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Second Laws:

« Second law of thermodynamics: entropy of a closed
system can never decrease over time

What Vaspened_ here!? ﬂ What's this mesd?
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« Second law of black hole mechanics: horizon area is a
nondecreasing function of time in any classical process
(assuming the null energy condition)
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Second Laws:

« Second law of thermodynamics: entropy of a closed
system can never decrease over time

Is there more? Yes!

Quantum thermodyanmics provides
additional constraints on thermal
processes, which are relevant for

Quantum Field Theory and Gravity

/

« Second law of black hole mechanics: horizon area is a
nondecreasing function of time in any classical process
(assuming the null energy condition)
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* Distance measure: a measure of how distinguishable
two states are; should satisfy
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with A(p), a completely positive trace preserving map
(examples: time evolution or partial trace)
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Second Laws:

* Ag(p) = couple p to thermal bath with temperature */;
evolve for some time and trace out thermal bath

* 0 = pg, thermal state to which p will equilibriate

mmp D(D(Ag(p)llps) < D(pllps)s)
e example: relative entropy
log p) — tr(p log pg)

S(plpg) = tr(p
= tr(p

-

og p) — tr(p[-BH — log Zg])

/
. s TR

recover standard :M

Second Law!
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Second Laws:

mmp D(As(p)llps) < D(plipp)

e Renyi divergences:

1 « —
Dalpllps) = — 110gtr(p P )

* generalize relative entropy in the same sense that
Renyi entropies generalize entanglement entropy

lim Dao(plips) = S(plps) = tr(p log p) — tr(p log ps)

* when p and pg commute, D, with @ > 0 are necessary
and sufficient constraints for allowed transitions

» for noncommuting p and pg, D, with 0 < a < 2 provide
necessary constraints
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Second Laws:

mmp  D(As(p)llps) < D(pllps)

e Renyi divergences:

Dalpllpg) = =

* generalize relative entropy in the same sense that
Renyi entropies generalize entanglement entropy

lim Dao(plips) = S(plps) = tr(p log p) — tr(p log ps)

= B (F(p) — F(ps))
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D(Ag(p)llps) < D(pllps)

 distance function D orders
the states and constrains
the allowed transitions,
le, the path towards
thermal equilibrium
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Second Laws:
* Renyi divergences give one-param family of constraints

Do (Ag(p)llps) < Dalpllps) %

e each a may give a new
ordering of states and so
may provide new
constraints for the
allowed transitions,
le, the path towards
thermal equilibrium

e alternatively, new constraints
may be redundant or weaker

than those, eg, of free energy Answc_er depends on
detalls of system
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* will they provide new constraints for gravitational
dynamics that extend beyond the usual second law?

—> AdS/CFT correspondence
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* will they provide new constraints for gravitational
dynamics that extend beyond the usual second law?
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» Euclidean path integral construction for tr(p®pg L= for
a special class of nonequilibrium states p Iin the CFT

e recall

—BHcerr

P — €

e consider excited state:

_ﬁﬁ[

P =€
where:

H = Hepr + )\/dd_la: OA

L
|
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Renyi Divergences for QFT:

» Euclidean path integral construction for tr(p®pg L= for
a special class of nonequilibrium states p Iin the CFT

e combine

Zopr = tr (p%p5 ) = tr (e—aﬁﬁ 6—(1—a)BHCFT>
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e combine
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Renyi Divergences for QFT:

» Euclidean path integral construction for tr(p®pg L= for
a special class of nonequilibrium states p Iin the CFT

e combine

Zcrr = tr (PGPE a) =

"
\ N

—> “Euclidean quantum quench”

A(T) = 10(1) = O(T — af)] A

‘note: 0<a<1



Second Laws:
* Renyi divergences give one-param family of constraints

Do (As(p)llps) < Dalpllpg)

* will they provide new constraints for gravitational
dynamics that extend beyond the usual second law?

(e dmmm ()
I AdS/CFT

!
()




Holographic translation:

L
() pgp, thermal state In
boundary theory

=)

AdS black hole

A=0
A (On)
P
pd—A T N +
asymp. AdS
boundary >
r =00 A

choice of b.c.



