Poisson-Lie T-Duality, Generalized

 and Double Geometries: a Toy ModelFranco Pezzella
INFN - Naples Section - Italy
with V. E. Marotta (Heriot-Watt Edimbourgh) and P. Vitale (Naples
Univ. Federico II)
e-Print: arXiv:1804.00744 [hep-th] + work in progress

New Frontiers in String Theory 2018 Yukawa Institute for Theoretical Physics (YITP)

Kyoto - July, 12th 2018

PLAN OF THE TALK

Poisson-Lie
T-Duality, Generalized and Double Geometries: A Toy Model

Franco
Pezzella

Introduction and Motivation

A Toy Model: the 3-D
Isotropic Rigid Rotator

The Dual
Rotator
The Doubled Rotator

Conclustons
AND
Perspectives
(1) Introduction and Motivation

Plan of the talk

Introduetion and Motivation
(1) Introduction and Motivation
(2) A Toy Model: the 3-D Isotropic Rigid Rotator

Plan of the talk

(3) The Dual Rotator
(1) Introduction and Motivation Rotator
(2) A Toy Model: the 3-D Isotropic Rigid

Rotator

The Doubled Rotator
Conelustons
AND
Perspectives

Plan of the talk

(3) The Dual Rotator
(9) The Doubled Rotator
(1) Introduction and Motivation Rotator
(2) A Toy Model: the 3-D Isotropic Rigid
-

[^0]
PLAN OF THE TALK

(3) The Dual Rotator
(9) The Doubled Rotator
(3) Conclusions and Perspectives

Reminding the $O(D, D)$ Abelian T-DuALITY

- Already at the classical level the indefinite orthogonal group $O(D, D)$ naturally appears in the Hamiltonian description of the bosonic string in a D-dimensional Riemannian target space with background (G, B).
- The string Hamiltonian density can be written as:

$$
\mathcal{H}=\frac{1}{4 \pi \alpha^{\prime}}\binom{\partial_{\sigma} X}{2 \pi \alpha^{\prime} P}^{t} \mathcal{M}(G, B)\binom{\partial_{\sigma} X}{2 \pi \alpha^{\prime} P}
$$

where the generalized metric is introduced:

$$
\mathcal{M}(G, B)=\left(\begin{array}{cc}
G-B G^{-1} B & B G^{-1} \\
-G^{-1} B & G^{-1}
\end{array}\right)
$$

- The Hamiltonian density is proportional to the squared length of the 2D-dimensional generalized vector A_{P} in $T M \oplus T^{*} M$, as measured by the generalized metric \mathcal{M} :

$$
A_{P}(X) \equiv \partial_{\sigma} X^{a} \partial_{a}+2 \pi \alpha^{\prime} P_{a} d X^{a}
$$

Constraints and Generalized Vectors

- In terms of the generalized vector A_{P} the constraints coming from $T_{\alpha \beta}=0$ can be rewritten as [Rennecke]:

$$
A_{P}^{t} \mathcal{M} A_{P}=0 \quad A_{P}^{t} \Omega A_{P}=0
$$

- The first constraint sets the Hamiltonian density to zero, while the second completely determines the dynamics and it involves of the $O(D, D)$-invariant metric:

$$
\Omega=\left(\begin{array}{ll}
0 & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right)
$$

- All the admissible generalized vectors satisfying the second constraint are related by $O(D, D)$ transformations via $A_{P}^{\prime}=\mathcal{T} A_{P}$ with a suitable compensating transformation through \mathcal{T}^{-1} of the generalized metric. The Hamiltonian density and the energy-momentum tensor are left invariant.

