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Introduction and Motivation

• The partition function of a 2D CFT is:

Z(τ, τ̄) = tr qL0− c
24 q̄L̄0− c

24

where:
q = e2πiτ , L0 = 1

2

(
H
2π − iP

)
Here, H,P are the generators of translations in time and
space respectively, and τ is the modular parameter of a
torus.

• The eigenvalues of the operators L0, L̄0 are the conformal
dimensions hi, h̄i.



• For consistency, the partition function must be modular
invariant:

Z(γτ, γτ̄) = Z(τ, τ̄)

where:

γτ ≡ aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z)



• Rational Conformal Field Theories (RCFT) have a
partition function of the form:

Z(τ, τ̄) =

p−1∑
i,j=0

Mij χ̄i(τ̄)χj(τ)

where Mij is a matrix of constants. In this talk it will be
chosen to be δij .

• The χi(τ) are holomorphic in the interior of moduli space.
They are referred to as characters.

• For the partition function to be modular-invariant, the
characters must be vector-valued modular functions:

χi (γτ) =

p−1∑
j=0

Vij(γ)χj(τ), γ ∈ SL(2,Z)

with V †V = 1.



• A related goal is, given an RCFT, to compute its
correlation functions, e.g. the four-point function on the
sphere:

G(zi, z̄i) = 〈φ(z1, z̄1)φ(z2, z̄2)φ(z3, z̄3)φ(z4, z̄4)〉

= (z14z32z̄14z̄32)−2hAG(z, z̄)

where z = z12z34
z14z32

is the cross-ratio.

• In RCFT’s one can write:

G(z, z̄) =

n−1∑
α=0

f̄α(z̄)fα(z)

where the fα(z) are holomorphic conformal blocks.

• Although the G(z, z̄) are single-valued functions of z, the
blocks fα(z) have monodromies as z circles the points
0, 1,∞



• There is a remarkable similarity between the equations:

Z(τ, τ̄) =

p−1∑
i=0

χ̄i(τ̄)χi(τ)

G(z, z̄) =

n−1∑
α=0

f̄α(z̄)fα(z)

• In both cases, the LHS is non-holomorphic but invariant,
respectively, under: (

τ → τ + 1, τ → − 1
τ

)
(
z → 1− z, z → 1

z

)
• However the objects on the RHS are holomorphic, but

vector-valued (transform linearly among themselves) under
the same transformations.



• The standard wisdom on RCFT’s is that they are all given
by cosets of WZW models:

WZW1

WZW2

or alternatively, in terms of the difference of two
Chern-Simons theories:

CS1 − CS2

• Later in this talk I will explain that the above expectation
is not correct. There are very simple RCFT’s, with a small
number of primaries, that are not given by a coset
construction.



• In addition to their novelty, they are of special interest
mathematically or physically for the following reasons:

(i) They often give us simple examples of perfect metals with a
small number of critical exponents.

(ii) They sometimes exhibit sporadic discrete symmetries
analogous to those of Monstrous Moonshine.

(iii) They might be extendable in a controlled way to large
central charge, following recent observations of [Harvey-Wu

(2018)]. A class of them could have 3d gravity duals without
gauge fields.

• The fundamental insight [Mathur-SM-Sen (1988)] is to use the
Modular Linear Differential Equation (MLDE), an object
that is both holomorphic and modular-invariant.

• This allows us to combine the power of holomorphy and
modular invariance to discover and classify RCFT’s.

• Once a theory is known, similar differential equations can
be used to solve for correlation functions, as we will briefly
indicate later.



• Perfect metals were studied in [Plamadeala-Mulligan-Nayak

(2014)] using free fermions and bosons, and 23 and
24-dimensional lattices with no root vectors.
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The Wronskian determinant

• In order to find something that is both holomorphic and
modular invariance, we first define the Wronskian
determinants of a set of characters:

Wj(τ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ0 χ1 · · · χp−1

Dτχ0 Dτχ1 · · · Dτχp−1

· · · · · · · · · · · ·
Dj−1
τ χ0 Dj−1

τ χ1 · · · Dj−1
τ χp−1

Dj+1
τ χ0 Dj+1

τ χ1 · · · Dj+1
τ χp−1

· · · · · · · · · · · ·
Dpτχ0 Dpτχ1 · · · Dpτχp−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for j = 0, 1, · · · p

where

Dτ ≡
∂

∂τ
− iπm

6
E2(τ)

is a covariant derivative on moduli space which maps
modular forms of weight m to forms of weight m+ 2.



