Open superstring field theory including the Ramond sector
 based on the supermoduli space

Tomoyuki Takezaki
The University of Tokyo, Institute of Physics
based on a paper in preparation
"New Frontiers in String Theory 2018"
17 Jul, 2018 in Kyoto

Formulations for open superstring field theory

The Berkovits formulation [Berkovits 1995]

- The action has Wess-Zumino-Witten-like gauge invariance.
\rightarrow Ramond extension: [Kunitomo, Okawa 2015]

Homotopy algebra based construction [Erler, Konopka, Sachs 2013]

- The action exhibits the A_{∞} structure.
\rightarrow Ramond extension: [Erler, Okawa, TT 2016], [Konopka, Sachs 2016]

Sen's quantum BV master action [Sen 2015]

- Simpler worldsheet realization of interaction terms
\rightarrow Applications to open SSFT: [Erler, Okawa, TT 2016], [Konopka, Sachs 2016]

Open SSFT based on the covering of supermoduli space

- Recently, a new approach to formulating NS sector of open superstring field theory based on the covering of the supermoduli space of super-Riemann surfaces was proposed [Ohmori, Okawa2017].
- We extend this approach and construct a gauge-invariant action including the Ramond sector up to quartic interactions.
- Our approach is based on the covering of the supermoduli space, and our action exhibits the A_{∞} structure.
- We also construct an action based on the products with stubs. One of the advantages of our construction is that incorporation of stubs is straightforward.

Table of contents

- 1. A_{∞} structure
- 2. Neveu-Schwarz sector [Ohmori, Okawa 2017]
- 3. Ramond sector
- 4. Open superstring field thoery with stubs

1. A_{∞} structure

Witten's open bosonic string field theory [Witten 1985]

$$
\begin{aligned}
S & =-\frac{1}{2}\langle\Psi, Q \Psi\rangle-\frac{g}{3}\langle\Psi, \Psi * \Psi\rangle, \\
\delta \Psi & =Q \Lambda-g \Lambda * \Psi+g \Psi * \Lambda .
\end{aligned}
$$

The star product $*$ is non-commuttative: $A * B \neq B * A$, but associative: $(A * B) * C=A *(B * C)$.

The gauge invariance follows from

$$
\begin{aligned}
\langle A, B\rangle & =(-1)^{A B}\langle B, A\rangle, \\
\langle Q A, B\rangle & =-(-1)^{A}\langle A, Q B\rangle, \\
\langle A * B, C\rangle & =\langle A, B * C\rangle, \\
Q^{2} A & =0, \\
Q(A * B) & =Q A * B+(-1)^{A} A * Q B, \\
(A * B) * C & =A *(B * C) .
\end{aligned}
$$

Actually, we can construct a gauge-invariant action based on a string product without associative two-string product:

$$
S=-\frac{1}{2}\langle\Psi, Q \Psi\rangle-\frac{g}{3}\left\langle\Psi, V_{2}(\Psi, \Psi)\right\rangle-\frac{g^{2}}{4}\left\langle\Psi, V_{3}(\Psi, \Psi, \Psi)\right\rangle+\mathcal{O}\left(g^{3}\right) .
$$

We assume V_{2}, V_{3} are cyclic:

$$
\begin{aligned}
\left\langle V_{2}\left(A_{1}, A_{2}\right), A_{3}\right\rangle & =\left\langle A_{1}, V_{2}\left(A_{2}, A_{3}\right)\right\rangle, \\
\left\langle V_{3}\left(A_{1}, A_{2}, A_{3}\right), A_{4}\right\rangle & =-(-1)^{A_{1}}\left\langle A_{1}, V_{3}\left(A_{2}, A_{3}, A_{4}\right)\right\rangle .
\end{aligned}
$$

The action is invariant up to $\mathcal{O}\left(g^{3}\right)$ under a gauge transformation

$$
\begin{aligned}
\delta \Psi=Q \Lambda & +g V_{2}(\Psi, \Lambda)-g V_{2}(\Lambda, \Psi) \\
& +g^{2} V_{3}(\Psi, \Psi, \Lambda)-g^{2} V_{3}(\Psi, \Lambda, \Psi)+g^{2} V_{3}(\Lambda, \Psi, \Psi)+\mathcal{O}\left(g^{3}\right),
\end{aligned}
$$

if Q, V_{2}, and V_{3} satisfy \ldots

A_{∞} structure

$$
\begin{aligned}
0= & Q^{2} A_{1} \\
0= & Q V_{2}\left(A_{1}, A_{2}\right)-V_{2}\left(Q A_{1}, A_{2}\right)-(-1)^{A_{1}} V_{2}\left(A_{1}, Q A_{2}\right) \\
0= & Q V_{3}\left(A_{1}, A_{2}, A_{3}\right)-V_{2}\left(V_{2}\left(A_{1}, A_{2}\right), A_{3}\right)+V_{2}\left(A_{1}, V_{2}\left(A_{2}, A_{3}\right)\right) \\
& +V_{3}\left(Q A_{1}, A_{2}, A_{3}\right)+(-1)^{A_{1}} V_{3}\left(Q A_{1}, A_{2}, A_{3}\right) \\
& +(-1)^{A_{1}+A_{2}} V_{3}\left(A_{1}, A_{2}, Q A_{3}\right)
\end{aligned}
$$

- These equations are extended to higher orders, and a set of these relations is called an A_{∞} structure.
- The A_{∞} structure is closely related to the decomposition of the moduli space of Riemann surfaces.
- The quantization of string field theory based on the Batalin-Vilkovisky formalism is straightforward if the theory has the A_{∞} structure.