Constant Backgrounds

- In the presence of constant background (G, B) along the directions labelled by $a, b=(1, \ldots, d)$ the e.o.m.'s for the string coordinates are a set of conservation laws on the world-sheet:

$$
\partial_{\alpha} J_{a}^{\alpha}=0 \rightarrow J_{a}^{\alpha}=\eta^{\alpha \beta} G_{a b} \partial_{\beta} X^{b}+\epsilon^{\alpha \beta} B_{a b} \partial_{\beta} X^{b}
$$

- Locally, one can express such currents as:

$$
J_{a}^{\alpha} \equiv \epsilon^{\alpha \beta} \partial_{\beta} \tilde{X}_{a} \quad \rightarrow \text { dual coordinates }
$$

and the initial Polyakov action S defines a dual action \tilde{S} that can be rewritten in terms of the constant dual (\tilde{G}, \tilde{B})-background:

$$
\tilde{G}=\left(G-B G^{-1} B\right)^{-1} ; \quad \tilde{B}=-G^{-1} B \tilde{G} \quad \text { Buscher rules }
$$

- S and \tilde{S} describe the evolution of the same string theory \rightarrow they are dual to each other.

$$
O(d, d ; \mathbb{R}) \rightarrow O(d, d ; \mathbb{Z})
$$

- The equations of motion for the generalized vector $\chi=(X, \tilde{X})$ become a single $O(d, d)$-invariant equation [Duff, Hull] :

$$
M \partial_{\alpha} \chi=\Omega \epsilon_{\alpha \beta} \partial^{\beta} \chi .
$$

with M being the generalized metric now defined in terms of the constant (G, B) background.

- In particular, if the closed string coordinates are defined on a d-dim torus T^{d}, the dual coordinates will satifisfy the same periodicity conditions and then $O(d, d) \rightarrow O(d, d ; \mathbb{Z})$ becomes an exact symmetry \rightarrow Abelian T-duality [cfr. Giveon, Rabinovici and Porrati].
- This has suggested since long [Siegel, Duff, Tseytlin] to look for a manifestly T-dual invariant formulation of string theory. This has to be based on a doubling of the string coordinates in the target space, since it requires the introduction of both the coordinates X^{a} and the dual ones \tilde{X}_{a}.
- The main goal of this new action would be to explore more closely aspects of string geometry, hence of string gravity.

DFT, Double and Generalized Geometries

- From a manifestly T-dual invariant two-dimensional string world-sheet [Siegel, Tseytlin, Hull, Park] Double Field Theory [Siegel, Duff, Hull and Zwiebach] should emerge out as a low-energy limit. DFT developed as a way to encompass the Abelian T-duality in field theory and Double Geometry underlies it. In DFT, diffeomorphisms rely on an $O(d, d)$ structure defined on the tangent space of a doubled torus $\mathcal{T}^{2 d}$. A section condition has then to imposed for halving the $2 d$ coordinates.
- Connections with Generalized Geometry that [Hitchin, Gualtieri] has arisen as a means to geometrize duality symmetries. It is based on replacing the tangent bundle $T \mathcal{M}$ of a manifold \mathcal{M} by $T \mathcal{M} \oplus T^{*} \mathcal{M}$ and the Lie brackets on the sections of $T \mathcal{M}$ by the Courant brackets.
- It seems relevant to analyze more deeply the geometrical structure of (Abelian, non-Abelian, Poisson-Lie) T-dualities and their relations with Generalized Geometry and/or Double Geometry.

