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This talk will address the following two questions and their CFT duals:

I. In an AdS effective action, what are the 
allowed gravitational couplings to matter?

II. What is the effective action of M-theory?



Low-energy actions are inherently IR objects, but are constrained by UV physics. 
Sometimes these constraints are not immediately obvious from standard effective 
field theory.

Cannot be part of a local action (chaos bound)

Sign-definite (causality)

swampland

∆i

Cijk

The Swampland is populated by examples of 
illegal effective field theories. 

What are all of the laws of The Swampland? 

I. Gravitational Couplings to Matter



Consider the product of two stress tensors:

This is a central object in any CFT. But we don’t understand it well.  

We’ll focus on the case where O is not the stress tensor or a composite thereof. 
In a large N CFT, such TTO couplings determine whether there exists a consistent 
truncation to Einstein gravity in AdS.

I. Gravitational Couplings to Matter

What can appear in the TT OPE?

What couples linearly to two gravitons?



In prototypical AdS/CFT, there is such a consistent truncation:

On the level of cubic couplings, 

Where does this low-energy constraint come from?
(This question is unique to d>2.)

I. Gravitational Couplings to Matter



In AdS, the first coupling that survives field redefinitions has four derivatives:

So the question becomes, what suppresses this term and others like it?

More generally, what is the CFT “dual” of the derivative expansion in the bulk?

Our proposal – based on explicit calculations and previous results on stress tensor 
three-point couplings – will be: the expansion in the higher spin single-trace gap scale.

I. Gravitational Couplings to Matter

Counting AdS derivatives = Counting powers of ∆gap



II. What is the effective action of M-theory?

We utterly lack a non-perturbative description of M-theory…
Perturbatively, M-theory = 11D SUGRA + higher derivative corrections. 
Even so, explicit results are scarce:

• Results obtained by loop computations in 11D SUGRA + S1/T2

compactification + explicit string calculations/S-duality

Idea: Use independent calculation of 6d (2,0) CFT data to build M-theory.

• Today, we will recover the M-theory amplitude through 12 derivatives.

[Green, Gutperle, Kwon, Russo, 
Vanhove, Tseytlin, Berkovits, 
Gomez, Mafra, Schlotterer, 
Stieberger, D’Hoker, Phong, 
Gross, Witten,…]

UnknownKnown

[See also Chester, Pufu, Yin]



Tool: Lorentzian CFT correlators

The numerical bootstrap expands in a Lorentzian 
neighborhood of the crossing-symmetric point.

Recent analytic progress in the bootstrap has mostly 
come from thinking about other Lorentzian regimes. 

• Lightcone

• Double-lightcone

• Regge

• Bulk-point (flat space)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin; Komargodski, Zhiboedov; Alday, 
Zhiboedov; Costa, Goncalves, Penedones; Okuda, Penedones; Penedones; 
Maldacena, Simmons-Duffin, Zhiboedov; Caron-Huot]
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Outline

1. Review: defining holographic CFTs

2. Gravitational couplings to matter from CFT

3. M-theory effective action

4. Toward D8R4

Based on 1712.04861 (w/ D. Meltzer), 1805.00892 (w/ S. Chester) and WIP (w/L. Rastelli)



What is a “holographic” CFT? 

First, a brief review.



Defining Holographic CFTs

What conditions must a large N CFT satisfy such that its bulk dual is “simple”?

Known supergravity examples have a spectrum like this:
(e.g. General relativity + 
perturbative fields vs. 
Classical string theory)

Large higher-spin gap = “Strong coupling”



Defining Holographic CFTs

What conditions must a large N CFT satisfy such that its bulk dual is “simple”?

Known supergravity examples have a spectrum like this:

[Heemskerk, Penedones, Polchinski, Sully]

Large N + Large gap to higher-spin 
single-trace operators 

= 
Weakly coupled, local gravity dual



• 1-to-1 map between solutions of four-point crossing and AdS contact interactions.

• At O(N0), this is generalized free field theory. At O(1/N2), new solutions: 
There are (𝐿+2)(𝐿+4)

8
solutions: precisely one for every independent, local quartic bulk 

vertex with ≤ 2L+2 derivatives.

• These vertices are expected to be suppressed by the mass scale of new physics

Defining Holographic CFTs

[HPPS]

[Caron-
Huot]



Defining Holographic CFTs

The gap condition also suppresses higher-curvature corrections to general relativity.

