SUSY SYK Model with Global Symmetry

Junggi Yoon

July 12, 2018 YITP, Kyoto

Quantum Chaos

* Quantum Chaos can be diagnosed by Lyapunov exponent in Out-of-time-ordered Correlators (OTOCs). Hanada, Yoshida Talks + Qi Talk

$$\langle [\mathcal{O}(t), \mathcal{O}(0)]^2 \rangle \sim 1 - \frac{1}{N} e^{\lambda t}$$

* Spectral form factor(SFF) exhibits random matrix behavior at late time.

[Hanada, Shenker, Stanford, Tezuka et al] [Garcia-Garcia, Tezuka et al] [Nosaka, Rosa, JY]

- * Connection between exponential growth at (relatively) early time and random matrix behavior at late time is not so clear.
- * Talk on numerical study on scrambling time and Thouless time by Tomoki Nosaka in July 31st (5th week).
- * Today, we talk about OTOCs at early time.

Maximally Chaotic SYK Model

* Bound of Quantum Chaos (Lyapunov exponent).

$$\lambda \leqq rac{2\pi}{eta}$$
 【Maldacena, Shenker, Stanford】

- * Black hole is maximally chaotic. $\lambda = \frac{2\pi}{\beta}$ [Shenker, Stanford]
- * Dual field theory would also exhibit the saturation of chaos bound of OTOCs.
 - ✓ Difficult to calculate four point functions in strong coupling limit.
 - ✓ Difficult to capture long time behavior of OTOCs.
- * Sachdev-Ye-Kitaev Model [Sachdev, Ye] [Kitaev]
 - ✓ Melonic dominance: solvable at strong coupling limit Klebanov's talk
 - ✓ Analytic continuation/Real-time formulation: OTOCs

Review: Sachdev-Ye-Kitaev Model

* Quantum Mechanics of N Majorana Fermions: χ^i $(i=1,2,\cdots,N)$ Sachdev, Ye; Kitaev; Polchinski, Rosenhaus; Jevicki, Suzuki, JY; Maldacena, Stanford

$$S = \int d\tau \left[\frac{1}{2} \chi^i \partial_\tau \chi^i + i^{\frac{q}{2}} J_{i_1 \dots i_q} \chi^{i_1} \dots \chi^{i_q} \right]$$

* SYK Model has emergent reparametrizaiton symmetry at strict strong coupling limit.

$$\Psi(\tau_1, \tau_2) = \frac{1}{N} \chi^i(\tau_1) \chi^i(\tau_2) \qquad \qquad \qquad \qquad \qquad [f'(\tau_1)]^{\frac{1}{q}} \Psi(f(\tau_1), f(\tau_2)) [f'(\tau_2)]^{\frac{1}{q}}$$

- * At finite (large) coupling, the reparametrization symmetry is broken spontaneously and explicitly, and this leads to Schwarzian action for low energy effective action. Blommaert, Mertens Talks + Qi Talk
- * Spectrum: Light modes + Infinite tower of massive modes
 - ✓ Light mode: the leading exponential growth with $\lambda = 2\pi/\beta$
 - ✓ Massive mode: $1/\beta J$ correction to Lyapunov exponent

Generalization of SYK Models

- * Complex SYK Model, Flavor (Sachdev) (Davison, Jensen, Sachdev et al) (Bulycheva) (Gross, Rosenhaus) (JY)
- * Lattice and higher dimension [Gu, Qi, Stanford] [Berkooz, Narayan et al] [Murugan, Stanford, Witten]
- * Supersymmetry [Fu, Gaiotto, Maldacena, Sachdev] [Murugan, Stanford, Witten] [Peng, Spradlin, Volovich] [JY] [Narayan, JY] [Bulycheva]
- * Some generalizations can easily be incorporated into "internal space" of bi-local field $\Psi^{ab}(\tau_1, \tau_2) = \frac{1}{N} \chi_i^a(\tau_1) \chi_i^b(\tau_2)$ $M \ll N \ (a, b = 1, 2, \cdots, M)$
 - ✓ Replica space, Flavor, Thermofield Double, Superspace
- * Today's Questions:
 - Additional emergent symmetry and effective action for light modes
 - Their contributions to OTOCs (and Lyapunov exponent)

"To Gauge, or Not To Gauge"

- * Can we gauge SYK model by O(N)/U(N) gauge field?
- * In Tensor Model, useful to restrict large numbers of light modes [Minwalla et al] [Klebanov et al]
- * In SYK model, random interaction is not gauge invariant: $J_{ijkl}\chi_i\chi_j\chi_k\chi_l$
- * Maybe, one can consider the random coupling constant as a dynamical variable. [Polchinski et al] [Nishinaka, Terashima]
- * At T=0, fix gauge: A=0
- * At $T \neq 0$, non-trivial holonomy along thermal circle
- * In this talk, we will not consider O(N)/U(N) gauge field.

