> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

POISSON-LIE T-DUALITY, GENERALIZED AND DOUBLE GEOMETRIES: A TOY MODEL

Franco Pezzella

INFN - Naples Section - Italy

wit

with V. E. Marotta (Heriot-Watt Edimbourgh) and P. Vitale (Naples Univ. Federico II) e-Print: arXiv:1804.00744 [hep-th] + work in progress

> New Frontiers in String Theory 2018 Yukawa Institute for Theoretical Physics (YITP) Kyoto - July, 12th 2018

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

1 INTRODUCTION AND MOTIVATION

<ロ><()</p>
<()</p>
<()

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

1 INTRODUCTION AND MOTIVATION

2 A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

> ・ロト < 部ト < 言ト < 言ト こ の Q (で) 2/24

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

1 INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

③ THE DUAL ROTATOR

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

1 INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

3 The Dual Rotator

4 The Doubled Rotator

< □ > < 部 > < 差 > < 差 > 差 の Q (~ 2/24

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

1 INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

3 The Dual Rotator

4 The Doubled Rotator

Reminding the O(D, D) Abelian T-Duality

Poisson-Lie T-Duality, Generalized and Double Geometries: a Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE **3**-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

- Already at the classical level the indefinite orthogonal group O(D, D) naturally appears in the Hamiltonian description of the bosonic string in a *D*-dimensional Riemannian target space with background (G, B).
- The string Hamiltonian density can be written as:

$$\mathcal{H} = \frac{1}{4\pi\alpha'} \left(\begin{array}{c} \partial_{\sigma} X \\ 2\pi\alpha' P \end{array} \right)^{t} \mathcal{M}(G,B) \left(\begin{array}{c} \partial_{\sigma} X \\ 2\pi\alpha' P \end{array} \right)$$

where the generalized metric is introduced:

$$\mathcal{M}(G,B) = \begin{pmatrix} G - BG^{-1}B & BG^{-1} \\ -G^{-1}B & G^{-1} \end{pmatrix}$$

 The Hamiltonian density is proportional to the squared length of the 2D-dimensional generalized vector A_P in TM⊕ T*M, as measured by the generalized metric M:

 $A_P(X) \equiv \partial_\sigma X^a \partial_a + 2\pi \alpha' P_a dX^a$

3/24

CONSTRAINTS AND GENERALIZED VECTORS

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE **3**-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • In terms of the generalized vector A_P the constraints coming from $T_{\alpha\beta} = 0$ can be rewritten as [Rennecke]:

 $A_P^t \mathcal{M} A_P = 0 \qquad A_P^t \Omega A_P = 0.$

• The first constraint sets the Hamiltonian density to zero, while the second completely determines the dynamics and it involves of the O(D, D)-invariant metric:

$$\Omega = \left(\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{array}\right)$$

All the admissible generalized vectors satisfying the second constraint are related by O(D, D) transformations via
 A'_P = TA_P with a suitable compensating transformation through T⁻¹ of the generalized metric. The Hamiltonian density and the energy-momentum tensor are left invariant.

CONSTANT BACKGROUNDS

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE **3**-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives In the presence of constant background (G, B) along the directions labelled by a, b = (1,..., d) the e.o.m.'s for the string coordinates are a set of conservation laws on the world-sheet:

 $\partial_{\alpha}J^{\alpha}_{a} = 0 \rightarrow J^{\alpha}_{a} = \eta^{\alpha\beta}G_{ab}\partial_{\beta}X^{b} + \epsilon^{\alpha\beta}B_{ab}\partial_{\beta}X^{b}$

• Locally, one can express such currents as:

 $J^{lpha}_{a} \equiv \epsilon^{lphaeta}\partial_{eta} ilde{X}_{a} ~~
ightarrow$ dual coordinates

and the initial Polyakov action S defines a dual action \tilde{S} that can be rewritten in terms of the constant dual (\tilde{G}, \tilde{B}) -background:

$$ilde{G} = (G - BG^{-1}B)^{-1}$$
 ; $ilde{B} = -G^{-1}B ilde{G}$ Buscher rules

• S and \tilde{S} describe the evolution of the same string theory \rightarrow they are dual to each other.