• Since the χi are vector-valued (weak) modular functions,
the Wj(τ) are (weak) modular forms of weight p(p+ 1)−2j.

• Next, we use them to construct something that is modular
invariant, rather than covariant.

• If χ(τ) is an arbitrary linear combination of the characters,
then it is easily seen that it satisfies the Modular-invariant
Linear Differential Equation (MLDE):

p∑
j=0

(−1)p−jWj(τ)Djτχ = 0

• This, finally, is both holomorphic and modular-invariant.

• This equation has two basic uses:

(i) Solving for the characters of a known RCFT,
(ii) Classifying possible RCFT characters.



• Here we focus on the second approach:

(i) Postulate an MLDE for low values of p. For reasons we will
explain, under certain conditions the equation has finitely
many free parameters.

(ii) Find the solutions as a power series in q = e2πiτ :

χi(τ) = qαi(ai0 + ai1q + ai2q
2 + · · · )

The αi = − c
24 + hi are called critical exponents. In a

unitary theory, α0 = − c
24 is negative. Thus the identity

character diverges at the boundary of moduli space, q → 0.

(iii) Vary the parameters of the equation until the first few
coefficients ain are non-negative integers.

(iv) Verify that the ain continue to be non-negative integers to
very high orders in q. Then we have a “candidate
character”.

(v) Check whether the candidate characters really define a
consistent CFT (fusion rules, correlators).



• It is convenient to re-write the MLDE:

p∑
j=0

(−1)p−jWjDjτχ = 0

in monic form as:(
Dpτ +

p∑
j=0

φj(τ)Dkτ
)
χ = 0

• The coefficient functions φj(τ) = (−1)p−j
Wj

Wp
are modular

of weight 2(p− j). In general they can be meromorphic,
although the characters themselves are holomorphic.



• We classify differential equations by the maximum number
of zeroes of Wp, or equivalently poles of the φj .

• This number, denoted `, will be central to the following
discussion.

• One can show that `
6 with ` = 0, 2, 3, 4, · · · .

• For given ` there is a finite basis of functions of the
Eisenstein series E4, E6 from which the φj are built. Thus
the differential equation always has finitely many
parameters.



• The Riemann-Roch theorem gives an important relation
between the critical exponents, the number p of characters
and the integer ` labelling singularities of the equation:∑p−1

i=0 αi = p(p−1)
12 − `

6

• In terms of the central charge and (holomorphic) conformal
dimension, and rearranging terms, this becomes:∑p−1

i=1 hi = pc
24 + p(p−1)

12 − `
6

• Given the central charge and spectrum of dimensions of any
RCFT, we can use this equation to compute the value of `.

• Remarkably for all c < 1 minimal models, and all WZW
models Gk except (E8)k=1, one finds ` = 0.

• However, generically cosets do not have ` = 0.
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Few-character theories

• For two characters, the equations take the form:

` = 0 : (D̃2 + µE4)χ = 0

` = 2 :

(
D̃2 + µ1

E6

E4
D̃ + µ2E4

)
χ = 0

where D̃ = D
2πi .

• The ` = 0 case was analysed in [Mathur-Mukhi-Sen (1988)].

• The analysis showed there is a finite number of such
theories with 0 < c < 8.



• The table shows the integer m1, which arises in the identity
character:

χ0(q) = q−
c
24 (1 +m1q +m2q

2 + · · · )

• These theories all satisfy h = c
12 + 1

6 .



• The m1 states above the identity correspond to spin–1
currents in the CFT:

|a〉 = Ja−1|0〉

These currents form a Kac-Moody algebra G.

• Then m1 = dimG.

• Similarly m2 gives the number of spin-2 operators in the
chiral algebra (including those which are bilinears of
currents).

• Characters having a current algebra can describe an affine
theory: a WZW model containing all the integrable
primaries of that current algebra.

• Alternatively they can give a non-affine theory with fewer
primaries. These will arise later.