2. Neveu-Schwarz sector [Ohmori, Okawa 2017]

Two-string product (NS sector)

Disks with three NS punctures have one odd modulus, and we denote it by ζ.
In [Ohmori, Okawa 2017], an integral over the odd modulus is implemented by

$$
X_{N}=\int d \zeta d \tilde{\zeta} \mathcal{X}_{N}(\zeta, \tilde{\zeta}), \quad \mathcal{X}_{N}(\zeta, \tilde{\zeta})=e^{-\tilde{\zeta} \beta_{-1 / 2}+\zeta G_{-1 / 2}}
$$

where $\tilde{\zeta}$ is a Grassmann-even variable [Witten 2012]. In [Ohmori, Okawa 2017], the two-string product in the following form is introduced:

$$
V_{2}\left(N_{1}, N_{2}\right)=\frac{1}{3}\left(X_{N}{ }^{\star}\left(N_{1} * N_{2}\right)+X_{N} N_{1} * N_{2}+N_{1} * X_{N} N_{2}\right) .
$$

$V_{2}\left(N_{1}, N_{2}\right)$ realizes cyclic A_{∞} structure at this order, but not associative:

$$
V_{2}\left(V_{2}\left(N_{1}, N_{2}\right), N_{3}\right) \neq V_{2}\left(N_{1}, V_{2}\left(N_{2}, N_{3}\right)\right) .
$$

We need a three-string product to satisfy the 3 rd order A_{∞} relation.

The 3 rd order A_{∞} relation

We define $V_{3}\left(N_{1}, N_{2}, N_{3}\right)$ in terms of a Grassmann-odd operator Ξ :

$$
\left\langle N_{1}, V_{3}\left(N_{2}, N_{3}, N_{4}\right)\right\rangle \equiv\left\langle g_{1} \circ N_{1}(0) \Xi g_{2} \circ N_{2}(0) g_{3} \circ N_{3}(0) g_{4} \circ N_{4}(0)\right\rangle_{D}
$$

where $\langle\ldots\rangle_{D}$ is the correlation function on the disk.
Furthermore, we define Grassmann-even operators X_{t}, X_{s} by

$$
\begin{aligned}
& \left\langle N_{1}, V_{2}\left(V_{2}\left(N_{2}, N_{3}\right), N_{4}\right)\right\rangle \equiv\left\langle X_{t} g_{1} \circ N_{1}(0) g_{2} \circ N_{2}(0) g_{3} \circ N_{3}(0) g_{4} \circ N_{4}(0)\right\rangle_{D}, \\
& \left\langle N_{1}, V_{2}\left(N_{2}, V_{2}\left(N_{3}, N_{4}\right)\right)\right\rangle \equiv\left\langle X_{s} g_{1} \circ N_{1}(0) g_{2} \circ N_{2}(0) g_{3} \circ N_{3}(0) g_{4} \circ N_{4}(0)\right\rangle_{D} .
\end{aligned}
$$

In this notation, the 3rd order A_{∞} relation is expressed as

$$
Q \cdot \Xi=X_{t}-X_{s}
$$

Rule of the game (NS sector)

The 3 rd order A_{∞} relation in terms of Ξ

$$
Q \cdot \Xi=X_{t}-X_{s} .
$$

We construct Ξ in the following steps:
1 define two-string product V_{2} (already done),
2 calculate X_{t} and X_{s} from the definition of V_{2},
3 pull out Q from $X_{t}-X_{s}$
Since we assumed $\left\langle V_{3}\left(A_{1}, A_{2}, A_{3}\right), A_{4}\right\rangle=-(-1)^{A_{1}}\left\langle A_{1}, V_{3}\left(A_{2}, A_{3}, A_{4}\right)\right\rangle$, the operator Ξ must be constructed to satisfy the cyclic equation

$$
\omega \circ \Xi=-\Xi,
$$

where $\omega(z)=e^{i \pi / 2} z=i z$ is 90°-rotation on disks.

Step2: calculate X_{t} and X_{s}

We define $X_{N}\left[g_{i}\right]$ for conformal transformation $g_{i}(\xi)$ by

$$
X_{N}\left[g_{i}\right]=\int d \zeta d \tilde{\zeta} e^{-\tilde{\zeta} \beta_{N}\left[g_{i}\right]+\zeta G_{N}\left[g_{i}\right]}
$$

where $\beta_{N}\left[g_{i}\right]$ and $G_{N}\left[g_{i}\right]$ are pull back of $\beta_{-1 / 2}$ and $G_{-1 / 2}$ by g_{i}. Then we can pull out X_{N} from each vertex operators.