Complex SYK Model (or Flavor)

- * One can gauge global U(1) symmetry of complex SYK model or SO(M) symmetry of generalized SYK model with flavor [Sachdev] [Davison, Jensen, Sachdev et al] [Gross, Rosenhaus] [Bulycheva] [JY]
 - ✓ U(1) (or SO(M)) Singlet sector
 - ✓ Only (super-)reparametrizaion light modes appear
- * One can consider background gauge field.
 - \checkmark At T \neq 0, chemical potential or non-trivial boundary condition.
 - ✓ Two-point function need not to be anti-symmetric. $\langle \bar{\chi}_i(\tau_1)\chi^i(\tau_2)\rangle \sim \frac{\operatorname{sgn}(\tau_{12}) + \epsilon}{|\tau_{12}|^{2\Delta}}$
- * Emergent reparametrization and ("local") U(1) symmetry are broken spontaneously and explicitly. (e.g. in complex SYK model)

$$\Psi(\tau_1, \tau_2) \qquad \longrightarrow \qquad e^{i\phi(\tau_1)} \Psi(\tau_1, \tau_2) e^{-i\phi(\tau_2)}$$

* Chemical potential change the emergent reparametrization, and the two light modes are coupled. [Davison, Jensen, Sachdev et al]

№ 1 SUSY SYK Model

Auxiliary Boson

- * Superfield with flavor index: $\psi^{i\alpha}(\tau,\theta) \equiv \chi^{i\alpha}(\tau) + \theta b^{i\alpha}(\tau)$
 - ✓ Large N, finite q: $i=1,2,\cdots,N$ $\alpha=1,2,\cdots,q$
 - ✓ Auxiliary Boson: random average is ok (cf. tensor model)

$$S = \int d\tau d\theta \, \left[-\frac{1}{2} \psi^{i\alpha} \mathrm{D} \psi^{i\alpha} + i^{\frac{q-1}{2}} J_{i_1 \cdots i_q} \psi^{i_1 \alpha_1} \cdots \psi^{i_q \alpha_q} \epsilon_{\alpha_1 \cdots \alpha_q} \right] \quad \text{[Narayan, JY]}$$

- ✓ q: odd (measure: Grassmaniann odd)
- ✓ SO(q) Global Symmetry
- ✓ In this talk,
 - ✓ No gauge field
 - ✓ SO(q) invariant ansatz for two point function $\langle \psi^{i\alpha_1}\psi^{i\alpha_2}\rangle \sim \delta^{\alpha_1\alpha_2}$

Emergent Symmetry

- * After random average, one can write collective action of bi-local superfield in large N: $\Psi^{\alpha_1\alpha_2}(\tau_1,\theta_1;\tau_2,\theta_2) \equiv \frac{1}{N} \sum_{i=1}^N \psi^{i\alpha_1}(\tau_1,\theta_1) \psi^{i\alpha_2}(\tau_2,\theta_2)$
- * At strict strong coupling limit, emergent Super-reparametrization and ("local") SO(q) symmetry

$$\mathbf{\Psi}(\tau_1, \theta_1; \tau_2, \theta_2) \longrightarrow \mathbf{\Psi}_{(f,y)}(\tau_1, \theta_1; \tau_2, \theta_2) \equiv [\mathbf{D}_1 y_1]^{\frac{1}{q}} \mathbf{\Psi}(f_1, y_1; f_2, y_2) [\mathbf{D}_2 y_2]^{\frac{1}{q}}$$

$$\mathbf{\Psi}(\tau_1, \theta_1; \tau_2, \theta_2) \longrightarrow \mathbf{g}(\tau_1, \theta_1) \mathbf{\Psi}(\tau_1, \theta_1; \tau_2, \theta_2) \mathbf{g}^{-1}(\tau_2, \theta_2)$$