Motivation

- Abelian T-duality refers to the presence of Abelian isometries $U(1)^{d}$ in both the dual sigma models. They can be composed into $U(1)^{2 d}$ that provides the simplest example of Drinfeld Double, i.e. a Lie group D whose Lie algebra \mathcal{D} can be decomposed into a pair of maximally isotropic subalgebras with respect to a non-degenerate invariant bilinear form on \mathcal{D}.
- A classification of T-dualities lies on the types of underlying Drinfeld doubles [Klimcik]:
(1) Abelian doubles corresponding to the standard Abelian T-duality;
(2) semi-Abelian doubles $(\mathcal{D}=\mathcal{G}+\tilde{\mathcal{G}}$ with $\tilde{\mathcal{G}}$ abelian) corresponding to the non-Abelian T-duality;
(3) non-Abelian doubles (all the others) corresponding to Poisson Lie T-duality where no isometries hold for either of the two dual models.
- Simple mechanical system: the three-dimensional isotropic rigid rotator, thought as a $0+1$ field theory.
- Simple mechanical system: the three-dimensional isotropic rigid rotator, thought as a $0+1$ field theory.
- The dynamics of this model exhibits Poisson-Lie symmetries which can be understood as duality transformations [Marmo Simoni Stern]
- Simple mechanical system: the three-dimensional isotropic rigid rotator, thought as a $0+1$ field theory.
Franco
Pezzella
- The dynamics of this model exhibits Poisson-Lie symmetries which can be understood as duality transformations [Marmo Simoni Stern]
- After defining the dual model, the symmetry under such duality transformations can be made manifest by introducing a parent action, containing a number of variables which is doubled with respect to the original one and from which both the original model and its dual can be recovered by a suitable gauging.
- Geometric structures can be understood in terms of Generalized Geometry and/or Double Geometry.

The 3-D RIGID ROTATOR ON THE CONFIGURATION SPACE $S U(2)$

- Action:

$$
S_{0}=-\frac{1}{4} \int_{\mathbb{R}} \operatorname{Tr}\left(g^{-1} d g \wedge^{*} g^{-1} d g\right)=-\frac{1}{4} \int_{\mathbb{R}} \operatorname{Tr}\left(g^{-1} \frac{d g}{d t}\right)^{2} d t
$$

$g: t \in \mathbb{R} \rightarrow g(t) \in S U(2), g^{-1} d g=i \alpha^{k} \sigma_{k}$ the Maurer-Cartan left-invariant Lie algebra-valued one-form, $*$ the Hodge star operator on the source space $\mathbb{R}, * d t=1$, Tr the trace over the Lie algebra $\rightarrow(0+1)$-dimensional group-valued "field theory".

- Parametrization: $g=y^{0} \sigma_{0}+i y^{i} \sigma_{i} \equiv 2\left(y^{0} e_{0}+i y^{i} e_{i}\right)$ with $\left(y^{0}\right)^{2}+\sum_{i}\left(y^{i}\right)^{2}=1$ and σ_{0} and σ_{i} respectively the identity matrix \mathbb{I} and the Pauli matrices

$$
y^{i}=-\frac{i}{2} \operatorname{Tr}\left(g \sigma_{i}\right), \quad y^{0}=\frac{1}{2} \operatorname{Tr}\left(g \sigma_{0}\right), \quad i=1, . ., 3
$$

- Lagrangian written in terms of the non-degenerate invariant scalar product defined on the $S U(2)$ manifold: $<a|b\rangle=\operatorname{Tr}(a b)$ for any two group elements.
- In terms of the left generalized velocities \dot{Q}^{i}

$$
\dot{Q}^{i}:=\left(y^{0} \dot{y}^{i}-y^{i} \dot{y}^{0}+\epsilon_{j k}^{i} y^{j} \dot{y}^{k}\right)
$$

the Lagrangian reads as: $\mathcal{L}_{0}=\frac{1}{2} \dot{Q}^{i} \dot{Q}^{j} \delta_{i j}$

- Tangent bundle $T S U(2)$ coordinates: $\left(Q^{i}, \dot{Q}^{i}\right)$ with the Q^{i} 's implicitly defined.
- Equations of motion $\quad \ddot{Q}^{i}=0$.
- Cotangent bundle $T^{*} S U(2)$ coordinates: $\left(Q^{i}, I_{i}\right)$ with

$$
I_{i}=\frac{\partial \mathcal{L}_{0}}{\partial \dot{Q}^{i}}=\delta_{i j} \dot{Q}^{j} \quad \text { conjugate left momenta }
$$

- Fiber coordinates I_{i} are associated with the angular momentum components and the base space coordinates (y^{0}, y^{i}) with the orientation of the rotator.