• Remarkably, 7 of the cases we found with ` = 0 correspond
to well-known affine theories:

• The cases SU(2), SU(3), G2, SO(8), F4, E6, E7, E8 form
the “exceptional series” of Deligne (discovered by him 8
years later!).





• The first case with c = 2
5 , h = 1

5 looked consistent but gives
negative fusion rules.

• On interchanging the two characters, c = −22
5 , h = −1

5 .
This is the famous non-unitary Lee-Yang edge singularity
CFT.

• The second-last line with c = 38
5 also has negative fusion

rules. This time on exchanging the two characters we get a
57-fold degenerate identity character. Therefore we
rejected this case in 1988.

• But it turns out that this is also known to mathematicians,
as an intermediate vertex operator algebra labelled E7 1

2
.



• Two-character theories with ` = 2 (minimally singular
coefficients) were studied in [Naculich (1989), Hampapura-SM

(2015)]. This time, the result is 16 < c < 24.

m1 c h

410 82
5

6
5

323 17 5
4

234 18 4
3

188 94
5

7
5

140 20 3
2

106 106
5

8
5

88 22 5
3

69 23 7
4

59 118
5

9
5

All perfect metals! (almost).

The primaries have ∆ = 2h > 2.

But the m1 Kac-Moody currents
are relevant operators.



• In [Gaberdiel-Hampapura-SM (2016)], we realised that these
new theories are closely tied to the meromorphic c = 24
theories of [Schellekens (1992)].

• In fact, they are novel cosets of a meromorphic theory by
an affine theory.

C =
S

WZW

• This in particular proves that our new CFT’s exist (and
not just the characters).

• This construction is different from the standard coset
construction:

C =
WZW1

WZW2



` = 0 ` = 2

No. c h m1 Algebra c̃ h̃ m̃1 m1 + m̃1 Schellekens No.

1 1 1
4

3 A1,1 23 7
4

69 72 15− 21

2 2 1
3

8 A2,1 22 5
3

88 96 24, 26− 28

3 14
5

2
5

14 G2,1
106
5

8
5

106 120 32, 34

4 4 1
2

28 D4,1 20 3
2

140 168 42, 43

5 26
5

3
5

52 F4,1
94
5

7
5

188 240 52, 53

6 6 2
3

78 E6,1 18 4
3

234 312 58, 59

7 7 3
4

133 E7,1 17 5
4

323 456 64, 65

Table: Characters with ` = 0 and ` = 2.

• The coset relation implies that c+ c̃ = 24 and h+ h̃ = 2.



• Consider a pair of two-character theories satisfying the
coset relation. Let their characters be χ0, χ1 and χ̃0, χ̃1

respectively.

• Let j(τ) be the Klein j-invariant, a modular invariant
function.

• Then the coset relation implies that:

χ0(τ)χ̃0(τ) + χ1(τ)χ̃1(τ) = j(τ)− 744 +N

We have verified this relation explicitly.

• Since the LHS is modular invariant, the modular
transformation matrices of the characters χi and χ̃i must
be the Hermitian conjugates of each other, as we also
verified.



• The function j − 744 +N has precisely N excited states at
first level.

• Using the power series expansion of j, χi, χ̃i we have:

q−1 + N + 196884q + · · ·

=
{
q−

c
24 (1 +m1q +m2q

2)
}{

q−
c̃
24 (1 + m̃1q + m̃2q

2)
}

+{
q−

c
24

+h(m′0 +m′1q)
}{

q−
c̃
24

+h̃(m̃′0 + m̃′1q)
}

+ · · ·

= q−1 + (m1 + m̃1) + (m1m̃1 +m2 + m̃2 +m′0m̃
′
0)q + · · ·

• It follows that:
m1 + m̃1 = N

m1m̃1 +m2 + m̃2 +m′0m̃
′
0 = 196884



• We considered known 3- and 4-character WZW models and
found new CFT’s that are dual to them in the same way.
Most of them are (almost) perfect metals!



• We called these theories “almost perfect metals” because,
although all their primaries have ∆ > 2, their currents are
relevant operators.

• We might hope to find genuine perfect metals if we got rid
of Kac-Moody currents.

• Another motivation to look for such theories is that if they
have AdS duals, those duals would have no gauge fields.
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Monster-like theories

• The BPZ minimal models were classified by demanding
they have no other chiral algebra besides the Virasoro
algebra.

