh( |cF |+iα+ν

2 )) + log(2 cosh( |cF |−iα−ν
2 ))

)
XF = 2λFC + m̂reg

F
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Thermal partition function: known results bosons

vB(|cB|, ρB) =
NB

6π

[
3
2

m̂cri
B c2

B −
1
2
(
m̂cri

B
)3 − |cB|3+

+ 3
∫ π

−π
ρB(α)dα

∫ ∞
|cB |

dyy
(
log
(
1− e−y−iα−ν)+ log

(
1− e−y+iα+ν)) ],

(37)

Gap equation
2S(|cB|, ν) = m̂cri

B

where

S(|cB|, ν) =
1
2

∫
dαρB(α)

(
log(2 sinh( |cB |+iα+ν

2 )) + log(2 sinh( |cB |−iα−ν
2 ))

)
XB = 2λBS − λBm̂cri

B − sgn(λB)max(|cB|, |ν|)
Valid only when

−sgn(λB)sgn(XB) ≥ 0
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