For example, we find

$$
\left\langle X_{N} N_{1}, N_{2} *\left(X_{N} N_{3}\right) * N_{4}\right\rangle=\left\langle X_{N}\left[g_{1}\right] X_{N}\left[g_{3}\right] g_{1} \circ N_{1}(0) g_{2} \circ N_{2}(0) g_{3} \circ N_{3}(0) g_{4} \circ N_{4}(0)\right\rangle_{D} .
$$

Step 2: calculate X_{t} and X_{s} (continued)

Furthermore, we introduce $X_{N}\left[h_{i}\right]$ for $(i=1,2,3,4)$ with $h_{i}(\xi)$

For example, we find $\left\langle\left(X_{N} N_{1}\right), N_{2} X_{N}\left(N_{3} N_{4}\right)\right\rangle=\left\langle X_{N}\left[g_{1}\right] X_{N}\left[h_{3}\right] g_{1} \circ N_{1}(0) g_{2} \circ N_{2}(0) g_{3} \circ N_{3}(0) g_{4} \circ N_{4}(0)\right\rangle_{D}$. Using this method, we find

$$
\begin{aligned}
& X_{t}=\frac{1}{9}\left(X_{N}\left[h_{4}\right]+X_{N}\left[g_{2}\right]+X_{N}\left[g_{3}\right]\right)\left(X_{N}\left[g_{1}\right]+X_{N}\left[h_{2}\right]+X_{N}\left[g_{4}\right]\right), \\
& X_{s}=\frac{1}{9}\left(X_{N}\left[h_{1}\right]+X_{N}\left[g_{3}\right]+X_{N}\left[g_{4}\right]\right)\left(X_{N}\left[g_{2}\right]+X_{N}\left[h_{3}\right]+X_{N}\left[g_{1}\right]\right) .
\end{aligned}
$$

Step 3: pull out Q from $X_{t}-X_{s}$

It is useful to introduce the following operator:

$$
\Xi[a, b]=\int_{0}^{1} d t^{\prime} \int d \tilde{t^{\prime}} \int d \zeta d \tilde{\zeta} e^{-\left\{Q^{\prime}, t^{\prime} \zeta \beta_{N}[a]\right\}} e^{-\left\{Q^{\prime},\left(1-t^{\prime}\right) \zeta \beta_{N}[b]\right\}}
$$

where Q^{\prime} is the extended BRST operator [Witten 2012]:

$$
Q^{\prime}=Q+\tilde{t^{\prime}} \partial_{t^{\prime}}+\tilde{\zeta} \partial_{\zeta} .
$$

The operator $\Xi[a, b]$ satisfies

$$
Q \cdot \Xi[a, b]=X_{N}[a]-X_{N}[b] .
$$

Therefore, we can pull out Q from the difference of X_{N}.

In [Ohmori, Okawa 2017], an operator Ξ satisfying the 3rd order A_{∞} relation and the cyclic equation was given in the following form:

$$
\Xi=\frac{1}{18}\left(\Xi\left[h_{2}, h_{4} ; h_{3}, h_{1}\right]+(17 \text { terms })\right),
$$

where

$$
\Xi\left[a_{1}, a_{2} ; b_{1}, b_{2}\right]=\frac{1}{2}\left(\Xi\left[a_{1}, b_{1}\right] X_{N}\left[a_{2}\right]+(3 \text { terms })\right)
$$

- Ξ consists of an integration over one even modulus and two odd moduli.
- The three-string product V_{3} constructed from Ξ covers the missing region of moduli space of disks with four NS punctures.

3. Ramond sector

Ramond string field

For the Ramond sector, it is known that the BRST cohomology on an appropriate subspace of the small Hilbert space reproduces the correct spectrum, and we use the string field restricted to this subspace.

The restriction on the Ramond field is characterized by $X_{R} Y_{R} \Psi_{R}=\Psi_{R}$, where

$$
X_{R}=\int d \zeta d \tilde{\zeta} \mathcal{X}_{R}(\zeta, \tilde{\zeta}), \quad \mathcal{X}_{R}(\zeta, \tilde{\zeta})=e^{-\tilde{\zeta} \beta_{0}+\zeta G_{0}}, \quad Y_{R}=-c_{0} \delta^{\prime}\left(\gamma_{0}\right) .
$$

X_{R} commutes with Q, and X_{R} is BPZ even: $X_{R}^{\star}=X_{R}$. For restricted Ramond fields R_{1}, R_{2}, we use the inner product in the following form:

$$
\left\langle R_{1}, Y_{R} R_{2}\right\rangle
$$

Define X_{t}, X_{s}, and Ξ for NS/R sector

We consider two-string products $V_{2}\left(N_{1}, R_{1}\right), V_{2}\left(R_{1}, N_{1}\right), V_{2}\left(R_{1}, R_{2}\right)$, and three-string products

$$
\begin{aligned}
& V_{3}\left(N_{1}, N_{2}, R_{1}\right), V_{3}\left(N_{1}, R_{1}, N_{2}\right), V_{3}\left(R_{1}, N_{1}, N_{2}\right) \\
& V_{3}\left(N_{1}, R_{1}, R_{2}\right), V_{3}\left(R_{1}, N_{1}, R_{2}\right), V_{3}\left(R_{1}, R_{2}, N_{1}\right), V_{3}\left(R_{1}, R_{2}, R_{3}\right) .
\end{aligned}
$$