Universality in gravity is an emergent large gap phenomenon in CFT.

Other aspects of higher-d CFTs – e.g. thermodynamics, partition functions, entanglement structure 
– also signal bulk emergence. All are consistent with the gap hypothesis. 

Large N + Large gap to higher-spin 
single-trace operators 

= 
Weakly coupled, local gravity dual 

containing general relativity

[Camanho, Edelstein, Maldacena, Zhiboedov]

e.g. [Afkhami-Jeddi, Hartman, Kundu, Tajdini; Costa, Hansen, Penedones; Kulaxizi, Parnachev, Zhiboedov; 
Meltzer, EP; Belin, de Boer, Krufhoff, Michel, Shaghoulian, Shyani; Mefford, Shagloulian, Shyani]



Defining Holographic CFTs

However:

1) No explicit examples where these bounds are even parametrically saturated. 

In families of supersymmetric CFTs, neither a nor c can depend on ∆gap.  

2) What about gravitational couplings to matter? 
(Isn’t this the hard part of UV completing quantum gravity??)

4d CFT:



In prototypical AdS/CFT, there is such a consistent truncation:

On the level of cubic couplings, 

Where does this low-energy constraint come from?
(This question is unique to d>2.)

I. Gravitational Couplings to Matter



More robust than a-c: <TTO> can vary in 4d N<4 SCFT, even if O is protected.

This would imply that consistent truncation to Einstein gravity follows from the absence of 
light higher spin particles. 

In AdS, the first coupling that survives field redefinitions has four derivatives:

What is the CFT dual of the derivative expansion in AdS?

I. Gravitational Couplings to Matter



Some notation:



Lightcone limit

The simplest is the lightcone limit: 

The “lightcone bootstrap” analytically proved the existence of 
infinite towers of large spin “double-twist” conformal primaries,

These operators exist to all orders in a 1/J expansion, with 
anomalous dimensions suppressed by powers of 1/J:

Follows from matching singularities in s- and t-channel.

where

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin; Komargodski, 
Zhiboedov; Kaviraj, Sen, Sinha; Alday; Simmons-Duffin]



Regge limit = Lorentzian regime of double-null separations

Euclidean four-point functions may be analytically continued:

Dual to high-energy, fixed impact parameter scattering in AdS.

Regge limit

subject to

[Cornalba, Costa, Goncalves, Hansen, Penedones; Kulaxizi, 
Parnachev, Zhiboedov; Li, Meltzer, Poland]



Regge limit

“Reggeon”

Intercept

Leading Regge trajectory = 
the set of operators of lowest 
dimension at each spin, 
analytically continued to 
continuous spin. 

Contributions to CFT correlators in the Regge limit are organized into Regge trajectories:  

These contributions are 
computed by “conformal 
Regge theory”



String theory has soft behavior in the Regge limit, despite infinite towers of operators.
This “conspiracy” is intimately tied to the existence of (linear) Regge trajectories.

Regge limit as a bootstrap tool

[Maldacena, Shenker, Stanford; EP; Caron-Huot]

This has a precise analog in CFT:

Inversion formula: operators come in families analytic in J, 
with rigid OPE structure.

Moreover, there is a universal bound on the behavior of 
correlation functions in the Regge limit. At large N, j(0) ≤ 2.

 “Bootstrap” constraint.



We impose unitarity in the Regge limit of mixed systems of spinning four-point functions. 

TTO Couplings from the Regge Limit
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TTO Couplings from the Regge Limit

External operators carry spin. 

A matrix of four-point functions. Growth of correlations is 
bounded. (Chaos destroys 
order.)



We impose unitarity in the Regge limit of mixed systems of spinning four-point functions. 

TTO Couplings from the Regge Limit

External operators carry spin. 

A matrix of four-point functions. Growth of correlations is 
bounded. (Chaos destroys 
order.)

By tuning L, we access different 
physical regimes:

L>>1: lightcone physics/ANEC

L<<1: probe bulk locality



We impose unitarity in the Regge limit of mixed systems of spinning four-point functions. 

TTO Couplings from the Regge Limit

External operators carry spin. 

A matrix of four-point functions. Growth of correlations is 
bounded. (Chaos destroys 
order.)