 $O(d, d; \mathbb{R}) \rightarrow O(d, d; \mathbb{Z})$

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • The equations of motion for the generalized vector $\chi = (X, \tilde{X})$ become a single O(d, d)-invariant equation [Duff, Hull] :

 $M\partial_{\alpha}\chi = \Omega\epsilon_{\alpha\beta}\partial^{\beta}\chi$.

with M being the generalized metric now defined in terms of the constant (G, B) background.

- In particular, if the closed string coordinates are defined on a d-dim torus T^d , the dual coordinates will satifisfy the same periodicity conditions and then $O(d, d) \rightarrow O(d, d; \mathbb{Z})$ becomes an exact symmetry \rightarrow Abelian T-duality [cfr. Giveon, Rabinovici and Porrati].
- This has suggested since long [Siegel, Duff, Tseytlin] to look for a manifestly T-dual invariant formulation of string theory. This has to be based on a doubling of the string coordinates in the target space, since it requires the introduction of *both* the coordinates X^a and the dual ones \tilde{X}_a .
- The main goal of this new action would be to explore more closely aspects of string geometry, hence of string gravity.

DFT, DOUBLE AND GENERALIZED GEOMETRIES

Poisson-Lie T-Duality, Generalized and Double Geometries: a Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE **3**-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

- From a manifestly T-dual invariant two-dimensional string world-sheet [Siegel, Tseytlin, Hull, Park] Double Field Theory [Siegel, Duff, Hull and Zwiebach] should emerge out as a low-energy limit. DFT developed as a way to encompass the Abelian T-duality in field theory and *Double Geometry* underlies it. In DFT, diffeomorphisms rely on an O(d, d) structure defined on the tangent space of a doubled torus T^{2d}. A section condition has then to imposed for halving the 2d coordinates.
- Connections with *Generalized Geometry* that [Hitchin, Gualtieri] has arisen as a means to *geometrize* duality symmetries. It is based on replacing the tangent bundle $T\mathcal{M}$ of a manifold \mathcal{M} by $T\mathcal{M} \oplus T^*\mathcal{M}$ and the Lie brackets on the sections of $T\mathcal{M}$ by the Courant brackets.
- It seems relevant to analyze more deeply the geometrical structure of (Abelian, non-Abelian, Poisson-Lie) T-dualities and their relations with Generalized Geometry and/or Double Geometry.

MOTIVATION

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

- Abelian T-duality refers to the presence of Abelian isometries U(1)^d in both the dual sigma models. They can be composed into U(1)^{2d} that provides the simplest example of Drinfeld Double, i.e. a Lie group D whose Lie algebra D can be decomposed into a pair of maximally isotropic subalgebras with respect to a non-degenerate invariant bilinear form on D.
- A classification of T-dualities lies on the types of underlying Drinfeld doubles [Klimcik]:
 - Abelian doubles corresponding to the standard Abelian T-duality;
 - semi-Abelian doubles (D= G+ G̃ with G̃ abelian) corresponding to the non-Abelian T-duality;
 - onn-Abelian doubles (all the others) corresponding to Poisson Lie T-duality where no isometries hold for either of the two dual models.

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE **3**-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • Simple mechanical system: the three-dimensional isotropic rigid rotator, thought as a 0+1 field theory.

<ロ> (四) (四) (注) (日) (三)

9/24

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE **3**-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

- Simple mechanical system: the three-dimensional isotropic rigid rotator, thought as a 0+1 field theory.
- The dynamics of this model exhibits Poisson-Lie symmetries which can be understood as duality transformations [Marmo Simoni Stern]

> Franco Pezzella

Introduction and Motivation

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

- Simple mechanical system: the three-dimensional isotropic rigid rotator, thought as a 0+1 field theory.
- The dynamics of this model exhibits Poisson-Lie symmetries which can be understood as duality transformations [Marmo Simoni Stern]
- After defining the dual model, the symmetry under such duality transformations can be made manifest by introducing a *parent* action, containing a number of variables which is doubled with respect to the original one and from which both the original model and its dual can be recovered by a suitable gauging.
- Geometric structures can be understood in terms of Generalized Geometry and/or Double Geometry.