Kirillov-Poisson-Soriau brackets

- Hamiltonian

$$
\mathcal{H}_{0}=\frac{1}{2} \delta^{i j} i_{i} j_{j}
$$

- The dynamics is obtained from \mathcal{H}_{0} through the canonical Poisson brackets on the cotangent bundle (KPS brackets):

$$
\left\{y^{i}, y^{j}\right\}=0 \quad\left\{I_{i}, I_{j}\right\}=\epsilon_{i j}^{k} I_{k} \quad\left\{y^{i}, I_{j}\right\}=-\delta_{j}^{i} y^{0}+\epsilon_{j k}^{i} y^{k}
$$

derived from the first-order formulation of the action

$$
S_{1}=\int<I \mid g^{-1} \dot{g}>d t-\int \mathcal{H}_{0} d t \equiv \int \theta-\int \mathcal{H}_{0} d t
$$

where $I=i l_{i} e^{i *}$ with the dual basis $\left(e^{i *}\right)$ in the cotangent space, θ the canonical one-form defining the symplectic form $\omega=d \theta$.

- e.o.m.: $\dot{l}_{i}=0, \quad g^{-1} \dot{g}=2 i l_{i} \delta^{i j} \sigma_{j} \rightarrow I_{i}$ are constants of motion, g undergoes a uniform precession. The system is rotationally invariant: $\left\{I_{i}, \mathcal{H}_{0}\right\}=0$.

The cotangent bundle $T^{*} S U(2)$

$$
\left[L_{i}, L_{j}\right]=\epsilon_{i j}^{k} L_{k} \quad\left[T_{i}, T_{j}\right]=0 \quad\left[L_{i}, T_{j}\right]=\epsilon_{i j}^{k} T_{k}
$$

- The linearization of the Poisson structure at the unit e of $S U(2)$ provides a Lie algebra structure over the dual algebra $\mathfrak{s u}(2)^{*}$ and the KPS brackets are induced by the coadjoint action.
- $T^{*} S U(2)$ is a semi-Abelian double \rightarrow non-Abelian T-duality.

The Drinfeld Double Group

- The carrier space of the dynamics of the IRR has been generalized by "deforming" the Abelian subgroup R^{3} into the non-Abelian group $S B(2, \mathbb{C})$ of Borel 2×2 complex matrices .
- $S U(2)$ and $S B(2, \mathbb{C})$ constitute the pair appearing in the Iwasawa decomposition of the semisimple group $\operatorname{SL}(2, \mathbb{C})$: this is at the heart of realising $S L(2, \mathbb{C})$ as a Drinfeld Double.
- Drinfeld Double: any Lie group D whose Lie algebra \mathcal{D} can be decomposed into a pair of maximally isotropic subalgebras, \mathcal{G} and $\tilde{\mathcal{G}}$, with respect to a non-degenerate invariant bilinear form on \mathcal{D} which vanishes on two arbitrary vectors belonging to each of them. Maximally isotropic means that the subspace cannot be enlarged while preserving the property of isotropy.
- The compatibility condition between the Poisson and the Lie structures on $S U(2)$ is translated in a condition to be imposed on the structure constants of $S U(2)$ and of $S B(2, C)$ that shows that the role of these two subgroups can be symmetrically exchanged \rightarrow Poisson-Lie T-duality.

$S L(2, \mathbb{C}), S U(2)$ and $S B(2, \mathbb{C})$

Poisson-Lie
T-Duality,
Generalized
And Double Geometries: A Toy Model

Franco Pezzella

- The Lie algebra $\mathfrak{s l}(2, \mathbb{C})$ of $S L(2, \mathbb{C})$ is spanned by $e_{i}=\sigma_{i} / 2, b_{i}=i e_{i}$

$$
\left[e_{i}, e_{j}\right]=i \epsilon_{i j}^{k} e_{k}, \quad\left[e_{i}, b_{j}\right]=i \epsilon_{i j}^{k} b_{k}, \quad\left[b_{i}, b_{j}\right]=-i \epsilon_{i j}^{k} e_{k}
$$