At small impact 
parameter L ~ 1/∆gap



TTO Couplings from the Regge Limit

• Conformal Regge theory computes the contribution of leading Regge trajectory, 
parameterized by        , to this CFT correlator. 

• Take “mixed” state:

• In the channel, unitarity upper-bounds the off-diagonal couplings:

• T lives on this trajectory, at j=2. This bounds <TTO>. 



TTO Couplings from the Regge Limit

Some details:

Solve in saddle-point approximation at high-energy. 
The solution is a function of L. 
Changing L = sliding along trajectory. 

The Regge limit of spinning three-point structures has 
extra derivatives for <TTO> versus <TTT>.
These derivatives act on the Regge limit of the conformal 
blocks. At small L, the blocks behave like a power law. 
For scalar O, there are two more derivatives. This leads to 
suppression by two powers of the gap. 



The holographic dual of a derivative

Similar results for other couplings <TAB> for A,B of spin-0,1,2, conserved and non-conserved. 
In every case, the interaction is suppressed by the expected power of the gap. 

Therefore, on the level of cubic couplings, the existence of a consistent truncation to Einstein gravity 
in a theory of gravity is a consequence of the absence of higher spin matter.



Universal Bounds on the Stress Tensor OPE

At L >> 1, Regge limit = lightcone limit  ANEC bounds. If we don’t impose large gap,

where nB is the coefficient of the “free boson structure” in TTT:

This was first derived via the ANEC 

It applies to all CFTs: lightcone physics is universal, not due to large N or large gap.

[Cordova, Maldacena, Turiaci]



Universal Bounds on the Stress Tensor OPE

At L >> 1, Regge limit = lightcone limit  ANEC bounds. If we don’t impose large gap,

where nB is the coefficient of the “free boson structure” in TTT:

This was first derived via the ANEC 

It applies to all CFTs: lightcone physics is universal, not due to large N or large gap.

[Cordova, Maldacena, Turiaci]

In any consistent theory of AdS quantum gravity, matter couplings 
to two gravitons are bounded by the graviton self-coupling.



We derived similar bounds for O with spin. 
For O = non-conserved spin-2, <TTO> has three structures, the same number as <TTT>:

Universal Bounds on the Stress Tensor OPE



We derived similar bounds for O with spin. 
For O = non-conserved spin-2, <TTO> has three structures, the same number as <TTT>:

Using analyticity in spin of CFT data (cf. inversion formula, light-ray operators), all spin-2 
operators can be organized into families extending to asymptotically large spin. There is 
an infinite number of such families, owing to the existence of multi-twist operators. 

This implies that, barring the decoupling of an infinite number of spin-2 operators,

in any interacting CFT. (Free CFT spectra mostly sit at zeroes of f(∆).) 

Universal Bounds on the Stress Tensor OPE

[Caron-Huot; Kravchuk, Simmons-Duffin]

[Zhiboedov]



Outline

1. Review: defining holographic CFTs

2. Gravitational couplings to matter from CFT

3. M-theory effective action

4. Toward D8R4



11D Four-Graviton Scattering

Instead of the effective action, it’s less ambiguous to study on-shell amplitudes:

K is an 8-derivative kinematic factor = R4 in momentum space, linearized in the 
graviton fluctuation and contracted with polarizations.

From 11D Feynman diagrams + IIA string amplitudes, the following terms are known:

1-loop on

2-loop on 

Finite terms in 
decompactification
limit



11D Four-Graviton Scattering

These terms are special:

1. They are protected by 11D SUSY from higher-loop corrections.

2. They match certain perturbative terms in type IIA, even though M-theory is 
the strong coupling limit! (The corresponding terms in IIA obey N.R. theorems.) 

3. They are finite in the decompactification limit, but are not necessarily the 
leading terms at their derivative order.

(e.g. in type IIA, D6R4 truncates at three loops in perturbation theory, not two. The three loop term 
~ (R11)3 is part of an infinite series of divergent terms of the 1-loop 11D amplitude, which re-sum 
into a non-analytic contribution due to massless KK modes.)