Holographic translation:

pt -
p, excited state
deformed by 0p

=)

AdS black hole

scalar hair with scalar hair

A (Oa)
P
rd—»A + rA +
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asymp. AdS
boundary >
T =00 )\

choice of b.c.
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Holographic translation:

t -
1 o p, excited state
gravity settles | thermalization! deformed by 0,

to static BH
(with bigger A) “

AdS black hole
with scalar hair

scalag

collapse . . .
P We will constrain Lorentzian (OA)

dynamics, without examining
Lorentzian dynamics!!

asymp. AdS
boundary
r =00

>\

choice of b.c.
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A=0
Euclidean (boundary) =
time: 0<7t<pf A4
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Holographic translation of Renyi divergence:

Zopr = tr (Paﬂ};_a> ~ exp|—Ig(g,9)]
A=0
Euclidean (boundary) =
time: 0<7t<pf A4
on af

- calculate perturbatively in amplitude of scalar 1/52~2
—> solve linearized scalar eom In fixed BH bkgd

* only consider d = 2 (ie, Euclidean BTZ black hole)



Final result of holographic calculation:

PIPET T =1 Y (rp)e(trpg) e

R

\2 (QW)Q(A_Q) cL (A—-1)?*I(a,A) —al(1,A)

B 63 2413 a—1
where
2_A 2T =2
I(a,A) = 2F(fr()ﬁ)f0 dp (2rc —p) F A,A,A+%,1+ “’126 cosp

2 (154) T (3)°

I(1,A) =



Final result of holographic calculation:

it~
o(pllpg) = o — 1 08 (trp)(trpg) @
9 2(A-2) 2
~ 22 (27 cL (A—1)I(a,A) —al(1,A)
B 63 2413 a—1
where
2—A 2T
I{a,A) = 2F(\/_F()A)f0 dp (2ra —p) F A,A,A—I—%,l_l_@osp]

2 (154) T (3)°

I(1,A) =

* UV divergences arise because source A(t) changes
instantaneously! ——> UV regulator: € = 9/,



Final result of holographic calculation:
2(A—2) 2 B
Do (pllps) =~ N (2_”) cL (A=1)"I(a,A) —al(1,A)

™~/

B 671]8 2A+3 o — 1
A €2(1—A)
1 ‘;b~'—?\~,:‘~¢’~ P
€3—2A
0 >
0 1 3/2 y A

* UV divergences arise because source A(t) changes
instantaneously! ——> UV regulator: € = 9/,
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Final result of holographic calculation:

Da(pllpg) =~

Da:_

.2 (QW)Q(A_Z) cL (A—1)21(a,A) —al(l,A)

6r3 24+3 a—1

B

—

0.2 0.4 0.6 0.8 1.0 Y

e examine results: consider fixed A and vary «a



Final result of holographic calculation:
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R
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» satisfies expected properties of Renyi divergences
for0<a<1

» Positivity: D, = 0

» Continuity in o

» Monotonicity in a: d,D, = 0

» Concavity: (1 — a)D, is concave in «



Final result of holographic calculation:

( H ) 1 1 tr (papé_a)
D, = Q)
PIPB a— 1 5 (tfrp)o‘(trpﬁ)l_o‘

R

(2 2872 oL (A -1)2I(a,A) — al(1,A)
I5; 6r3 24+3 a—1

» satisfies expected properties of Renyi divergences
for0<a<1

» Positivity: D, = 0

» Continuity in o

» Monotonicity in a: d,D, = 0

» Concavity: (1 — a)D, is concave in «

* holographic result matches conformal perturbation
theory in boundary theory
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New holographic constraints?
* Renyi divergences give one-param family of constraints
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New holographic constraints?
* Renyi divergences give one-param family of constraints

Da(p2llpp) < Dalpilips)

/, ————
» compare individual states/ L~ —~~_
families to decide whether Py
o~
A, N

ruled out

/7
* ask If new constraints L ( COJB/)

a particular transition is /

are ever stronger than
standard second law
(le, free energy)




New holographic constraints?