The 3-d rigid rotator on the configuration space SU(2)

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • Action:

$$S_0=-rac{1}{4}\int_{\mathbb{R}} {
m Tr}(g^{-1}dg\wedge^*g^{-1}dg)=-rac{1}{4}\int_{\mathbb{R}} {
m Tr}\;(g^{-1}rac{dg}{dt})^2dt$$

 $g: t \in \mathbb{R} \to g(t) \in SU(2), g^{-1}dg = i\alpha^k \sigma_k$ the Maurer-Cartan left-invariant Lie algebra-valued one-form, * the Hodge star operator on the source space $\mathbb{R}, *dt = 1$, Tr the trace over the Lie algebra $\to (0+1)$ -dimensional group-valued "field theory".

• Parametrization: $g = y^0 \sigma_0 + iy^i \sigma_i \equiv 2(y^0 e_0 + iy^i e_i)$ with $(y^0)^2 + \sum_i (y^i)^2 = 1$ and σ_0 and σ_i respectively the identity matrix I and the Pauli matrices

$$y^{i} = -\frac{i}{2} \operatorname{Tr}(g\sigma_{i}), \ y^{0} = \frac{1}{2} \operatorname{Tr}(g\sigma_{0}), \ i = 1, ..., 3$$

 Lagrangian written in terms of the non-degenerate invariant scalar product defined on the SU(2) manifold: < a|b>= Tr(ab) for any two group elements.

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • In terms of the left generalized velocities \dot{Q}^i

$$\dot{Q}^i := (y^0 \dot{y}^i - y^i \dot{y}^0 + \epsilon^i{}_{jk} y^j \dot{y}^k)$$

the Lagrangian reads as: $\mathcal{L}_0 = \frac{1}{2} \dot{Q}^i \dot{Q}^j \delta_{ij}$

- Tangent bundle *TSU*(2) coordinates: (Q^i, \dot{Q}^i) with the Q^i 's implicitly defined.
- Equations of motion $\ddot{Q}^i = 0.$
- Cotangent bundle $T^*SU(2)$ coordinates: (Q^i, I_i) with

$$I_i = rac{\partial \mathcal{L}_0}{\partial \dot{Q}^i} = \delta_{ij} \dot{Q}^j$$
 conjugate left momenta

• Fiber coordinates *I_i* are associated with the angular momentum components and the base space coordinates (*y*⁰, *yⁱ*) with the orientation of the rotator.

KIRILLOV-POISSON-SORIAU BRACKETS

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

Introduction and Motivation

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

- Hamiltonian $\mathcal{H}_0 = \frac{1}{2} \delta^{ij} I_i I_j$
- The dynamics is obtained from \mathcal{H}_0 through the canonical Poisson brackets on the cotangent bundle (KPS brackets):

 $\{y^{i}, y^{j}\} = 0 \quad \{I_{i}, I_{j}\} = \epsilon_{ij} {}^{k}I_{k} \quad \{y^{i}, I_{j}\} = -\delta_{j}^{i}y^{0} + \epsilon^{i} {}_{jk}y^{k}$

derived from the first-order formulation of the action

$$S_1 = \int < I | g^{-1} \dot{g} > dt - \int \mathcal{H}_0 dt \equiv \int heta - \int \mathcal{H}_0 dt.$$

where $I = iI_i e^{i*}$ with the dual basis (e^{i*}) in the cotangent space, θ the canonical one-form defining the symplectic form $\omega = d\theta$.

• e.o.m.: $\dot{l}_i = 0$, $g^{-1}\dot{g} = 2il_i\delta^{ij}\sigma_j \rightarrow l_i$ are constants of motion, g undergoes a uniform precession. The system is rotationally invariant: $\{l_i, \mathcal{H}_0\} = 0$.

The cotangent bundle $T^*SU(2)$

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

Introduction and Motivation

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

- The fibers of the tangent bundle TSU(2) are $\mathfrak{su}(2) \simeq \mathbb{R}^3$, being \dot{Q}^i the vector fields components.
- The fibers of the cotangent bundle *T*^{*}*SU*(2) are isomorphic to the dual Lie algebra su(2)^{*}. Again ℝ³, but *I_i* are now components of one-forms.
- The carrier space T*SU(2) of the Hamiltonian dynamics is represented by the semi-direct product of SU(2) and the Abelian group R³ which is the dual of its Lie algebra, i.e. T*SU(2) ≃ SU(2) ⋉ R³, with:

 $[L_i, L_j] = \epsilon_{ij}^k L_k \qquad [T_i, T_j] = 0 \qquad [L_i, T_j] = \epsilon_{ij}^k T_k$

- The linearization of the Poisson structure at the unit e of SU(2) provides a Lie algebra structure over the dual algebra $\mathfrak{su}(2)^*$ and the KPS brackets are induced by the coadjoint action.
- $T^*SU(2)$ is a semi-Abelian double \rightarrow non-Abelian T-duality.

