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Reminding the O(D,D) Abelian
T-Duality

Already at the classical level the indefinite orthogonal group
O(D,D) naturally appears in the Hamiltonian description of the
bosonic string in a D-dimensional Riemannian target space with
background (G ,B).

The string Hamiltonian density can be written as:

H =
1

4πα′

(
∂σX

2πα′P

)t

M(G ,B)

(
∂σX

2πα′P

)
where the generalized metric is introduced:

M(G ,B) =

(
G − BG−1B BG−1

−G−1B G−1

)
The Hamiltonian density is proportional to the squared length of
the 2D-dimensional generalized vector AP in TM

⊕
T ∗M, as

measured by the generalized metric M:

AP(X ) ≡ ∂σX a∂a + 2πα′PadX
a
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Constraints and Generalized Vectors

In terms of the generalized vector AP the constraints coming
from Tαβ = 0 can be rewritten as [Rennecke]:

At
PMAP = 0 At

PΩAP = 0.

The first constraint sets the Hamiltonian density to zero, while
the second completely determines the dynamics and it involves
of the O(D,D)-invariant metric:

Ω =

(
0 1
1 0

)
All the admissible generalized vectors satisfying the second
constraint are related by O(D,D) transformations via
A′P = T AP with a suitable compensating transformation through
T −1 of the generalized metric.The Hamiltonian density and the
energy-momentum tensor are left invariant.
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Constant Backgrounds

In the presence of constant background (G ,B) along the
directions labelled by a, b = (1, . . . , d) the e.o.m.’s for the string
coordinates are a set of conservation laws on the world-sheet:

∂αJ
α
a = 0→ Jαa = ηαβGab∂βX

b + εαβBab∂βX
b

Locally, one can express such currents as:

Jαa ≡ εαβ∂βX̃a → dual coordinates

and the initial Polyakov action S defines a dual action S̃ that can
be rewritten in terms of the constant dual (G̃ , B̃)-background:

G̃ = (G − BG−1B)−1 ; B̃ = −G−1BG̃ Buscher rules

S and S̃ describe the evolution of the same string theory → they
are dual to each other.
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O(d , d ;R)→ O(d , d ;Z)

The equations of motion for the generalized vector χ = (X , X̃ )
become a single O(d , d)-invariant equation [Duff, Hull] :

M∂αχ = Ωεαβ∂
βχ .

with M being the generalized metric now defined in terms of the
constant (G ,B) background.
In particular, if the closed string coordinates are defined on a
d-dim torus T d , the dual coordinates will satifisfy the same
periodicity conditions and then O(d , d)→ O(d , d ;Z) becomes
an exact symmetry → Abelian T-duality [cfr. Giveon, Rabinovici

and Porrati] .
This has suggested since long [Siegel, Duff, Tseytlin] to look for a
manifestly T-dual invariant formulation of string theory. This
has to be based on a doubling of the string coordinates in the
target space, since it requires the introduction of both the
coordinates X a and the dual ones X̃a.
The main goal of this new action would be to explore more
closely aspects of string geometry, hence of string gravity.
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DFT, Double and Generalized
Geometries

From a manifestly T-dual invariant two-dimensional string
world-sheet [Siegel, Tseytlin, Hull, Park] Double Field Theory
[Siegel, Duff, Hull and Zwiebach] should emerge out as a
low-energy limit. DFT developed as a way to encompass the
Abelian T-duality in field theory and Double Geometry underlies
it. In DFT, diffeomorphisms rely on an O(d , d) structure defined
on the tangent space of a doubled torus T 2d . A section
condition has then to imposed for halving the 2d coordinates.

Connections with Generalized Geometry that [Hitchin, Gualtieri]
has arisen as a means to geometrize duality symmetries. It is
based on replacing the tangent bundle TM of a manifold M by
TM⊕ T ∗M and the Lie brackets on the sections of TM by
the Courant brackets.

It seems relevant to analyze more deeply the geometrical
structure of (Abelian, non-Abelian, Poisson-Lie) T-dualities and
their relations with Generalized Geometry and/or Double
Geometry.
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Motivation

Abelian T-duality refers to the presence of Abelian isometries
U(1)d in both the dual sigma models. They can be composed
into U(1)2d that provides the simplest example of Drinfeld
Double, i.e. a Lie group D whose Lie algebra D can be
decomposed into a pair of maximally isotropic subalgebras with
respect to a non-degenerate invariant bilinear form on D.