Da(pllpg) )\2(%)“‘2) cL (A—1) I(0,A) - aI(1,A)
8" 16 ~ -

15 6r3 24+3 a—1
o 2(1-A)
1 St e
g3—2A
0 >
0 1 3/2 2 A

 consider a gravity theory with a single scalar, eq,
A=09 «<—> m?*=-0.99






Dq Da(pllpg) oc A7

- —> amplitude of scalar must decrease
: (only states with A < 1, may appear
as system settles to thermal equil.)







Dy Da(pllpg) oc A7

- —> amplitude of scalar must decrease
: (only states with A < 1, may appear
as system settles to thermal equil.)

already apparent from free energy

D1(pllpp)
no advantage from new constraints!

A > Ao

-
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New holographic constraints?

2(A—=2
Dutollon) ~ (2 (B=2) oL (A =12 I(a,A) — al(1,A)
“ B 15 6r3 28+3 a—1
) 2(1-4)
1 R A -
g3—2A
0) >
0) 1 2 A

« examine possible transitions from p; with A; = 0.9
to p, with A, = 0.6



Aside:

« examine possible transitions from p,; with A; = 0.9

two relevant operators in boundary theory
with A, =09 and A, = 0.6

)

two scalars, ®; and &, , in the bulk gravity theory
with masses m,? = —0.99 and m,* = —0.84

* must include extra bulk interactions, eqg,
U(®, dy) = g (D2 + ,d?)

to allow transitions between ®; and &, (ie, p; and p,)



New holographic constraints?

2(A—=2
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) 2(1-4)
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0) >
0) 1 2 A

« examine possible transitions from p; with A; = 0.9
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D, transition not allowed!
Do (p1llps) < Dalp2llps)

* already apparent from free energy

D1(p1llps) < D1(p2]lpp)
no benefit from new constraints

A=0.6
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« examine possible transitions from p; with A; = 0.9
to p, with A, = 0.6
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D, But must specify relative amplitudes!
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« examine possible transitions from p; with A; = 0.9
to p, with A, = 0.6
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« examine possible transitions from p; with A; = 0.9
to p, with A, = 0.6



D, But must specify relative amplitudes!

P (21)“‘“
M\ B

e transition allowed but seen

from free energy ,
f,,f
A=0.9.-
___________ A =06 4um
"""""""""""" y=0.125
0.2 0.4 0.6 0.8 1.0

« examine possible transitions from p; with A; = 0.9
to p, with A, = 0.6



D, - transition ruled out since Da(pillps) = Da(p2llps)
- for some values of «

« examine possible transitions from p; with A; = 0.9
to p, with A, = 0.6



D, - transition ruled out since Da(pillps) = Da(p2llps)
- for some values of «

* but free energy allows transition

access to full range of D,

— . .
provides new constraints!

A=06 4=

v =0.23

« examine possible transitions from p; with A; = 0.9
to p, with A, = 0.6



D, ¢ using only D4, transition ruled out for y > 0.32

-+ using family of D,, transition ruled out for y > 0.2

| 0|.2 - DI.4 - DI.S - DI.B - 1I.D
« examine possible transitions from p; with A; = 0.9
to p, with A, = 0.6



D, * using

- e using

=

> (.32
fory > 0.2

0.
e examine %



D, * using

- e using

0.
e examine ;11
to p, wit

B

> (.32
fory > 0.2
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Conclusions & Outlook:

* quantum thermodyanmics provides new constraints on
thermal processes, which constrain both thermalization
In quantum field theory and gravitational dynamics

« calculated Renyi divergences in CFT only for special
class of excited states; need to extend to more general
states, more general QFTs and larger range, eg, a > 1

e additional constraints from new distance functions
—> general reference states

e gravity constraints indirect through holography
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Second Laws:
* Renyi divergences give one-param family of constraints

Do (As(p)llps) < Dalpllpg)

* will they provide new constraints for gravitational
dynamics that extend beyond the usual second law?
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Conclusions & Outlook:

* quantum thermodyanmics provides new constraints on
thermal processes, which constrain both thermalization
In quantum field theory and gravitational dynamics

« calculated Renyi divergences in CFT only for special
class of excited states; need to extend to more general
states, more general QFTs and larger range, eg, a > 1

e additional constraints from new distance functions
—> general reference states

e gravity constraints only indirect through holography

» compute D, directly in gravity?
» phrase new constraints “geometrically™?