The Drinfeld Double Group

Poisson-Lie T-Duality, Generalized and Double Geometries: a Toy Model

> Franco Pezzella

Introduction and Motivation

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

- The carrier space of the dynamics of the IRR has been generalized by "deforming" the Abelian subgroup R³ into the non-Abelian group SB(2, ℂ) of Borel 2x2 complex matrices.
- SU(2) and SB(2, ℂ) constitute the pair appearing in the lwasawa decomposition of the semisimple group SL(2, ℂ): this is at the heart of realising SL(2, ℂ) as a Drinfeld Double.
- Drinfeld Double: any Lie group D whose Lie algebra D can be decomposed into a pair of maximally isotropic subalgebras, G and G, with respect to a non-degenerate invariant bilinear form on D which vanishes on two arbitrary vectors belonging to each of them. Maximally isotropic means that the subspace cannot be enlarged while preserving the property of isotropy.
- The compatibility condition between the Poisson and the Lie structures on SU(2) is translated in a condition to be imposed on the structure constants of SU(2) and of SB(2, C) that shows that the role of these two subgroups can be symmetrically exchanged \rightarrow Poisson-Lie T-duality.

$SL(2,\mathbb{C}),\ SU(2)$ and $SB(2,\mathbb{C})$

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • The Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ of $SL(2,\mathbb{C})$ is spanned by $e_i = \sigma_i/2, b_i = ie_i$

 $[e_i, e_j] = i\epsilon_{ij}^k e_k, \qquad [e_i, b_j] = i\epsilon_{ij}^k b_k, \qquad [b_i, b_j] = -i\epsilon_{ij}^k e_k$

• Non-degenerate invariant scalar products defined on it:

 $\langle u, v \rangle = 2 \mathrm{Im}[\mathsf{Tr}(uv)]$; $(u, v) = 2 \mathrm{Re}[\mathsf{Tr}(uv))] \quad \forall u, v \in \mathfrak{sl}(2, \mathbb{C})$

• $\langle u, v \rangle$ is the Cartan-Killing metric of the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$.

It defines two maximally isotropic subspaces

 $< e_i, e_j > = < \tilde{e}^i, \tilde{e}^j > = 0, \qquad < e_i, \tilde{e}^j > = \delta_i^j$ with $\tilde{e}^i = \delta^{ij}b_j - \epsilon^{ij3}e_j$. $\{e_i\}, \{\tilde{e}^i\}$ both subalgebras with $[e_i, e_j] = i\epsilon_{ij}{}^k e_k, \qquad [\tilde{e}^i, e_j] = i\epsilon_{jk}^i \tilde{e}^k + ie_k f^{ki}{}_j, \qquad [\tilde{e}^i, \tilde{e}^j] = if_k^{ij} \tilde{e}^k$ $\{\tilde{e}^i\}$ span the Lie algebra of $SB(2, \mathbb{C})$, the dual group of SU(2)with $f^{ij}{}_k = \epsilon^{ijl}\epsilon_{l3k}$

Geometry of the Dual Model

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

Introduction and Motivation

A TOY MODEL: THE **3**-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • On $TSB(2, \mathbb{C})$ the dual action can be defined:

$$ilde{S}_0 = rac{1}{4}\int_{\mathbb{R}}\mathcal{T}r[(ilde{g}^{-1}\dot{ ilde{g}})(ilde{g}^{-1}\dot{ ilde{g}})]dt$$

 $ilde{g}:\mathbb{R}
ightarrow SB(2,C) ext{ and } \mathcal{T}r(uv)=((u,v)):=2\mathsf{ReTr}[u^+v]$

• Lagrangian:

$$ilde{\mathcal{L}}_0 = rac{1}{2} \dot{ ilde{Q}}_i (\delta^{ij} + \epsilon^i_{\ k3} \epsilon^j_{\ l3}) \delta^{kl} \dot{ ilde{Q}}_j$$

only left/right SU(2) and left-SB(2, C) invariant, differently from the Lagrangian of the IRR which is invariant under left and right actions of both groups.