We define Ξ, X_{t}, and X_{s} for NS / R sector. For example,

$$
\begin{aligned}
\left\langle R_{1}, Y_{R} V_{3}\left(N_{2}, R_{3}, N_{4}\right)\right\rangle & \equiv\left\langle g_{1} \circ R_{1}(0) \Xi_{R N R N} g_{2} \circ N_{1}(0) g_{3} \circ R_{2}(0) g_{4} \circ N_{2}(0)\right\rangle_{D}, \\
\left\langle R_{1}, Y_{R} V_{2}\left(V_{2}\left(N_{1}, R_{1}\right), N_{2}\right)\right\rangle & \equiv\left\langle\left(X_{t}\right)_{R N R N} g_{1} \circ R_{1}(0) g_{2} \circ N_{1}(0) g_{3} \circ R_{2}(0) g_{4} \circ N_{2}(0)\right\rangle_{D}, \\
\left\langle R_{1}, Y_{R} V_{2}\left(N_{1}, V_{2}\left(N_{2}, N_{2}\right)\right)\right\rangle & \equiv\left\langle\left(X_{s}\right)_{R N R N} g_{1} \circ R_{1}(0) g_{2} \circ N_{1}(0) g_{3} \circ R_{2}(0) g_{4} \circ N_{2}(0)\right\rangle_{D} .
\end{aligned}
$$

Rule of the game (NS/R sector)

A_{∞} relation for $V_{3}\left(N_{1}, R_{1}, N_{2}\right)$ in terms of $\Xi_{R N R N}$

$$
Q \cdot \Xi_{R N R N}=\left(X_{t}\right)_{R N R N}-\left(X_{s}\right)_{R N R N}
$$

We construct $\Xi_{R N R N}$ in the following steps:
1 define the two-string products V_{2} for NS/R inputs,
2 calculate $\left(X_{t}\right)_{R N R N}$ and $\left(X_{s}\right)_{R N R N}$ from the definition of V_{2},
3 pull out Q from $\left(X_{t}\right)_{R N R N}-\left(X_{s}\right)_{R N R N}$.
The cyclic equation $\left\langle V_{3}\left(N_{1}, R_{1}, N_{2}\right), R_{2}\right\rangle=-(-1)^{N_{1}}\left\langle N_{1}, V_{3}\left(R_{1}, N_{2}, R_{2}\right)\right\rangle$ is translated into

$$
\omega \circ \Xi_{R N R N}=-\Xi_{N R N R},
$$

Step 1: define the two-string products for NS/R inputs

Let us start form the NS-R-R interaction. Since disks with two R punctures and one NS puncture has no moduli, we can simply use the star product:

$$
\alpha\left\langle\Psi_{N}, \Psi_{R} * \Psi_{R}\right\rangle
$$

where α is non-zero constant to be determined. This term can be rewritten as

$$
\alpha\left\langle\Psi_{N}, \Psi_{R} * \Psi_{R}\right\rangle=\alpha\left\langle\Psi_{R}, Y_{R} X_{R}\left(\Psi_{N} * \Psi_{R}\right)\right\rangle=\alpha\left\langle\Psi_{R}, Y_{R} X_{R}\left(\Psi_{R} * \Psi_{N}\right)\right\rangle .
$$

Motivated by this equation, we define the following two-string products:

$$
\begin{aligned}
& V_{2}\left(N_{1}, R_{1}\right)=X_{R}\left(N_{1} * R_{1}\right), \\
& V_{2}\left(R_{1}, N_{1}\right)=X_{R}\left(R_{1} * N_{1}\right), \\
& V_{2}\left(R_{1}, R_{2}\right)=R_{1} * R_{2}
\end{aligned}
$$

These two-string products have cyclic A_{∞} structure at this order, but not associative except for $V_{2}\left(V_{2}\left(R_{1}, R_{2}\right), R_{3}\right)=V_{2}\left(R_{1}, V_{2}\left(R_{2}, R_{3}\right)\right)$.

Step 2: calculate $\left(X_{t}\right)_{R N R N}$ and $\left(X_{s}\right)_{R N R N}$

Using the two-string products defined in the step 1, we find

$$
\begin{aligned}
\left\langle R_{1}, Y_{R} V_{2}\left(V_{2}\left(N_{1}, R_{2}\right), N_{2}\right)\right\rangle & =\left\langle R_{1}, Y_{R} X_{R}\left(X_{R}\left(N_{1} * R_{2}\right) * N_{2}\right)\right\rangle \\
& =\left\langle R_{1}, X_{R}\left(N_{1} * R_{2}\right) * N_{2}\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle R_{1}, Y_{R} V_{2}\left(N_{1}, V_{2}\left(R_{2}, N_{2}\right)\right)\right\rangle & =\left\langle R_{1}, Y_{R} X_{R}\left(N_{1} * X_{R}\left(R_{2} * N_{2}\right)\right)\right\rangle \\
& =\left\langle R_{1}, N_{1} * X_{R}\left(R_{2} * N_{2}\right)\right\rangle .
\end{aligned}
$$

Therefore, we have

$$
\left(X_{t}\right)_{R N R N}=X_{R}\left[h_{2}\right], \quad\left(X_{s}\right)_{R N R N}=X_{R}\left[h_{3}\right],
$$

where $X_{R}\left[h_{i}\right]$ is pull back of X_{R} by h_{i}.