• We can consider a weaker requirement: let us assume a
theory has no spin-1 current algebra, and try to classify
low-character theories satisfying this requirement.

• For one-character theories this immediately singles out
extremal CFT’s of which the c = 24 Monster CFT is the
simplest.

• So we will apply the MLDE method to search for
“analogue monsters” with multiple characters.



• Their identity characters must have m1 = 0.

• For two-character theories with ` = 0, there is a unique
solution to m1 = 0, namely:

c = −22

5
, h =

1

5

• This is the (non-unitary) Lee-Yang edge singularity.

• Repeating this for two-character theories with ` = 2, we
find a surprise. This time one has:

c =
142

5
, h =

9

5
• This pair satisfies our familiar relation:

c+ c̃ = 24, h+ h̃ = 2

• It looks as if the second theory is the coset of the Monster
CFT (whose character is j − 744) by the c = −22

5 theory.



• But this is not possible since none of these theories has a
current algebra! One cannot define the coset construction
without a current algebra.

• In this case we calculated the degeneracies of its identity
character and found they are all negative integers.

• Normally we would have ruled out such a theory because of
negative degeneracies. But it is encouraging that, despite
being negative, all the coefficients are integer to very high
orders.



• And we were able to verify in a power-series expansion that
the familiar bilinear relation holds: if χ0, χ1 are the
characters of the c = −22

5 theory and χ̃0, χ̃1 are the
characters of the c = 142

5 theory, then:

χ0(τ)χ̃0(τ) + χ1(τ)χ̃1(τ) = j(τ)− 744

• So even theories with no current algebra exhibit a kind of
coset-like structure with respect to c = 24.

• Because the above case pairs a non-unitary theory with a
theory having negative degeneracies, this may seem like
only a mathematical curiosity.



• Therefore we extended the search for m1 = 0 theories to
the case of three and four characters. The results were
encouraging.

• First of all, we re-discovered the minimal models – since all
minimal models have m1 = 0.

• Specifically, for three characters one finds the
(p, p′) = (3, 4) theory, namely the Ising model, as well as
the (2, 7) non-unitary theory. For four characters one finds
the (2, 9) and (3, 5) minimal models, both non-unitary.

• However we also found a dual partner in each case,
satisfying precisely the relation:

j(τ)− 744 =

p−1∑
i=0

χi(τ)χ̃i(τ)

which in particular implies c+ c̃ = 24, hi + h̃i = 2.



• For the Ising Model, the dual is perfectly well-behaved with
all positive degeneracies.

• So apparently we have found a new RCFT and it is related
to the Ising model.

• It has c̃ = 47
2 and h̃1 = 31

16 , h̃2 = 3
2 . One easily sees that

these exponents obey the desired relations with the Ising
model.

• The number m2 of second-level descendants of the identity,
and the degeneracies D1, D2 of the non-trivial primaries,
are:

m2 = 96256, (D1, D2) = (96256, 4371)

• These numbers are known to be associated to the Baby
Monster Group, the second largest finite sporadic simple
group.



• The Baby Monster CFT is a perfect metal!.

• The characters with c = 47
2 have appeared in the

mathematics literature in the thesis of G. Höhn, who also
noted their relation to the Baby Monster.

• In fact, 4371 is the dimension of its lowest representation,
just as 196883 is the dimension of the lowest dimensional
representation of the Monster.

• Recently we used the Wronskian approach to compute its
4-point correlators [SM-Muralidhara (2018)]. This is an
important step to showing that there really is an RCFT
corresponding to these characters.



• In discussions with Sungjay Lee and and Jin-Beom Bae, we
found another dual pair that appears to be unitary. These
are 3-character CFT’s with c = 8 and c = 16 with partition
functions of the form:

Z(q, q̄) = |χ0(q)|2 + 496|χ 1
2
(q)|2 + 33728|χ1(q)|2

Z̃(q, q̄) = |χ̃0(q)|2 + 32505856|χ̃ 3
2
(q)|2 + 134912|χ̃1(q)|2

• Like the Baby Monster, these characters also have sporadic
finite groups as their automorphisms.

• The groups are, respectively, 2.O+
10(2) [Griess (1998)] and

216.O+
10(2) [Shimakura (2004)].