- The model is dual to the IRR in the sense that the configuration space *SB*(2, *C*) is dual, as a group, to *SU*(2).
- TSB(2, C) coordinates: $(\tilde{Q}_i, \dot{\tilde{Q}}_i)$, with $\tilde{g}^{-1}\dot{\tilde{g}} := \dot{\tilde{Q}}_i \tilde{e}^i$
- $T^*SB(2, C)$ coordinates: $(\tilde{Q}_i, \tilde{I}^i)$ with $\tilde{I}^i = (\delta^{ij} + \epsilon^{ij3})\tilde{Q}_j$
- Hamiltonian $\tilde{\mathcal{H}}_0 = \frac{1}{2} \tilde{I}^p (\delta_{pq} \frac{1}{2} \epsilon_p^{k3} \epsilon_q^{l3} \delta_{kl}) \tilde{I}^q$
- PB's $\{\tilde{I}^i, \tilde{I}^j\} = \delta_{ib} f^j_{bc} \tilde{I}^c \rightarrow EOM, \tilde{L}^j = 0$, $i \ge 1$

A MANIN TRIPLE

Poisson-Lie T-Duality, Generalized and Double Geometries: a Toy Model

> Franco Pezzella

Introduction and Motivation

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

- (su(2), sb(2, C)) is a Lie bialgebra with an interchangeable role of su(2) and its dual algebra sb(2, C). The algebra ∂ = su(2) ⋈ sb(2, C) is the Lie algebra of the Drinfeld double D ≡ SL(2, C).
 - The set (𝔅𝔅(2,𝔅),𝔅𝑢(2),𝔅b(2,𝔅)) provides an example of *Manin* triple.
 - For $f_k^{ij} = 0 \ D
 ightarrow T^*SU(2,C)$; for $\epsilon_{ij}^k = 0 \ D
 ightarrow T^*SB(2,C)$.
 - The bi-algebra structure induces Poisson structures on the double group manifold which reduce to KSK brackets on coadjoint orbits of G, G* when f^{ij}_k = 0, ε^k_{ii} = 0 resp.

Relation to Double Geometry: the O(d, d) Invariant Metric

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • Introduce the *doubled* notation

$$e_I = \begin{pmatrix} e_i \\ ilde{e}^i \end{pmatrix}, \qquad e_i \in \mathfrak{su}(2), \quad ilde{e}^i \in \mathfrak{sb}(2,\mathbb{C}),$$

The scalar product $\langle u, v \rangle = 2 \text{Im}(\text{Tr}(uv))$ yields

$$< e_I, e_J >= \eta_{IJ} = \begin{pmatrix} 0 & \delta_i^j \\ \delta_j^i & 0 \end{pmatrix}$$

This is the O(3,3) invariant metric reproducing the fundamental structure in Double Geometry, i.e. the O(d, d) invariant metric!

Relation to Double Geometry: the Generalized Metric

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives • The scalar product $((u, v)) = 2 \operatorname{Re}[\operatorname{Tr}(u^+ v)]$ yields:

$$((e_I, e_J)) = \mathcal{H}_{IJ} = \begin{pmatrix} \delta_{ij} & \epsilon_{3i}^{\ j} \\ -\epsilon_{j3}^i & \delta^{ij} + \epsilon_{l3}^i \delta^{lk} \epsilon_{k3}^j \end{pmatrix}$$

satisfying the relation:

$$\mathcal{H}^{\mathsf{T}}\eta\mathcal{H}=\eta$$

- *H* is an O(3, 3) matrix having the same structure as the O(d, d) generalized metric of DFT with δ_{ij} playing the role of G_{ij} and ε_{ij3} playing the role of B_{ij}!
- The *O*(*d*, *d*) geometric structures due to the *doubling* still appear.