- Non-degenerate invariant scalar products defined on it:

$$
<u, v>=2 \operatorname{Im}[\operatorname{Tr}(u v)] ;(u, v)=2 \operatorname{Re}[\operatorname{Tr}(u v))] \quad \forall u, v \in \mathfrak{s l}(2, \mathbb{C})
$$

- $\langle u, v\rangle$ is the Cartan-Killing metric of the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$.
- It defines two maximally isotropic subspaces

$$
<e_{i}, e_{j}>=<\tilde{e}^{i}, \tilde{e}^{j}>=0, \quad<e_{i}, \tilde{e}^{j}>=\delta_{i}^{j}
$$

with $\tilde{e}^{i}=\delta^{i j} b_{j}-\epsilon^{i j 3} e_{j} .\left\{e_{i}\right\},\left\{\tilde{e}^{i}\right\}$ both subalgebras with

$$
\left[e_{i}, e_{j}\right]=i \epsilon_{i j}^{k} e_{k}, \quad\left[\tilde{e}^{i}, e_{j}\right]=i \epsilon_{j k}^{i} \tilde{e}^{k}+i e_{k} f_{j}^{k i}, \quad\left[\tilde{e}^{i}, \tilde{e}^{j}\right]=i f_{k}^{i j} \tilde{e}^{k}
$$

$\left\{\tilde{e}^{i}\right\}$ span the Lie algebra of $S B(2, \mathbb{C})$, the dual group of $\operatorname{SU}(2)$ with $f^{i j}{ }_{k}=\epsilon^{i j 1} \epsilon_{13 k}$

Geometry of the Dual Model

- On $\operatorname{TSB}(2, \mathbb{C})$ the dual action can be defined:

$$
\begin{gathered}
\tilde{S}_{0}=\frac{1}{4} \int_{\mathbb{R}} \mathcal{T} r\left[\left(\tilde{g}^{-1} \dot{\tilde{g}}\right)\left(\tilde{g}^{-1} \dot{\tilde{g}}\right)\right] d t \\
\tilde{g}: \mathbb{R} \rightarrow S B(2, C) \text { and } \mathcal{T} r(u v)=((u, v)):=2 \operatorname{Re} \operatorname{Tr}\left[u^{+} v\right]
\end{gathered}
$$

- Lagrangian:

$$
\tilde{\mathcal{L}}_{0}=\frac{1}{2} \dot{\tilde{Q}}_{i}\left(\delta^{i j}+\epsilon_{k 3}^{i} \epsilon_{13}^{j}\right) \delta^{k l} \dot{\tilde{Q}}_{j}
$$

only left/right $S U(2)$ and left- $S B(2, C)$ invariant, differently from the Lagrangian of the IRR which is invariant under left and right actions of both groups.

- The model is dual to the IRR in the sense that the configuration space $S B(2, C)$ is dual, as a group, to $S U(2)$.
- $\operatorname{TSB}(2, C)$ coordinates: $\left(\tilde{Q}_{i}, \dot{\tilde{Q}}_{i}\right)$, with $\tilde{g}^{-1} \dot{\tilde{g}}:=\dot{\tilde{Q}}_{i} \tilde{e}^{i}$
- $T^{*} S B(2, C)$ coordinates: $\left(\tilde{Q}_{i}, \tilde{I}^{i}\right)$ with $\tilde{I}^{i}=\left(\delta^{i j}+\epsilon^{i j 3}\right) \dot{\tilde{Q}}_{j}$
- Hamiltonian $\tilde{\mathcal{H}}_{0}=\frac{1}{2} \tilde{I}^{p}\left(\delta_{p q}-\frac{1}{2} \epsilon_{p}^{k 3} \epsilon_{q}^{13} \delta_{k l}\right) \tilde{I}^{q}$
- PB's $\left\{\tilde{I}^{\prime}, \tilde{I}^{j}\right\}=\delta_{i b} f_{b c}^{j} \tilde{I}^{c} \rightarrow \quad$ EOM $\dot{\tilde{I}}^{i}=0$