A classification of T-dualities lies on the types of underlying
Drinfeld doubles [Klimcik]:

1 Abelian doubles corresponding to the standard Abelian T-duality;
2 semi-Abelian doubles (D= G+ G̃ with G̃ abelian) corresponding

to the non-Abelian T-duality;
3 non-Abelian doubles (all the others) corresponding to Poisson

Lie T-duality where no isometries hold for either of the two dual
models.
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Simple mechanical system: the three-dimensional isotropic rigid
rotator, thought as a 0+1 field theory.

The dynamics of this model exhibits Poisson-Lie symmetries
which can be understood as duality transformations [Marmo

Simoni Stern]

After defining the dual model, the symmetry under such duality
transformations can be made manifest by introducing a parent
action, containing a number of variables which is doubled with
respect to the original one and from which both the original
model and its dual can be recovered by a suitable gauging.

Geometric structures can be understood in terms of Generalized
Geometry and/or Double Geometry.
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The 3-d rigid rotator on the
configuration space SU(2)

Action:

S0 = −1

4

∫
R

Tr(g−1dg ∧∗ g−1dg) = −1

4

∫
R

Tr (g−1
dg

dt
)2dt

g : t ∈ R→ g(t) ∈ SU(2), g−1dg = iαkσk the Maurer-Cartan
left-invariant Lie algebra-valued one-form, ∗ the Hodge star
operator on the source space R, ∗dt = 1, Tr the trace over the
Lie algebra → (0 + 1)-dimensional group-valued “field theory”.

Parametrization: g = y0σ0 + iy iσi ≡ 2(y0e0 + iy iei ) with
(y0)2 +

∑
i (y

i )2 = 1 and σ0 and σi respectively the identity
matrix I and the Pauli matrices

y i = − i

2
Tr(gσi ), y0 =

1

2
Tr(gσ0), i = 1, .., 3

Lagrangian written in terms of the non-degenerate invariant
scalar product defined on the SU(2) manifold: < a|b >= Tr(ab)
for any two group elements.
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In terms of the left generalized velocities Q̇ i

Q̇ i := (y0ẏ i − y i ẏ0 + εi jky
j ẏk)

the Lagrangian reads as: L0 = 1
2 Q̇

i Q̇ jδij

Tangent bundle TSU(2) coordinates: (Q i , Q̇ i ) with the Q i ’s
implicitly defined.

Equations of motion Q̈ i = 0.

Cotangent bundle T ∗SU(2) coordinates: (Q i , Ii ) with

Ii =
∂L0

∂Q̇ i
= δij Q̇

j conjugate left momenta

Fiber coordinates Ii are associated with the angular momentum
components and the base space coordinates (y0, y i ) with the
orientation of the rotator.
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Kirillov-Poisson-Soriau brackets

Hamiltonian H0 = 1
2δ

ij Ii Ij

The dynamics is obtained from H0 through the canonical
Poisson brackets on the cotangent bundle (KPS brackets):

{y i , y j} = 0 {Ii , Ij} = εij
k Ik {y i , Ij} = −δijy0 + εi jky

k

derived from the first-order formulation of the action

S1 =

∫
< I |g−1ġ > dt −

∫
H0dt ≡

∫
θ −

∫
H0dt.

where I = iIie
i∗ with the dual basis (e i∗) in the cotangent space,

θ the canonical one-form defining the symplectic form ω = dθ.

e.o.m.: İi = 0, g−1ġ = 2iIiδ
ijσj → Ii are constants of motion,

g undergoes a uniform precession. The system is rotationally
invariant: {Ii ,H0} = 0.
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The cotangent bundle T ∗SU(2)

The fibers of the tangent bundle TSU(2) are su(2) ' R3, being
Q̇ i the vector fields components.

The fibers of the cotangent bundle T ∗SU(2) are isomorphic to
the dual Lie algebra su(2)∗. Again R3, but Ii are now
components of one-forms.

The carrier space T ∗SU(2) of the Hamiltonian dynamics is
represented by the semi-direct product of SU(2) and the Abelian
group R3 which is the dual of its Lie algebra, i.e.
T ∗SU(2) ' SU(2) n R3, with:

[Li , Lj ] = εkijLk [Ti ,Tj ] = 0 [Li ,Tj ] = εkijTk

The linearization of the Poisson structure at the unit e of SU(2)
provides a Lie algebra structure over the dual algebra su(2)∗ and
the KPS brackets are induced by the coadjoint action.