The doubled action

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions AND Perspectives

- The two models can be obtained from the same parent action defined on the whole SL(2, C) → they are dual.
- The left invariant one-form on the group manifold is: $\gamma^{-1}d\gamma = \gamma^{-1}\dot{\gamma}dt \equiv \dot{\mathbf{Q}}'e_Idt \equiv (A^ie_i + B_i\tilde{e}^i)dt$
- Introduce an action on *SL*(2, \mathbb{C}) (doubled coordinates):

$$S = \frac{1}{2} \int_{R} dt \left[\alpha \dot{\mathbf{Q}}^{I} \dot{\mathbf{Q}}^{J} < e_{I}, e_{J} > +\beta \dot{\mathbf{Q}}^{I} \dot{\mathbf{Q}}^{J} ((e_{I}, e_{J})) \right]$$
$$= \frac{1}{2} \int dt \left(\alpha \dot{\mathbf{Q}}^{I} \dot{\mathbf{Q}}^{J} \eta_{IJ} + \beta \dot{\mathbf{Q}}^{I} \dot{\mathbf{Q}}^{J} \mathcal{H}_{IJ} \right) = \frac{1}{2} \int dt \left(\dot{\mathbf{Q}}^{I} E_{IJ} \dot{\mathbf{Q}}^{J} \right)$$

with (α, β) real numbers.

• (A^i, B_i) are fiber coordinates of $TSL(2, \mathbb{C})$.

The Poisson Brackets

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

• Hamiltonian

$$\mathcal{H} = \frac{1}{2} \mathbf{P}_I [E^{-1}]^{IJ} \mathbf{P}_J$$

with $\mathbf{P} = i\mathbf{P}_I e^{*I} = i(I_i e^{i*} + \tilde{I}^i \tilde{e}_i^*)$ the generalized conjugate momentum.

• The Poisson brackets are obtained from the first-order Lagrangian, as usual:

$$\begin{array}{rcl} \{I_i, I_j\} & = & \epsilon_{ij}{}^k I_k \\ \{\tilde{I}^i, \tilde{I}^j\} & = & f^{ij}{}_k \tilde{I}^k \\ \{I_i, \tilde{I}^j\} & = & \epsilon^j{}_{il} \tilde{I}^l - I_l f^{lj} \end{array}$$

while those between momenta and configuration space variables are unchanged with respect to $T^*SU(2)$, $T^*SB(2, \mathbb{C})$.

 In order to get back one of the two models one has to impose constraints ⇒ to gauge either SU(2) or SB(2, C) and integrate out.

C-brackets

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE **3**-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

- $I = iI_i e^{i^*}$, $J = iJ_i e^{i^*}$ are one-forms, with e^{i^*} basis over $T^*SU(2)$ $\tilde{I} = \tilde{I}^i \tilde{e}_i^*$, $\tilde{J} = \tilde{J}^i \tilde{e}_i^*$ are vector fields with \tilde{e}_i^* basis on TSU(2) \rightarrow the couple (I_i, \tilde{I}^i) identifies the fiber coordinate of the generalized bundle $T \oplus T^*$ of SU(2).
- The Poisson algebra then implies:

$$\{I + \tilde{I}, J + \tilde{J}\} = \{I, J\} - \{J, \tilde{I}\} + \{I, \tilde{J}\} + \{\tilde{I}, \tilde{J}\}.$$

- This represents a Poisson realization of the C-brackets for the generalized bundle $T \oplus T^*$ of SU(2), here derived from the canonical Poisson brackets of the dynamics.
- C-brackets are the double-generalization of the Courant bracket of the Generalized Geometry.
- Explicit relation with Generalized Geometry!

CONCLUSIONS

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

Introduction and Motivation

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

- The double formulation of a mechanical system in terms of dual configuration spaces has been discussed.
- The geometrical structures of DFT have been reproduced (O(d, d)-invariant metric and Generalized Metric).
- Poisson brackets for the generalized momenta (C-brackets) have been derived establishing a connection with Generalized Geometry.
- The model is simple, but it is readily generalizable, for instance, to the Principal Chiral Model (work in progress); in fact, by adding one space dimension to the source space of the rotator, one has a 2-d field theory which is duality invariant and that can show its relations with Double and Generalized Geometries.

The End

Poisson-Lie T-Duality, Generalized and Double Geometries: A Toy Model

> Franco Pezzella

INTRODUCTION AND MOTIVATION

A TOY MODEL: THE 3-D ISOTROPIC RIGID ROTATOR

The Dual Rotator

The Doubled Rotator

Conclusions and Perspectives

Thank you for your attention.

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q () 24 / 24