(2,0) CFT basics

• AN-1 (2,0) CFT = Worldvolume CFT of N M5 branes in R10,1

• Central charge:
• ½ -BPS operators dual to scalar KK modes on AdS7 x S4 :

(Symmetric traceless tensors of so(5))



(2,0) CFT basics

• AN-1 (2,0) CFT = Worldvolume CFT of N M5 branes in R10,1

• Central charge:
• ½ -BPS operators dual to scalar KK modes on AdS7 x S4 :

Important basic point:
Because LSphere ~ LAdS, powers of 11D Planck length = powers of 1/c.

Many of our results can be understood by following this replacement rule.

(Symmetric traceless tensors of so(5))



We will study 4-point functions of the ½-BPS operators:

These admit an expansion in superconformal blocks. 

All we will need is that the higher-k ½-BPS representations appear in the OPE

(R-symmetry cross-ratios: )

(2,0) CFT basics



Remarkably, the ½ -BPS (and some ¼-BPS) 3-point functions are fixed by the 
quantum WN algebra at c = 4N3-3N-1.

At large c, the operator map is (modulo mixing)

This can be derived by correlating R- and x-space cross ratios in the 4-point functions:

Crossing + holomorphy imply that the chiral correlator is fully fixed by [2k/3] OPE coefficients. 
This is not obvious from the 6d perspective.

Generated by holomorphic currents of spins s=2,3,…,N:

The WN Chiral Algebra Conjecture [Beem, Rastelli, van Rees]

[Bouwknegt; Keller; Headrick, Maloney, EP, Zadeh]



The WN Chiral Algebra Conjecture

This is an extremely powerful claim: quantum M-theory from a familiar chiral algebra!
The lowest non-trivial (i.e. non-Virasoro) structure constant is 3-3-4:

The Jacobi identity implies that all Cijk are (powers of) rational functions of N and C334.
In the 1/c expansion, this implies the following behavior:

6d 2d

[Gaberdiel, Gopakumar; 
Prochazka; Linshaw]



11D Uplift, Part 1

Argument:

1. No c-17/9, c-19/9
 No D2R4, D4R4 (barring ∞ cancellations)

2. All powers consistent with R, R4, D6R4 + loops thereof

Minimal explanation: the only protected 11D vertices are R, R4, D6R4.

(Legs on S4)



(2,0) 4-point functions

To derive 11D coefficients from CFT, use 4-point functions
1. Determine via independent CFT computation.
2. Take flat space limit. 

• In Mellin space, take large s,t. (In x-space, this is the “bulk-point limit”.)

Tree-level Mellin amplitudes are simple:

Simple poles at 

Polynomial
[Polchinski; HPPS; Mack; 
Penedones; Maldacena, 
Simmons-Duffin, Zhiboedov]



(2,0) 4-point functions

Accordingly, two types of solutions:

In a general (non-supersymmetric) CFT, without using the AdS action we have no 
control over the polynomial terms. 
However, for (2,0), the amplitude must solve the maximal superconformal Ward ID:

Difference operator
• Degree-8 in (s,t)
• Degree-2 in (𝜎, 𝜏)

“Reduced” amplitude

[Rastelli, Zhou]



(2,0) 4-point functions

Accordingly, two types of solutions:

In a general (non-supersymmetric) CFT, without using the AdS action we have no 
control over the polynomial terms. 
However, for (2,0), the amplitude must solve the maximal superconformal Ward ID:

Difference operator
• Degree-8 in (s,t)
• Degree-2 in (𝜎, 𝜏)

“Reduced” amplitude

Correlated!

[Rastelli, Zhou]



(2,0) 4-point functions

Solve by imposing maximal degree-p in large s,t limit

This is equivalent to solving in the 1/c expansion, due to the correspondence between 
bulk derivatives (which carry powers of 1/c) and the degree of Mellin amplitudes: 
(Degree p) = 2p derivatives. Similarly, the cubic coefficients are 

(An equivalent argument is to use the flat space limit rather than the AdS action.)



11D Uplift Part 2

An algorithm: 
1. Find an operator (value of k) whose degree-p Mellin amplitude may be completely 

fixed using the chiral algebra – that is, for which there is no pure polynomial term. 
2. Uplift to 11D. 



11D Uplift Part 2

An algorithm: 
1. Find an operator (value of k) whose degree-p Mellin amplitude may be completely 

fixed using the chiral algebra – that is, for which there is no pure polynomial term. 
2. Uplift to 11D. 