T ∗SU(2) is a semi-Abelian double → non-Abelian T-duality.
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The Drinfeld Double Group

The carrier space of the dynamics of the IRR has been
generalized by “deforming” the Abelian subgroup R3 into the
non-Abelian group SB(2,C) of Borel 2x2 complex matrices .

SU(2) and SB(2,C) constitute the pair appearing in the
Iwasawa decomposition of the semisimple group SL(2,C): this is
at the heart of realising SL(2,C) as a Drinfeld Double.

Drinfeld Double: any Lie group D whose Lie algebra D can be
decomposed into a pair of maximally isotropic subalgebras, G
and G̃, with respect to a non-degenerate invariant bilinear form
on D which vanishes on two arbitrary vectors belonging to each
of them. Maximally isotropic means that the subspace cannot
be enlarged while preserving the property of isotropy.

The compatibility condition between the Poisson and the Lie
structures on SU(2) is translated in a condition to be imposed
on the structure constants of SU(2) and of SB(2,C ) that shows
that the role of these two subgroups can be symmetrically
exchanged → Poisson-Lie T-duality.
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SL(2,C), SU(2) and SB(2,C)

The Lie algebra sl(2,C) of SL(2,C) is spanned by
ei = σi/2, bi = iei

[ei , ej ] = iεkijek , [ei , bj ] = iεkijbk , [bi , bj ] = −iεkijek

Non-degenerate invariant scalar products defined on it:

< u, v >= 2Im[Tr(uv)] ; (u, v) = 2Re[Tr(uv))] ∀u, v ∈ sl(2,C)

< u, v > is the Cartan-Killing metric of the Lie algebra sl(2,C).

It defines two maximally isotropic subspaces

< ei , ej >=< ẽ i , ẽ j >= 0, < ei , ẽ
j >= δji

with ẽ i = δijbj − εij3ej . {ei}, {ẽ i} both subalgebras with

[ei , ej ] = iε k
ij ek , [ẽ i , ej ] = iεijk ẽ

k + iek f
ki
j , [ẽ i , ẽ j ] = if ijk ẽ

k

{ẽ i} span the Lie algebra of SB(2,C), the dual group of SU(2)
with f ij k = εijlεl3k
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Geometry of the Dual Model

On TSB(2,C) the dual action can be defined:

S̃0 =
1

4

∫
R
T r [(g̃−1 ˙̃g)(g̃−1 ˙̃g)]dt

g̃ : R→ SB(2,C ) and T r(uv) = ((u, v)) := 2ReTr[u+v ]
Lagrangian:

L̃0 =
1

2
˙̃Q i (δ

ij + εik3ε
j
l3)δkl ˙̃Q j

only left/right SU(2) and left-SB(2,C ) invariant, differently
from the Lagrangian of the IRR which is invariant under left and
right actions of both groups.
The model is dual to the IRR in the sense that the configuration
space SB(2,C ) is dual, as a group, to SU(2).

TSB(2,C ) coordinates: (Q̃i ,
˙̃Q i ), with g̃−1 ˙̃g := ˙̃Q i ẽ

i

T ∗SB(2,C ) coordinates: (Q̃i , Ĩ
i ) with Ĩ i = (δij + εij3) ˙̃Q j

Hamiltonian H̃0 = 1
2 Ĩ

p(δpq − 1
2ε

k3
p ε l3q δkl)Ĩ

q

PB’s {Ĩ i , Ĩ j} = δibf
j
bc Ĩ

c → EOM ˙̃I i = 0
16 / 24
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A Manin triple

(su(2), sb(2,C)) is a Lie bialgebra with an interchangeable role
of su(2) and its dual algebra sb(2,C). The algebra
d = su(2) ./ sb(2,C) is the Lie algebra of the Drinfeld double
D ≡ SL(2,C ).

The set (sl(2,C), su(2), sb(2,C)) provides an example of Manin
triple.

For f ijk = 0 D → T ∗SU(2,C ) ; for εkij = 0 D → T ∗SB(2,C ) .