Step 3: pull out Q from $\left(X_{t}\right)_{R N R N}-\left(X_{S}\right)_{R N R N}$

The 3rd order A_{∞} relation is $Q \cdot \Xi_{R N R N}=X_{R}\left[h_{2}\right]-X_{R}\left[h_{3}\right]$. We introduce

$$
\Xi_{R R}[a, b]=\int_{0}^{1} d t^{\prime} \int d \tilde{t^{\prime}} \int d \zeta d \tilde{\zeta} e^{-\left\{Q^{\prime}, t^{\prime} \zeta \beta_{R}[a]\right\}} e^{-\left\{Q^{\prime},\left(1-t^{\prime}\right) \zeta \beta_{R}[b]\right\}}
$$

which satisfies

$$
Q \cdot \Xi_{R R}[a, b]=X_{R}[a]-X_{R}[b] .
$$

$$
\Xi_{R N R N}=\Xi_{R R}\left[h_{2}, h_{3}\right] .
$$

We can also construct $\Xi_{N R N R}$ and show the equation $\omega \circ \Xi_{R N R N}=-\Xi_{N R N R}$.

For other NS and R combination, we can show that the following $\Xi_{N N R R}, \ldots$ satisfies the 3 rd order A_{∞} relation and cyclic equations.

$$
\begin{aligned}
& \Xi_{R R N N}=\frac{1}{3}\left(\Xi_{R N}\left[h_{2}, h_{1}\right]+\Xi_{R N}\left[h_{2}, g_{3}\right]+\Xi_{R N}\left[h_{2}, g_{4}\right]\right), \\
& \Xi_{N R R N}=\frac{1}{3}\left(\Xi_{N R}\left[g_{1}, h_{3}\right]+\Xi_{N R}\left[h_{2}, h_{3}\right]+\Xi_{N R}\left[g_{4}, h_{3}\right]\right), \\
& \Xi_{R N N R}=\frac{1}{3}\left(\Xi_{N R}\left[h_{4}, h_{1}\right]+\Xi_{N R}\left[g_{2}, h_{1}\right]+\Xi_{N R}\left[g_{3}, h_{1}\right]\right), \\
& \Xi_{R R N N}=\frac{1}{3}\left(\Xi_{N R}\left[h_{1}, h_{2}\right]+\Xi_{N R}\left[g_{3}, h_{2}\right]+\Xi_{N R}\left[g_{4}, h_{2}\right]\right) .
\end{aligned}
$$

where

$$
\begin{aligned}
& \Xi_{R N}[a, b]=\int_{0}^{1} d t^{\prime} \int d \tilde{t^{\prime}} \int d \zeta d \tilde{\zeta} e^{-\left\{Q^{\prime}, t^{\prime} \zeta \beta_{R}[a]\right\}} e^{-\left\{Q^{\prime},\left(1-t^{\prime}\right) \zeta \beta_{N}[b]\right\}}, \\
& \Xi_{N R}[a, b]=\int_{0}^{1} d t^{\prime} \int d \tilde{t^{\prime}} \int d \zeta d \tilde{\zeta} e^{-\left\{Q^{\prime}, t^{\prime} \zeta \beta_{N}[a]\right\}} e^{-\left\{Q^{\prime},\left(1-t^{\prime}\right) \zeta \beta_{R}[b]\right\}}
\end{aligned}
$$

- The three-string products constructed from $\Xi_{R N R N}, \ldots$ covers the missing region of moduli space of disks with two NS and two R punctures.

4. Open superstring field theory with stubs

Open bosonic SFT with stubs - step1

We define the bosonic two-string product by attaching propagators of length w :

$$
V_{2}^{w}\left(A_{1}, A_{2}\right) \equiv e^{-w L_{0}}\left(\left(e^{-w L_{0}} A_{1}\right) *\left(e^{-w L_{0}} A_{2}\right)\right) .
$$

V_{2}^{w} has the cyclic A_{∞} structure at this order, but not associative.
Let us consider V_{3}^{w}. We define $\mathcal{B}_{3}^{w}, \mathcal{L}_{t}^{w}$, and \mathcal{L}_{s}^{w} by

$$
\begin{aligned}
\left\langle A_{1}, V_{3}^{w}\left(A_{2}, A_{3}, A_{4}\right)\right\rangle & \equiv\left\langle g_{1} \circ A_{1}(0) \mathcal{B}_{3}^{w} g_{2} \circ A_{2}(0) g_{3} \circ A_{3}(0) g_{4} \circ A_{4}(0)\right\rangle_{D}, \\
\left\langle A_{1}, V_{2}^{w}\left(V_{2}^{w}\left(A_{2}, A_{3}\right), A_{4}\right)\right\rangle & \left.\equiv\left\langle\mathcal{L}_{t}^{w} g_{1} \circ A_{1}(0) g_{2} \circ A_{2}(0) g_{3} \circ A_{3}(0) g_{4} \circ A_{4}(0)\right)\right\rangle_{D}, \\
\left\langle A_{1}, V_{2}^{w}\left(A_{2}, V_{2}^{w}\left(A_{3}, A_{4}\right)\right)\right\rangle & \left.\equiv\left\langle\mathcal{L}_{s}^{w} g_{1} \circ A_{1}(0) g_{2} \circ A_{2}(0) g_{3} \circ A_{3}(0) g_{4} \circ A_{4}(0)\right)\right\rangle_{D} .
\end{aligned}
$$