• The c = 16 theory again appears to be a perfect metal,
though the c = 8 theory is not.
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Bounds and Numerical Bootstrap

• By itself, the Riemann-Roch theorem provides some useful
information. For example, for p = 1, 2, 3 we have:

p = 1 : ` = c
4

p = 2 : h = c
12 + 1−`

6

p = 3 : h1 + h2 = c
8 + 3−`

6

• We can also use the general equation to find a bound on
the average total (left+right) dimension ∆avg:

∆avg ≤
pc

12(p− 1)
+
p

6
• Let us express this as a bound for ∆min, the smallest

conformal dimension, which is of course ≤ ∆avg. In the
simplest cases we have:

p = 2 : ∆min ≤ c
6 + 1

3

p = 3 : ∆min ≤ c
8 + 1

2



• Surprisingly these equations appear in a work of
[Collier-Lin-Yin (2016)] where the modular bootstrap is
studied numerically for arbitrary irrational 2d CFT by
semi-definite programming, refining previous bounds of
[Hellerman (2009)] and [Friedan-Keller (2013)]:

• The reason why the first curve ends at c = 4 is clear. From
the equation, this is when ∆min crosses 1. But after that,
the holomorphic Kac-Moody currents will become the
lowest-dimension primaries.



• One can avoid this by asking for bounds on the lowest
twist = dimension – spin and explicitly excluding currents
[Bae-Lee-Song (2017)].

• These authors found the entire Deligne series lying on the
boundary of the allowed region of the 2D CFT.

• They also found the Baby Monster and the O+
10(2) theories

on the boundary.

• It is an interesting open question to understand precisely
why (and which) RCFT appear on the boundary of the
allowed region. And more generally, how they populate the
space of 2D CFT.
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Hecke Relations

• It is striking that most theories in the “conventional”
minimal series, like c < 1 and Kac-Moody, have ` = 0.

• We saw that there are two-character theories with ` = 2,
but there are none for ` = 3, 4 [Hampapura-SM (2016)].

• Of course one can get arbitrary ` by tensoring theories.
But we want to know if there are irreducible RCFT with
large `. One motivation is that the central charge (at least
for two characters) seems to be bounded as a function of `,
so large ` would help finding new large-c theories.

• Are there simple RCFT with arbitrarily large `, and if so,
how can we find them?

• In fact the parafermion series has increasing values of
` : 0, 0, 6, 12, 36, 60, · · · . But one would like a more generic
route to construct such theories.



• Such a method was recently found in [Harvey-Wu (2018)].

• They define generalised Hecke operators that map
vector-valued modular functions for a central charge c to
other vector-valued functions with central charge Pc where
P is a prime:

TPχi(τ) = χ̂i(τ)

• Importantly, the modular transformation matrix Sij and
fusion rules for χ̂i(τ) are related to those of χi(τ).

• Number-theoretic considerations based on Galois groups
play an important role.

• They examined our results in detail and found that using
Hecke operators, one can relate our “coset pairs” to each
other, including those without Kac-Moody currents. e.g.:

T47 : Ising(c = 1
2) → Baby Monster(c = 47

2 )

and the bilinear pairing follows.



• More important perhaps, this construction shows that one
can generate infinite series of potential RCFT characters.

• It is a challenge to find which of them are valid RCFT’s.

• The holomorphic bootstrap method of computing
correlation functions [Mathur-SM-Sen (1989), SM-Muralidhara

(2018)] should be particularly useful to establish this, just as
it was successfully applied to the Baby Monster theory.

• One interesting point is that generically, the Hecke image
characters have no state at second level in the vacuum
character. This means there is no Virasoro algebra! Such a
phenomenon is familiar in one-character theories [Witten

(2007)]. It can be repaired by adding other Hecke images in
a particular way.
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Conclusions

• The holomorphic bootstrap gives a way to construct new
and simple RCFT’s. Many of these go beyond the “coset
classification”.

• The theories found so far have interesting properties from
the point of view of both mathematics and physics.

• One can compute four-point functions of these new theories
(in many cases) on the plane just using crossing-invariant
differential equations. This paves the way to give a precise
definition of the RCFT beyond just the characters.

• It appears that theories with arbitrarily large ` may exist
(other than tensor products). It should be interesting to
consider large-c limits of such theories.



Thank you
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