The bi-algebra structure induces Poisson structures on the
double group manifold which reduce to KSK brackets on
coadjoint orbits of G , G∗ when f ijk = 0, εkij = 0 resp.
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Relation to Double Geometry: the
O(d , d) Invariant Metric

Introduce the doubled notation

eI =

(
ei
ẽ i

)
, ei ∈ su(2), ẽ i ∈ sb(2,C),

The scalar product < u, v >= 2Im(Tr(uv)) yields

< eI , eJ >= ηIJ =

(
0 δji
δij 0

)
This is the O(3, 3) invariant metric reproducing the fundamental
structure in Double Geometry, i.e. the O(d , d) invariant metric!

18 / 24



Poisson-Lie
T-Duality,
Generalized
and Double

Geometries: a
Toy Model

Franco
Pezzella

Introduction
and Motivation

A Toy Model:
the 3-D
Isotropic Rigid
Rotator

The Dual
Rotator

The Doubled
Rotator

Conclusions
and
Perspectives

Relation to Double Geometry: the
Generalized Metric

The scalar product ((u, v)) = 2Re[Tr(u+v)] yields:

((eI , eJ)) = HIJ =

(
δij ε j

3i

−εij3 δij + εil3δ
lkεjk3)

)

satisfying the relation:

HTηH = η

H is an O(3, 3) matrix having the same structure as the O(d , d)
generalized metric of DFT with δij playing the role of Gij and εij3
playing the role of Bij !

The O(d , d) geometric structures due to the doubling still
appear.
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The doubled action

The two models can be obtained from the same parent action
defined on the whole SL(2,C) → they are dual.

The left invariant one-form on the group manifold is:
γ−1dγ = γ−1γ̇dt ≡ Q̇I eIdt ≡ (Aiei + Bi ẽ

i )dt

Introduce an action on SL(2,C) (doubled coordinates):

S =
1

2

∫
R

dt
[
αQ̇I Q̇J < eI , eJ > +βQ̇I Q̇J((eI , eJ))

]
=

1

2

∫
dt (αQ̇I Q̇JηIJ + βQ̇I Q̇JHIJ) =

1

2

∫
dt (Q̇IEIJQ̇

J)

with (α, β) real numbers.

(Ai ,Bi ) are fiber coordinates of TSL(2,C).
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The Poisson Brackets

Hamiltonian

H =
1

2
PI [E

−1]IJPJ

with P = iPI e
∗I = i(Iie

i∗ + Ĩ i ẽ∗i ) the generalized conjugate
momentum.

The Poisson brackets are obtained from the first-order
Lagrangian, as usual:

{Ii , Ij} = εij
k Ik

{Ĩ i , Ĩ j} = f ij k Ĩ
k

{Ii , Ĩ j} = εj il Ĩ
l − Il f

lj
i

while those between momenta and configuration space variables
are unchanged with respect to T ∗SU(2),T ∗SB(2,C).

In order to get back one of the two models one has to impose
constraints =⇒ to gauge either SU(2) or SB(2,C ) and integrate
out.
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C-brackets

I = iIie
i∗, J = iJie

i∗ are one-forms, with e i∗ basis over T ∗SU(2)
Ĩ = Ĩ i ẽ∗i , J̃ = J̃ i ẽ∗i are vector fields with ẽ∗i basis on TSU(2)

→ the couple (Ii , Ĩ
i ) identifies the fiber coordinate of the

generalized bundle T ⊕ T ∗ of SU(2).

The Poisson algebra then implies:

{I + Ĩ , J + J̃} = {I , J} − {J, Ĩ}+ {I , J̃}+ {Ĩ , J̃}.

This represents a Poisson realization of the C-brackets for the
generalized bundle T ⊕ T ∗ of SU(2), here derived from the
canonical Poisson brackets of the dynamics.

C-brackets are the double-generalization of the Courant bracket
of the Generalized Geometry.

Explicit relation with Generalized Geometry!
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Conclusions

The double formulation of a mechanical system in terms of dual
configuration spaces has been discussed.

The geometrical structures of DFT have been reproduced
(O(d , d)-invariant metric and Generalized Metric).

Poisson brackets for the generalized momenta (C-brackets) have
been derived establishing a connection with Generalized
Geometry.

The model is simple, but it is readily generalizable, for instance,
to the Principal Chiral Model (work in progress); in fact, by
adding one space dimension to the source space of the rotator,
one has a 2-d field theory which is duality invariant and that can
show its relations with Double and Generalized Geometries.
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The End

Thank you for your attention.
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