A Manin triple

- $(\mathfrak{s u}(2), \mathfrak{s b}(2, \mathbb{C}))$ is a Lie bialgebra with an interchangeable role of $\mathfrak{s u}(2)$ and its dual algebra $\mathfrak{s b}(2, \mathbb{C})$. The algebra $\mathfrak{d}=\mathfrak{s u}(2) \bowtie \mathfrak{s b}(2, \mathbb{C})$ is the Lie algebra of the Drinfeld double $D \equiv S L(2, C)$.
- The set $(\mathfrak{s l}(2, \mathbb{C}), \mathfrak{s u}(2), \mathfrak{s b}(2, \mathbb{C}))$ provides an example of Manin triple.
- For $f_{k}^{i j}=0 D \rightarrow T^{*} S U(2, C)$; for $\epsilon_{i j}^{k}=0 D \rightarrow T^{*} S B(2, C)$.
- The bi-algebra structure induces Poisson structures on the double group manifold which reduce to KSK brackets on coadjoint orbits of G, G^{*} when $f_{k}^{i j}=0, \epsilon_{i j}^{k}=0$ resp.

Relation to Double Geometry: the $O(d, d)$ Invariant Metric

- Introduce the doubled notation

$$
e_{I}=\binom{e_{i}}{\tilde{e}^{i}}, \quad e_{i} \in \mathfrak{s u}(2), \quad \tilde{e}^{i} \in \mathfrak{s b}(2, \mathbb{C}),
$$

The scalar product $\langle u, v\rangle=2 \operatorname{Im}(\operatorname{Tr}(u v))$ yields

$$
\left\langle e_{I}, e_{J}\right\rangle=\eta_{I J}=\left(\begin{array}{cc}
0 & \delta_{i}^{j} \\
\delta_{j}^{i} & 0
\end{array}\right)
$$

This is the $O(3,3)$ invariant metric reproducing the fundamental structure in Double Geometry, i.e. the $O(d, d)$ invariant metric!

Relation to Double Geometry: the Generalized Metric

- The scalar product $((u, v))=2 \operatorname{Re}\left[\operatorname{Tr}\left(u^{+} v\right)\right]$ yields:

$$
\left(\left(e_{I}, e_{J}\right)\right)=\mathcal{H}_{I J}=\left(\begin{array}{cc}
\delta_{i j} & \epsilon_{3 i}^{j} \\
-\epsilon_{j 3}^{i} & \left.\delta^{i j}+\epsilon_{13}^{i} \delta^{I k} \epsilon_{k 3}^{j}\right)
\end{array}\right)
$$

satisfying the relation:

$$
\mathcal{H}^{T} \eta \mathcal{H}=\eta
$$

- \mathcal{H} is an $O(3,3)$ matrix having the same structure as the $O(d, d)$ generalized metric of DFT with $\delta_{i j}$ playing the role of $G_{i j}$ and $\epsilon_{i j 3}$ playing the role of $B_{i j}$!
- The $O(d, d)$ geometric structures due to the doubling still appear.

THE DOUBLED ACTION

- The two models can be obtained from the same parent action defined on the whole $S L(2, \mathbb{C}) \rightarrow$ they are dual.
- The left invariant one-form on the group manifold is:

$$
\gamma^{-1} d \gamma=\gamma^{-1} \dot{\gamma} d t \equiv \dot{\mathbf{Q}}^{\prime} e_{l} d t \equiv\left(A^{i} e_{i}+B_{i} \tilde{e}^{i}\right) d t
$$