Rule of the game (open bosonic SFT with stubs)

The 3 rd order A_{∞} relation for V_{3}^{w} in terms of \mathcal{B}_{3}^{w}

$$
Q \cdot \mathcal{B}_{3}^{w}=\mathcal{L}_{t}^{w}-\mathcal{L}_{s}^{w} .
$$

We construct \mathcal{B}_{3}^{w} in the following steps:
1 define the two-string product V_{2}^{w} (already finished),
2 calculate \mathcal{L}_{t}^{w} and \mathcal{L}_{s}^{w} from the definition of V_{2}^{w},
3 pull out Q from $\mathcal{L}_{t}^{w}-\mathcal{L}_{s}^{w}$.
The cyclic equation for V_{3}^{w} is translated into

$$
\omega \circ \mathcal{B}_{3}^{w}=-\mathcal{B}_{3}^{w}
$$

Step $2 \& 3$

Using the definition of V_{2}^{w}, we have

$$
\begin{aligned}
\mathcal{L}_{t}^{w} & =e^{-w L_{0}\left[g_{1}\right]} e^{-2 w L_{0}\left[h_{2}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} \\
\mathcal{L}_{s}^{w} & =e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-2 w L_{0}\left[h_{3}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]}
\end{aligned}
$$

We introduce an interpolation function $\mathcal{B}[a, b]$:

$$
\mathcal{B}[a, b]=\int_{0}^{1} d t \int d \tilde{t}\left(e^{\left\{Q^{\prime},(1-t)(-2 w) b_{0}[a]\right\}}+e^{\left\{Q^{\prime}, t(-2 w) b_{0}[b]\right\}}\right)
$$

where \tilde{t} is a Grassmann-odd variable, and $Q^{\prime}=Q+\tilde{t} \partial_{t} . \mathcal{B}[a, b]$ satisfies

$$
Q \cdot \mathcal{B}[a, b]=e^{-2 w L_{0}[a]}-e^{-2 w L_{0}[b]} .
$$

Then \mathcal{B}_{3} is realized in the following form:

$$
\mathcal{B}_{3}^{w}=\mathcal{B}\left[h_{2}, h_{3}\right] e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]}
$$

Rule of the game (open SSFT with stubs)

Let us consider open SSFT including the Ramond sector with stubs. We define $\Xi_{R N R N}^{w},\left(X_{t}\right)_{R N R N}^{w}$, and $\left(X_{s}\right)_{R N R N}^{w}$ as in the case of OSSFT without stubs.

The 3 rd order A_{∞} relation in terms of $\Xi_{R N R N}$

$$
Q \cdot \Xi_{R N R N}^{w}=\left(X_{t}\right)_{R N R N}^{w}-\left(X_{s}\right)_{R N R N}^{w} .
$$

We construct $\Xi_{R N R N}^{w}$ in the following steps:
1 define the two-string products,
2 calculate $\left(X_{t}\right)_{R N R N}^{w}$ and $\left(X_{s}\right)_{R N R N}^{w}$,
3 pull out Q from $\left(X_{t}\right)_{R N R N}^{w}-\left(X_{s}\right)_{R N R N}^{w}$.
The cyclic equation for $V_{3}\left(N_{1}, R_{1}, N_{1}\right)$ is translated into

$$
\omega \circ \Xi_{R N R N}^{w}=-\Xi_{N R N R}^{w} .
$$

Step $1 \& 2$

We define two-string products by replacing the star product $*$ with V_{2}^{w} :

$$
\begin{aligned}
V_{2}\left(N_{1}, N_{2}\right)=\frac{1}{3}\left(X_{N}^{\star} V_{2}^{w}\left(N_{1}, N_{2}\right)\right. & \left.+V_{2}^{w}\left(X_{N} N_{1}, N_{2}\right)+V_{2}^{w}\left(N_{1}, X_{N} N_{2}\right)\right) \\
V_{2}\left(N_{1}, R_{1}\right) & =X_{R} V_{2}^{w}\left(N_{1}, R_{1}\right) \\
V_{2}\left(R_{1}, N_{1}\right) & =X_{R} V_{2}^{w}\left(R_{1}, N_{1}\right) \\
V_{2}\left(R_{1}, R_{2}\right) & =V_{2}^{w}\left(R_{1}, R_{2}\right)
\end{aligned}
$$

Since we just switched the star product $*$ to V_{2}^{w}, these two-string products have cyclic A_{∞} structure at this order. Then we have

$$
\begin{aligned}
& \left(X_{t}\right)_{R N R N}^{w}=X_{R}\left[h_{2}\right] e^{-w L_{0}\left[g_{1}\right]} e^{-2 w L_{0}\left[h_{2}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]}, \\
& \left(X_{s}\right)_{R N R N}^{w}=X_{R}\left[h_{3}\right] e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-2 w L_{0}\left[h_{3}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} .
\end{aligned}
$$

Remember that $X_{R}\left[h_{2}\right]=\left(X_{t}\right)_{R N R N}, X_{R}\left[h_{3}\right]=\left(X_{s}\right)_{R N R N}$, therefore

$$
\left(X_{t}\right)_{R N R N}^{w}=\left(X_{t}\right)_{R N R N} \mathcal{L}_{t}^{w}, \quad\left(X_{s}\right)_{R N R N}^{w}=\left(X_{s}\right)_{R N R N} \mathcal{L}_{s}^{w}
$$

Step 3: pull out Q from $\left(X_{t}\right)_{R N R N}^{w}-\left(X_{s}\right)_{R N R N}^{w}$

$$
\begin{aligned}
&\left(X_{t}\right)_{R N R N}^{w}-\left(X_{s}\right)_{R N R N}^{w} \\
&=\left(\left(X_{t}\right)_{R N R N} e^{-2 w L_{0}\left[h_{2}\right]}-\left(X_{s}\right)_{R N R N} e^{-2 w L_{0}\left[h_{3}\right]}\right) \\
& \quad \times e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} \\
&=\left(\left(X_{t}\right)_{R N R N}\left(e^{-2 w L_{0}\left[h_{2}\right]}-1\right)+\left(X_{t}\right)_{R N R N}-\left(X_{s}\right)_{R N R N}+\left(X_{s}\right)_{R N R N}\left(1-e^{-2 w L_{0}\left[h_{3}\right]}\right)\right) \\
& \quad \quad \times e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]}
\end{aligned}
$$

We introduce

$$
\mathcal{B}[a, *]=\int_{0}^{1} d t \int d \widetilde{t} e^{\left\{Q^{\prime},(1-t)(-2 w) b_{0}[a]\right\}}, \quad \mathcal{B}[*, b]=\int_{0}^{1} d t \int d \widetilde{t} e^{\left\{Q^{\prime}, t(-2 w) b_{0}[b]\right\}}
$$

which satisfy

$$
Q \cdot \mathcal{B}[a, *]=e^{-2 w L_{0}[a]}-1, \quad Q \cdot \mathcal{B}[*, b]=1-e^{-2 w L_{0}[b]}
$$

Step 3 (continued)

Then we have

$$
\begin{aligned}
&\left(X_{t}\right)_{R N R N}^{w}-\left(X_{s}\right)_{R N R N}^{w} \\
&=\left(\left(X_{t}\right)_{R N R N} Q \cdot \mathcal{B}\left[h_{2}, *\right]+Q \cdot \Xi_{R N R N}+\left(X_{s}\right)_{R N R N} Q \cdot \mathcal{B}\left[*, h_{3}\right]\right) \\
& \quad \times e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} \\
&=Q \cdot\left[\left(\left(X_{t}\right)_{R N R N} \mathcal{B}\left[h_{2}, *\right]+\Xi_{R N R N}+\left(X_{s}\right)_{R N R N} \mathcal{B}\left[*, h_{3}\right]\right)\right. \\
&\left.\quad \times e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]}\right] .
\end{aligned}
$$

Finally, we find

$$
\begin{gathered}
\Xi_{R N R N}^{w}=\left(\left(X_{t}\right)_{R N R N} \mathcal{B}\left[h_{2}, *\right]+\Xi_{R N R N}+\left(X_{s}\right)_{R N R N} \mathcal{B}\left[*, h_{3}\right]\right) \\
\times e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]}
\end{gathered}
$$

We can also show that $\Xi_{R N R N}^{w}$ satisfies the cyclic equation:

$$
\omega \circ \Xi_{R N R N}^{w}=-\Xi_{N R N R}^{w}
$$

We can construct $\Xi_{A B C D}^{w}$ for other NS/R combinations in the similar way.

Illustration of $\Xi_{R N R N}^{w}$

4. Conclusion and Future directions

Conclusion and Future directions

Conclusion
We constructed open superstring field theory based on the supermoduli space

- including the Ramond sector
- with stubs
- up to quartic order

Future directions

- Extension to all order?
- Relation to other formulations? (especially Homotopy algebra based constructions)

Thank you for your attention!

∞. Back up

$\Xi_{R N R N}$ is cyclic

We have

$$
\Xi_{R N R N}=\Xi_{N R N R}=\Xi_{R R}\left[h_{2}, h_{3}\right]
$$

Let us consider the cyclic equation. We find

$$
\begin{aligned}
\omega \circ \Xi_{R N R N} & =\Xi_{R R}\left[h_{3}, h_{4}\right]=-\Xi_{R R}\left[h_{4}, h_{3}\right] \\
& =-\Xi_{R R}\left[h_{2}, h_{3}\right]=-\Xi_{N R N R}
\end{aligned}
$$

Therefore, three-string products constructed from $\Xi_{R N R N}$ and $\Xi_{N R N R}$ has the cyclic A_{∞} structure ${ }^{1}$.
${ }^{1}$ We used antisymmetric property of $\Xi_{R R}$:

$$
\Xi_{R R}[a, b]=-\Xi_{R R}[b, a],
$$

and $\beta_{R}\left[h_{2}\right]=\beta_{R}\left[h_{4}\right]$ which follows form the fact that β_{0} is BPZ even.

$$
\Xi_{R R}\left[h_{2}, h_{3}\right]=\int d t^{\prime} \int d \tilde{t^{\prime}} \int d \zeta d \tilde{\zeta} e^{-\left\{Q^{\prime}, t^{\prime} \zeta \beta_{R}\left[h_{2}\right]\right\}} e^{-\left\{Q^{\prime},\left(1-t^{\prime}\right) \zeta \beta_{R}\left[h_{3}\right]\right\}}
$$

Interploation function

We can replace $\Xi_{R R}\left[h_{2}, h_{3}\right]$ with $\check{\Xi}\left[h_{2}, h_{3}\right]$.

$$
\Xi_{R R}\left[h_{2}, h_{3}\right]=\frac{1}{4} \sum_{i=1}^{4}\left(\Xi_{R R}\left[h_{2}, g_{i}\right]+\Xi_{R R}\left[g_{i}, h_{3}\right]\right)
$$

$\check{\Xi}\left[h_{2}, h_{3}\right]$ satisfies

$$
\begin{aligned}
Q \cdot \check{\Xi}_{R R}\left[h_{2}, h_{3}\right] & =X_{R}\left[h_{2}\right]-X_{R}\left[h_{3}\right], \\
\check{\Xi}_{R R}\left[h_{2}, h_{3}\right] & =-\check{\Xi}_{R R}\left[h_{3}, h_{2}\right] .
\end{aligned}
$$

\mathcal{B}_{3}^{w} is cyclic

We can show that \mathcal{B}_{3}^{w} satisfies the cyclic equation. We find

$$
\begin{aligned}
\omega \circ \mathcal{B}_{3}^{w} & =\omega \circ\left(\mathcal{B}\left[h_{2}, h_{3}\right] e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]}\right) \\
& =\mathcal{B}\left[h_{3}, h_{4}\right] e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} e^{-w L_{0}\left[g_{1}\right]} \\
& =\mathcal{B}\left[h_{3}, h_{2}\right] e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} e^{-w L_{0}\left[g_{1}\right]} \\
& =-\mathcal{B}\left[h_{2}, h_{3}\right] e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} \\
& =-\mathcal{B}_{3}^{w}
\end{aligned}
$$

where we used $\mathcal{B}[a, b]=-\mathcal{B}[b, a]$ and

$$
b_{0}\left[h_{1}\right]=b_{0}\left[h_{3}\right], \quad b_{0}\left[h_{2}\right]=b_{0}\left[h_{4}\right]
$$

which follows from the fact that L_{0} is BPZ even. ${ }^{2}$

$$
\mathcal{B}\left[h_{3}, h_{4}\right]=\int_{0}^{1} d t \int d \tilde{t}\left(e^{\left\{Q^{\prime},(1-t)(-2 w) b_{0}\left[h_{3}\right]\right\}}+e^{\left\{Q^{\prime}, t(-2 w) b_{0}\left[h_{4}\right]\right\}}\right)
$$

$\Xi_{A B C D}^{w}$ is cyclic

If $\left(X_{t}\right)_{A B C D},\left(X_{s}\right)_{A B C D}$, and $\Xi_{A B C D}$ satisy

$$
\omega \circ\left(X_{t / s}\right)_{A B C D}=\left(X_{s / t}\right)_{D A B C}, \quad \omega \circ \Xi_{A B C D}=-\Xi_{D A B C}
$$

we can show that $\Xi_{A B C D}^{w}$ satisfies the cyclic equation. We find

$$
\begin{aligned}
& \omega \circ \Xi_{A B C D}^{w}=\omega \circ\left[\left(\left(X_{t}\right)_{A B C D} \mathcal{B}\left[h_{2}, *\right]+\Xi_{A B C D}+\left(X_{s}\right)_{A B C D} \mathcal{B}\left[*, h_{3}\right]\right)\right. \\
&\left.\times e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]}\right] \\
&=\left(\left(X_{s}\right)_{D A B C} \mathcal{B}\left[h_{3}, *\right]-\Xi_{D A B C}+\left(X_{t}\right)_{D A B C} \mathcal{B}\left[*, h_{4}\right]\right) \\
& \times e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} e^{-w L_{0}\left[g_{1}\right]} \\
&=\left(-\left(X_{s}\right)_{D A B C} \mathcal{B}\left[*, h_{3}\right]-\Xi_{A B C D}-\left(X_{t}\right)_{D A B C} \mathcal{B}\left[h_{2}, *\right]\right) \\
& \times e^{-w L_{0}\left[g_{1}\right]} e^{-w L_{0}\left[g_{2}\right]} e^{-w L_{0}\left[g_{3}\right]} e^{-w L_{0}\left[g_{4}\right]} \\
&=-\Xi_{D A B C}^{w} .
\end{aligned}
$$