- * At finite coupling constant, the emergent symmetries are broken spontaneously and explicitly to OSp(1|2) and (Global) SO(q)
- * Low energy effective action: Super-Schwarzian + action for a superparticle on group manifold

$$S_{\rm eff} \equiv -\frac{N\alpha_{\rm \scriptscriptstyle SDiff}}{J} \int d\tau d\theta \ 2 \left[\frac{{\rm D}^4 y}{{\rm D} y} - 2 \frac{{\rm D}^2 y {\rm D}^3 y}{[{\rm D} y]^2} \right] - \frac{N\alpha_{\rm \scriptscriptstyle SO(q)}}{J} \int d\tau d\theta \ \frac{1}{2{\rm k}} {\rm tr} \left[\boldsymbol{\mathcal{J}} {\rm D} \boldsymbol{\mathcal{J}} + \frac{1}{{\rm k}} \boldsymbol{\mathcal{J}}^3 \right]$$

* 4 types of light modes: (B/F) reparametrization + (B/F) SO(q)

Correction to Leading Lyapunov Exponent

* $1/\beta J$ Correction to the Leading Lyapunov Exponent

$$\lambda_L = \lambda_L^{(0)} + \frac{1}{\beta J} \lambda_L^{(1)} + \cdots$$

→ Leads to Correction to the Exponential Growth

$$e^{\lambda_L t} = e^{\lambda_L^{(0)} t} + \frac{\lambda_L^{(1)}}{\beta J} t e^{\lambda_L^{(0)} t} + \cdots$$

Light Mode Contribution -

e.g. Super-reparametrization light modes and SO(q) light modes

Non-zero Mode Contribution

Summation of all contributions from Infinite Tower of Massive Modes

Out-of-time-ordered Correlators

- * Bi-local superfield can be decomposed into singlet, antisymmetric and symmetric representation of SO(q). Up to quadratic level of bi-locals, these are decoupled.
- * SO(q) Singlet Channel of **Bosonic** bi-locals ($\chi\chi$ and bb):
 - (bosonic) reparametrization light mode give maximal Lyapunov exponent ($\lambda = \frac{2\pi}{\beta}$) in OTOCs of bosonic bi-locals.

- Non-zero modes give $1/\beta J$ correction: $\frac{t}{\beta J}e^{\frac{2\pi}{\beta}t}$
- Maximally Chaotic OTOCs

(Maldacena, Stanford)

Peng, Spradlin, Volovich

Gross, Rosenhaus

(Bulycheva)

(Narayan, JY)

Out-of-time-ordered Correlators

- * SO(q) Singlet Channel of Fermi bi-locals (χb):
 - (Fermi) Super-reparametrization light mode give a half of the maximal Lyapunov exponent ($\lambda = \frac{\pi}{\beta}$) in OTOCs of Fermi bi-locals.

- * SO(q) Anti-symmetric Channel of Bosonic bi-locals:
 - (Bosonic) SO(q) light mode give linear growth ($\lambda = 0$) in one OTOCs

Summary of Chaotic Behavior

		Zero Mode	Non-Zero Mode
Singlet	$\left \langle \chi^i \chi^i \ \chi^j \chi^j \rangle \ \langle \chi^i \chi^i \ b^j b^j \rangle \ \langle b^i b^i \ b^j b^j \rangle \right $	$Je^{rac{2\pi}{eta}t}$	$\frac{t}{\beta}e^{\frac{2\pi}{\beta}t}$
	$\langle b^i \chi^i \ b^j \chi^j \rangle$	$Je^{rac{\pi}{eta}t}$	$rac{t}{eta}e^{rac{\pi}{eta}t}$
Anti	$\langle \chi^i \chi^i \ \chi^j \chi^j \rangle$	Jt	$rac{t}{eta}$
	$\left\langle \chi^{i}\chi^{i}\ b^{j}b^{j}\right\rangle \left\langle b^{i}b^{i}\ b^{j}b^{j}\right\rangle \left\langle b^{i}\chi^{i}\ b^{j}\chi^{j}\right\rangle$	No Growth	
Sym		No Growth	

* Lyapunov exponent from W_N vacuum Block: $\lambda_L^{(s)} = \frac{2\pi}{\beta}(s-1)$ $(s=1,2,3,\cdots)$ [Perlmutter, 1602.08272]

Future Directions

- * Thermofield Dynamics of SYK models (in progress)
- * N=4 SUSY SYK Model

どうもありがとうございます。
(Thank you very much)