- Introduce an action on $\operatorname{SL}(2, \mathbb{C})$ (doubled coordinates):

$$
\begin{aligned}
S & =\frac{1}{2} \int_{R} d t\left[\alpha \dot{\mathbf{Q}}^{\prime} \dot{\mathbf{Q}}^{J}\left\langle e_{I}, e_{J}\right\rangle+\beta \dot{\mathbf{Q}}^{\prime} \dot{\mathbf{Q}}^{J}\left(\left(e_{I}, e_{J}\right)\right)\right] \\
& =\frac{1}{2} \int d t\left(\alpha \dot{\mathbf{Q}}^{\prime} \dot{\mathbf{Q}}^{J} \eta_{I J}+\beta \dot{\mathbf{Q}}^{\prime} \dot{\mathbf{Q}}^{J} \mathcal{H}_{I J}\right)=\frac{1}{2} \int d t\left(\dot{\mathbf{Q}}^{\prime} E_{I J} \dot{\mathbf{Q}}^{J}\right)
\end{aligned}
$$

with (α, β) real numbers.

- $\left(A^{i}, B_{i}\right)$ are fiber coordinates of $\operatorname{TSL}(2, \mathbb{C})$.

The Poisson Brackets

- Hamiltonian

$$
\mathcal{H}=\frac{1}{2} \mathbf{P}_{l}\left[E^{-1}\right]^{/ J} \mathbf{P}_{J}
$$

with $\mathbf{P}=i \mathbf{P} / e^{* I}=i\left(I_{i} e^{i *}+\tilde{I}^{i} \tilde{e}_{i}^{*}\right)$ the generalized conjugate momentum.

- The Poisson brackets are obtained from the first-order Lagrangian, as usual:

$$
\begin{aligned}
\left\{I_{i}, I_{j}\right\} & =\epsilon_{i j}{ }^{k} I_{k} \\
\left\{\tilde{I}^{\prime}, \tilde{I_{j}}\right\} & =f^{i j}{ }_{k} \tilde{I}^{k} \\
\left\{I_{i}, \tilde{I}^{j}\right\} & =\epsilon^{j}{ }_{i I} \tilde{I}^{\prime}-I_{,} f^{l j}{ }_{i}{ }^{2}
\end{aligned}
$$

while those between momenta and configuration space variables are unchanged with respect to $T^{*} S U(2), T^{*} S B(2, \mathbb{C})$.

- In order to get back one of the two models one has to impose constraints \Longrightarrow to gauge either $S U(2)$ or $S B(2, C)$ and integrate out.
- $\underset{\sim}{I}=i_{\sim} i_{i} e^{i *}, \underset{\sim}{J}=i J_{i} e^{i *}$ are one-forms, with $e^{i *}$ basis over $T^{*} S U(2)$ $\tilde{l}=\tilde{I}^{i} \tilde{e}_{i}^{*}, \tilde{J}=\tilde{J}^{i} \tilde{e}_{i}^{*}$ are vector fields with \tilde{e}_{i}^{*} basis on $\operatorname{TSU}(2)$ \rightarrow the couple $\left(I_{i}, \tilde{I}^{i}\right)$ identifies the fiber coordinate of the generalized bundle $T \oplus T^{*}$ of $S U(2)$.
- The Poisson algebra then implies:

$$
\{I+\tilde{I}, J+\tilde{J}\}=\{I, J\}-\{J, \tilde{I}\}+\{I, \tilde{J}\}+\{\tilde{I}, \tilde{J}\} .
$$

- This represents a Poisson realization of the C-brackets for the generalized bundle $T \oplus T^{*}$ of $S U(2)$, here derived from the canonical Poisson brackets of the dynamics.
- C-brackets are the double-generalization of the Courant bracket of the Generalized Geometry.
- Explicit relation with Generalized Geometry!

Conclusions

- The double formulation of a mechanical system in terms of dual configuration spaces has been discussed.
- The geometrical structures of DFT have been reproduced $(O(d, d)$-invariant metric and Generalized Metric).
- Poisson brackets for the generalized momenta (C-brackets) have been derived establishing a connection with Generalized Geometry.
- The model is simple, but it is readily generalizable, for instance, to the Principal Chiral Model (work in progress); in fact, by adding one space dimension to the source space of the rotator, one has a 2-d field theory which is duality invariant and that can show its relations with Double and Generalized Geometries.

The End

Thank you for your attention.

[^0]:

