Holographic Second Laws of Black Hole Thermodynamics

(with Alice Bernamonti, Federico Galli and Jonathan Oppenheim; arXiv:1803.03633)

 <u>Second law of thermodynamics</u>: entropy of a closed system can never decrease over time

about entropy until much later...

 <u>Second law of thermodynamics</u>: entropy of a closed system can never decrease over time

 <u>Second law of black hole mechanics</u>: horizon area is a nondecreasing function of time in any classical process (assuming the null energy condition)

 <u>Second law of thermodynamics</u>: entropy of a closed system can never decrease over time

 <u>Second law of black hole mechanics</u>: horizon area is a nondecreasing function of time in any classical process (assuming the null energy condition)

 <u>Second law of thermodynamics</u>: entropy of a closed system can never decrease over time

Is there more? Yes!

Quantum thermodyanmics provides additional constraints on thermal processes, which are relevant for Quantum Field Theory and Gravity

 <u>Second law of black hole mechanics</u>: horizon area is a nondecreasing function of time in any classical process (assuming the null energy condition) (Brandao, Horodecki, Ng, Oppenheim & Wehner)

Second Laws:

• Quantum thermodynamics applies perspectives & tools of quantum information to examine thermodynamics

(Brandao, Horodecki, Ng, Oppenheim & Wehner)

Second Laws:

- Quantum thermodynamics applies perspectives & tools of quantum information to examine thermodynamics
- Distance measure: a measure of how distinguishable two states are; should satisfy

$$D(\Lambda(\rho) \| \Lambda(\sigma)) \le D(\rho \| \sigma)$$

with $\Lambda(\rho)$, a completely positive trace preserving map (examples: time evolution or partial trace)

(Brandao, Horodecki, Ng, Oppenheim & Wehner)

Second Laws:

- Quantum thermodynamics applies perspectives & tools of quantum information to examine thermodynamics
- Distance measure: a measure of how distinguishable two states are; should satisfy

$$D(\Lambda(\rho) \| \Lambda(\sigma)) \le D(\rho \| \sigma)$$

with $\Lambda(\rho)$, a completely positive trace preserving map (examples: time evolution or partial trace) Where is the thermodynamics??

- Quantum thermodynamics applies perspectives & tools of quantum information to examine thermodynamics
- Distance measure: a measure of how distinguishable two states are; should satisfy

$$D(\Lambda(\rho) \| \Lambda(\sigma)) \le D(\rho \| \sigma)$$

with $\Lambda(\rho)$, a completely positive trace preserving map (examples: time evolution or partial trace)

Where is the thermodynamics??

- $\Lambda_{\beta}(\rho) = \text{couple } \rho$ to thermal bath with temperature $1/\beta$; evolve for some time and trace out thermal bath
- $\sigma = \rho_{\beta}$, thermal state to which ρ will equilibriate

- $\Lambda_{\beta}(\rho) = \text{couple } \rho$ to thermal bath with temperature $1/\beta$; evolve for some time and trace out thermal bath
- $\sigma = \rho_{\beta}$, thermal state to which ρ will equilibriate

$D(\Lambda_{\beta}(\rho) \| \Lambda_{\beta}(\rho_{\beta})) \le D(\rho \| \rho_{\beta})$

- $\Lambda_{\beta}(\rho) = \text{couple } \rho$ to thermal bath with temperature $\frac{1}{\beta}$; evolve for some time and trace out thermal bath
- $\sigma = \rho_{\beta}$, thermal state to which ρ will equilibriate

$$D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$$
$$\Lambda_{\beta}(\rho_{\beta}) = \rho_{\beta}$$

- $\Lambda_{\beta}(\rho) = \text{couple } \rho$ to thermal bath with temperature $\frac{1}{\beta}$; evolve for some time and trace out thermal bath
- $\sigma = \rho_{\beta}$, thermal state to which ρ will equilibriate

$D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$

$$S(\rho | \sigma) = \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho \log \sigma)$$

• $\Lambda_{\beta}(\rho) = \text{couple } \rho$ to thermal bath with temperature $\frac{1}{\beta}$; evolve for some time and trace out thermal bath

(Brandao, Horodecki, Ng, Oppenheim & Wehner)

• $\sigma = \rho_{\beta}$, thermal state to which ρ will equilibriate

$D(D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})_{\beta})$

$$S(\rho | \rho_{\beta}) = \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho \log \rho_{\beta})$$

$$\rho_{\beta} = e^{-\beta H} / Z_{\beta}$$

• $\Lambda_{\beta}(\rho) = \text{couple } \rho$ to thermal bath with temperature $\frac{1}{\beta}$; evolve for some time and trace out thermal bath

(Brandao, Horodecki, Ng, Oppenheim & Wehner)

• $\sigma = \rho_{\beta}$, thermal state to which ρ will equilibriate

 $D(D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})_{\beta})$

$$S(\rho | \rho_{\beta}) = \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho \log \rho_{\beta})$$
$$= \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho [-\beta H - \log Z_{\beta}])$$

• $\Lambda_{\beta}(\rho) = \text{couple } \rho$ to thermal bath with temperature $\frac{1}{\beta}$; evolve for some time and trace out thermal bath

(Brandao, Horodecki, Ng, Oppenheim & Wehner)

• $\sigma = \rho_{\beta}$, thermal state to which ρ will equilibriate

 $D(D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})_{\beta})$

$$S(\rho | \rho_{\beta}) = \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho \log \rho_{\beta})$$
$$= \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho [-\beta H - \log Z_{\beta}])$$
$$= \beta \langle H \rangle_{\rho} - S(\rho) - \beta F(\rho_{\beta})$$

- (Brandao, Horodecki, Ng, Oppenheim & Wehner)
- $\Lambda_{\beta}(\rho) = \text{couple } \rho$ to thermal bath with temperature $1/\beta$; evolve for some time and trace out thermal bath
- $\sigma = \rho_{\beta}$, thermal state to which ρ will equilibriate

 $D(D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})_{\beta})$

• example: relative entropy

recove

$$S(\rho | \rho_{\beta}) = \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho \log \rho_{\beta})$$

= $\operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho [-\beta H - \log Z_{\beta}])$
= $\beta \langle H \rangle_{\rho} - \overline{S}(\rho) - \beta F(\rho_{\beta})$
= $\beta (F(\rho) - F(\rho_{\beta}))$

(Brandao, Horodecki, Ng, Oppenheim & Wehner)

 $D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$

• Renyi divergences:

$$D_{\alpha}(\rho \| \rho_{\beta}) \equiv \frac{1}{\alpha - 1} \log \operatorname{tr} \left(\rho^{\alpha} \rho_{\beta}^{1 - \alpha} \right)$$

(Brandao, Horodecki, Ng, Oppenheim & Wehner)

 $D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$

• Renyi divergences:

$$D_{\alpha}(\rho \| \rho_{\beta}) \equiv \frac{1}{\alpha - 1} \log \operatorname{tr} \left(\rho^{\alpha} \rho_{\beta}^{1 - \alpha} \right)$$

- generalize relative entropy in the same sense that Renyi entropies generalize entanglement entropy
- $\lim_{\alpha \to 1} D_{\alpha}(\rho \| \rho_{\beta}) = S(\rho \| \rho_{\beta}) = \operatorname{tr}(\rho \log \rho) \operatorname{tr}(\rho \log \rho_{\beta})$ $\alpha \rightarrow 1$
- when ρ and ρ_{β} commute, D_{α} with $\alpha > 0$ are necessary and sufficient constraints for allowed transitions
- for noncommuting ρ and ρ_{β} , D_{α} with $0 \le \alpha \le 2$ provide necessary constraints

(Brandao, Horodecki, Ng, Oppenheim & Wehner)

$$D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$$

• Renyi divergences:

$$D_{\alpha}(\rho \| \rho_{\beta}) \equiv \frac{1}{\alpha - 1} \log \operatorname{tr} \left(\rho^{\alpha} \rho_{\beta}^{1 - \alpha} \right)$$

• generalize relative entropy in the same sense that Renyi entropies generalize entanglement entropy

$$\lim_{\alpha \to 1} D_{\alpha}(\rho \| \rho_{\beta}) = S(\rho | \rho_{\beta}) = \operatorname{tr}(\rho \log \rho) - \operatorname{tr}(\rho \log \rho_{\beta})$$
$$= \beta \left(F(\rho) - F(\rho_{\beta}) \right)$$

 $D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$

 $D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$

 $D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$

 $D(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \le D(\rho \| \rho_{\beta})$

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \leq D_{\alpha}(\rho \| \rho_{\beta})$
- each α may give a new ordering of states and so may provide new constraints for the allowed transitions, ie, the path towards thermal equilibrium

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \leq D_{\alpha}(\rho \| \rho_{\beta})$
- each α may give a new ordering of states and so may provide new constraints for the allowed transitions, ie, the path towards thermal equilibrium

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \leq D_{\alpha}(\rho \| \rho_{\beta})$
- each α may give a new ordering of states and so may provide new constraints for the allowed transitions, ie, the path towards thermal equilibrium

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \leq D_{\alpha}(\rho \| \rho_{\beta})$
- each α may give a new ordering of states and so may provide new constraints for the allowed transitions, ie, the path towards thermal equilibrium

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \leq D_{\alpha}(\rho \| \rho_{\beta})$
- each α may give a new ordering of states and so may provide new constraints for the allowed transitions, ie, the path towards thermal equilibrium
- alternatively, new constraints may be redundant or weaker than those, eg, of free energy

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho) \| \rho_{\beta}) \leq D_{\alpha}(\rho \| \rho_{\beta})$
- each α may give a new ordering of states and so may provide new constraints for the allowed transitions, ie, the path towards thermal equilibrium
- alternatively, new constraints may be redundant or weaker than those, eg, of free energy

Answer depends on details of system

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho)\|\rho_{\beta}) \leq D_{\alpha}(\rho\|\rho_{\beta})$
- will they provide new constraints for gravitational dynamics that extend beyond the usual second law?

AdS/CFT correspondence

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho)\|\rho_{\beta}) \leq D_{\alpha}(\rho\|\rho_{\beta})$
- will they provide new constraints for gravitational dynamics that extend beyond the usual second law?

• Euclidean path integral construction for tr($\rho^{\alpha}\rho_{\beta}^{1-\alpha}$) for a special class of nonequilibrium states ρ in the CFT

• Euclidean path integral construction for tr($\rho^{\alpha}\rho_{\beta}^{1-\alpha}$) for a special class of nonequilibrium states ρ in the CFT

- Euclidean path integral construction for tr($\rho^{\alpha}\rho_{\beta}^{1-\alpha}$) for a special class of nonequilibrium states ρ in the CFT
- recall

$$o_{\beta} = e^{-\beta H_{CFT}} =$$

• consider excited state:

$$\rho = e^{-\beta \tilde{H}} =$$

where:

$$\tilde{H} = H_{CFT} + \lambda \int d^{d-1}x \,\mathcal{O}_{\Delta}$$

- Euclidean path integral construction for tr($\rho^{\alpha}\rho_{\beta}^{1-\alpha}$) for a special class of nonequilibrium states ρ in the CFT
- combine

$$Z_{\rm CFT} = \operatorname{tr}\left(\rho^{\alpha}\rho_{\beta}^{1-\alpha}\right) = \operatorname{tr}\left(e^{-\alpha\beta\tilde{H}}e^{-(1-\alpha)\beta H_{CFT}}\right)$$

- Euclidean path integral construction for tr($\rho^{\alpha}\rho_{\beta}^{1-\alpha}$) for a special class of nonequilibrium states ρ in the CFT
- combine

Renyi Divergences for QFT:

- Euclidean path integral construction for tr($\rho^{\alpha}\rho_{\beta}^{1-\alpha}$) for a special class of nonequilibrium states ρ in the CFT
- combine

• note: $0 \le \alpha \le 1$

Second Laws:

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho)\|\rho_{\beta}) \leq D_{\alpha}(\rho\|\rho_{\beta})$
- will they provide new constraints for gravitational dynamics that extend beyond the usual second law?

$$Z_{CFT} = \operatorname{tr}\left(\rho^{\alpha}\rho_{\beta}^{1-\alpha}\right) \simeq \exp\left[-I_{E}(g,\phi)\right]$$

$$Z_{CFT} = \operatorname{tr}\left(\rho^{\alpha}\rho_{\beta}^{1-\alpha}\right) \simeq \exp\left[-I_{E}(g,\phi)\right]$$

Euclidean (boundary)
time: $0 \leq \tau \leq \beta$
$$= \sum_{\substack{\lambda \neq 0 \\ \text{on } \alpha\beta}} \lambda = 0$$
$$\Phi \sim \frac{\lambda}{r^{d-\Delta}} + \frac{\langle \mathcal{O}_{\Delta} \rangle}{r^{\Delta}} + \cdots$$

- calculate perturbatively in amplitude of scalar λ/β^{Δ−2}
 solve linearized scalar eom in fixed BH bkgd
- only consider d = 2 (ie, Euclidean BTZ black hole)

$$D_{\alpha}(\rho \| \rho_{\beta}) = \frac{1}{\alpha - 1} \log \frac{tr\left(\rho^{\alpha} \rho_{\beta}^{1 - \alpha}\right)}{(tr\rho)^{\alpha} (tr\rho_{\beta})^{1 - \alpha}}$$
$$\approx \lambda^{2} \left(\frac{2\pi}{\beta}\right)^{2(\Delta - 2)} \frac{cL}{6\pi\beta} \frac{(\Delta - 1)^{2}}{2^{\Delta + 3}} \frac{I(\alpha, \Delta) - \alpha I(1, \Delta)}{\alpha - 1}$$

where

$$I(\alpha, \Delta) = \frac{2^{2-\Delta}\sqrt{\pi}\Gamma(\Delta)}{\Gamma\left(\Delta + \frac{1}{2}\right)} \int_0^{2\pi\alpha} dp \left(2\pi\alpha - p\right) F\left[\Delta, \Delta, \Delta + \frac{1}{2}, \frac{1+\sqrt{1-\tilde{\epsilon}^2}\cos p}{2}\right]$$

$$I(1,\Delta) = \frac{2\pi^{3/2}\Gamma\left(\frac{1-\Delta}{2}\right)\Gamma\left(\frac{\Delta}{2}\right)^2}{\Gamma(\Delta)\Gamma\left(1-\frac{\Delta}{2}\right)}$$

$$D_{\alpha}(\rho \| \rho_{\beta}) = \frac{1}{\alpha - 1} \log \frac{tr\left(\rho^{\alpha} \rho_{\beta}^{1 - \alpha}\right)}{(tr\rho)^{\alpha} (tr\rho_{\beta})^{1 - \alpha}}$$
$$\approx \lambda^{2} \left(\frac{2\pi}{\beta}\right)^{2(\Delta - 2)} \frac{cL}{6\pi\beta} \frac{(\Delta - 1)^{2}}{2^{\Delta + 3}} \frac{I(\alpha, \Delta) - \alpha I(1, \Delta)}{\alpha - 1}$$

where

$$I(\alpha, \Delta) = \frac{2^{2-\Delta}\sqrt{\pi}\Gamma(\Delta)}{\Gamma\left(\Delta + \frac{1}{2}\right)} \int_0^{2\pi\alpha} dp \left(2\pi\alpha - p\right) F\left[\Delta, \Delta, \Delta + \frac{1}{2}, \frac{1+\sqrt{1-\tilde{\epsilon}^2}\cos p}{2}\right]$$

$$I(1,\Delta) = \frac{2\pi^{3/2}\Gamma\left(\frac{1-\Delta}{2}\right)\Gamma\left(\frac{\Delta}{2}\right)^2}{\Gamma(\Delta)\Gamma\left(1-\frac{\Delta}{2}\right)}$$

• UV divergences arise because source $\lambda(\tau)$ changes instantaneously! \longrightarrow UV regulator: $\tilde{\epsilon} = \frac{\delta}{L}$

• UV divergences arise because source $\lambda(\tau)$ changes instantaneously! \longrightarrow UV regulator: $\tilde{\epsilon} = \frac{\delta}{L}$

• examine results: consider fixed Δ and vary α

• examine results: consider fixed Δ and vary α

• examine results: consider fixed Δ and vary α

$$D_{\alpha}(\rho \| \rho_{\beta}) = \frac{1}{\alpha - 1} \log \frac{tr\left(\rho^{\alpha} \rho_{\beta}^{1 - \alpha}\right)}{(tr\rho)^{\alpha} (tr\rho_{\beta})^{1 - \alpha}}$$
$$\approx \lambda^{2} \left(\frac{2\pi}{\beta}\right)^{2(\Delta - 2)} \frac{cL}{6\pi\beta} \frac{(\Delta - 1)^{2}}{2^{\Delta + 3}} \frac{I(\alpha, \Delta) - \alpha I(1, \Delta)}{\alpha - 1}$$

- satisfies expected properties of Renyi divergences for $0 \le \alpha \le 1$
 - ➢ Positivity: $D_α ≥ 0$
 - \succ Continuity in α
 - > Monotonicity in α : $\partial_{\alpha} D_{\alpha} \ge 0$
 - ≻ Concavity: $(1 \alpha)D_{\alpha}$ is concave in *α*

$$D_{\alpha}(\rho \| \rho_{\beta}) = \frac{1}{\alpha - 1} \log \frac{tr\left(\rho^{\alpha} \rho_{\beta}^{1 - \alpha}\right)}{(tr\rho)^{\alpha} (tr\rho_{\beta})^{1 - \alpha}}$$
$$\approx \lambda^{2} \left(\frac{2\pi}{\beta}\right)^{2(\Delta - 2)} \frac{cL}{6\pi\beta} \frac{(\Delta - 1)^{2}}{2^{\Delta + 3}} \frac{I(\alpha, \Delta) - \alpha I(1, \Delta)}{\alpha - 1}$$

- satisfies expected properties of Renyi divergences for $0 \le \alpha \le 1$
 - ➢ Positivity: $D_α ≥ 0$
 - \succ Continuity in α
 - > Monotonicity in α : $\partial_{\alpha} D_{\alpha} \ge 0$
 - ≻ Concavity: $(1 \alpha)D_{\alpha}$ is concave in *α*
- holographic result matches conformal perturbation theory in boundary theory

Second Laws:

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho)\|\rho_{\beta}) \leq D_{\alpha}(\rho\|\rho_{\beta})$
- will they provide new constraints for gravitational dynamics that extend beyond the usual second law?

• Renyi divergences give one-param family of constraints

 $D_{\alpha}(\Lambda_{\beta}(\rho_{1}) \| \rho_{\beta}) \leq D_{\alpha}(\rho_{1} \| \rho_{\beta})$

• Renyi divergences give one-param family of constraints

$D_{\alpha}(\rho_2 \| \rho_{\beta}) \le D_{\alpha}(\rho_1 \| \rho_{\beta})$

 compare individual states/ families to decide whether a particular transition is ruled out

• Renyi divergences give one-param family of constraints

$D_{\alpha}(\rho_2 \| \rho_{\beta}) \le D_{\alpha}(\rho_1 \| \rho_{\beta})$

 compare individual states/ families to decide whether a particular transition is ruled out

Renyi divergences give one-param family of constraints

 $D_{\alpha}(\rho_2 \| \rho_{\beta}) \le D_{\alpha}(\rho_1 \| \rho_{\beta})$

- compare individual states/ families to decide whether a particular transition is ruled out
- ask if new constraints are ever stronger than standard second law (ie, free energy)

Aside:

• examine possible transitions from ρ_1 with $\Delta_1 = 0.9$ to ρ_2 with $\Delta_2 = 0.6$

two relevant operators in boundary theory with $\Delta_1 = 0.9$ and $\Delta_2 = 0.6$

two scalars, Φ_1 and Φ_2 , in the bulk gravity theory with masses $m_1^2 = -0.99$ and $m_2^2 = -0.84$

• must include extra bulk interactions, eg,

$$U(\Phi_1, \Phi_2) = \frac{g}{2} \left(\Phi_1 \Phi_2^2 + \Phi_2 \Phi_1^2 \right)$$

to allow transitions between Φ_1 and Φ_2 (ie, ρ_1 and ρ_2)

• examine possible transitions from ρ_1 with $\Delta_1 = 0.9$ to ρ_2 with $\Delta_2 = 0.6$

• examine possible transitions from ρ_1 with $\Delta_1 = 0.9$ to ρ_2 with $\Delta_2 = 0.6$

• examine possible transitions from ρ_1 with $\Delta_1 = 0.9$ to ρ_2 with $\Delta_2 = 0.6$

• examine possible transitions from ρ_1 with $\Delta_1 = 0.9$ to ρ_2 with $\Delta_2 = 0.6$

 D_{α} • using only D_1 , transition ruled out for $\gamma > 0.32$

• using family of D_{α} , transition ruled out for $\gamma > 0.2$

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho)\|\rho_{\beta}) \leq D_{\alpha}(\rho\|\rho_{\beta})$
- will they provide new constraints for gravitational dynamics that extend beyond the usual second law?

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho)\|\rho_{\beta}) \leq D_{\alpha}(\rho\|\rho_{\beta})$
- will they provide new constraints for gravitational dynamics that extend beyond the usual second law?

Conclusions & Outlook:

- quantum thermodyanmics provides new constraints on thermal processes, which constrain both thermalization in quantum field theory and gravitational dynamics
- calculated Renyi divergences in CFT only for special class of excited states; need to extend to more general states, more general QFTs and larger range, eg, $\alpha > 1$
- additional constraints from new distance functions
 ——> general reference states
- gravity constraints indirect through holography

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho)\|\rho_{\beta}) \leq D_{\alpha}(\rho\|\rho_{\beta})$
- will they provide new constraints for gravitational dynamics that extend beyond the usual second law?

- Renyi divergences give one-param family of constraints $D_{\alpha}(\Lambda_{\beta}(\rho)\|\rho_{\beta}) \leq D_{\alpha}(\rho\|\rho_{\beta})$
- will they provide new constraints for gravitational dynamics that extend beyond the usual second law?

Conclusions & Outlook:

- quantum thermodyanmics provides new constraints on thermal processes, which constrain both thermalization in quantum field theory and gravitational dynamics
- calculated Renyi divergences in CFT only for special class of excited states; need to extend to more general states, more general QFTs and larger range, eg, $\alpha > 1$
- additional constraints from new distance functions
 —> general reference states
- gravity constraints only indirect through holography
 - \succ compute D_{α} directly in gravity?
 - > phrase new constraints "geometrically"?