Begin with R4 (p=4):

(Virasoro)



11D Uplift Part 2

An algorithm: 
1. Find an operator (value of k) whose degree-p Mellin amplitude may be completely 

fixed using the chiral algebra – that is, for which there is no pure polynomial term. 
2. Uplift to 11D. 

Begin with R4 (p=4):

(Virasoro)

From WN,



11D Uplift Part 2

An algorithm: 
1. Find an operator (value of k) whose degree-p Mellin amplitude may be completely 

fixed using the chiral algebra – that is, for which there is no pure polynomial term. 
2. Uplift to 11D. 

Begin with R4 (p=4):

(Virasoro)

From WN,



11D Uplift Part 2

To uplift to 11D, we need to generalize Penedones’ formula to the case of KK modes.
The answer must be simple: all KK modes uplift to 11D gravitons.
Here is the answer:



11D Uplift Part 2

To uplift to 11D, we need to generalize Penedones’ formula to the case of KK modes.
The answer must be simple: all KK modes uplift to 11D gravitons.
Here is the answer:

Degree-(k-2) polynomial. 
Carries the “extra” polarizations 
that the 11D graviton doesn’t 
have.



11D Uplift Part 2

To uplift to 11D, we need to generalize Penedones’ formula to the case of KK modes.
The answer must be simple: all KK modes uplift to 11D gravitons.
Here is the answer:

11D graviton amplitude in 
orthogonal kinematics

AdS (momenta)

Sphere 
(polarizations)



11D Uplift Part 2

To uplift to 11D, we need to generalize Penedones’ formula to the case of KK modes.
The answer must be simple: all KK modes uplift to 11D gravitons.
Here is the answer:

Take the limit on the level of the 
SC Ward ID itself:

where
Precisely the kinematic factor 
appearing in 11D, in 
orthogonal kinematics.



11D Uplift Part 2

To uplift to 11D, we need to generalize Penedones’ formula to the case of KK modes.
The answer must be simple: all KK modes uplift to 11D gravitons.
Here is the answer:

Using our p=4 solution with OPE coefficient determined by WN,

we uplift to R4 in 11D:



Outline

1. Review: defining holographic CFTs

2. Gravitational couplings to matter from CFT

3. M-theory effective action

4. Toward D8R4



D8R4 and beyond

What is the story with D8R4?
1) 11D Feynman diagrams insufficient (no SUSY protection)
2) No relation to IIA string perturbation theory

A finite term in 11D requires 

(It is also possible that there are more divergent terms than this, that somehow all contribute to 
11D non-analytic terms. Is there a meaningful separation?)

f(gs) is not known to obey any non-renormalization theorem, despite conjectures!

[See recent work of Bern et al]



D8R4 and beyond

The most basic question is:

Is D8R4 zero in 11D?

This can be mapped unambiguously to a statement about (2,0) CFT data at O(c-23/9).
This data is not ½-BPS. Can the bootstrap calculate it?
e.g. consider O4, the D[04] (¼-BPS) operator appearing in the OPE of two stress tensor 
multiplets.

We derived a precise dictionary between 1/c CFT data and the 11D derivative expansion. 



1. Write your 4-point function as a contour integral along the principal series

2. Apply orthogonality condition for conformal partial waves in the principal series
3. Perform contour deformation/analytic continuation in the complex J-plane:

where dDisc may be defined as

The OPE coefficients are given by the residues:    

Lorentzian Inversion Formula

[Caron-Huot]



Taking the dDisc of a t-channel conformal partial wave computes the four-point 
crossing kernel. This is a 6j-symbol of the conformal group. 

When (∆,J) take double-trace values, dDisc = 0. These are zeroes of the 6j symbol.

In SCFT, many protected operators have precisely these dimensions!
This implies major reduction in determination of OPE data via inversion.

Still, one needs to know something about the long operator data… WIP!

[Liu, EP, Rosenhaus, 
Simmons-Duffin, to appear]

Lorentzian Inversion Formula



Summary + Future directions

• Derived universal constraints on the CFT stress tensor and its dual gravitational 
couplings to matter in any theory of AdS quantum gravity, 

• Extracted the 11D four-graviton amplitude from (2,0) CFT correlation functions, 
through R4.  

• D8R4  and beyond in 11D… Inversion formula in (2,0) CFT
• Higher derivatives in string theory? 
• …


