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Abstract

In this thesis, we show the results of the molecular dynamics (MD) simulations of the collisions
between nanoscale objects such as (i) nanocluster depositions on a crystalline surface, (ii) nanocluster
depositions on a free-standing graphene, and (iii) oblique impacts of two nanoclusters. The aim of
this thesis is to analyze the mechanics of nanoscale objects and to explain the results of the molecular
dynamics simulations in terms of the continuum mechanics.

At first, depositions of amorphous Lennard-Jones nanocluster on a crystalline surface are numer-
ically investigated. From the results of the MD simulation, we found that the deposited nanocluster
exhibits a transition from multilayered adsorption to monolayered adsorption at a critical incident
speed. Employing the energy conservation law, we estimate the incident speed at which evaporation
occurs during the impact. We demonstrate the estimated value well agrees with the results of the MD
simulation. We also explain that the scaled adsorption parameterη ≡ Nadh/Ncls, whereNadh andNcls

are the number of atoms adsorbed on the substrate and the cluster size, respectively, is proportional to
the square of the incident speed. The boundary shape of the adsorbed nanocluster depends strongly on
the incident speed, and some unstable modes grow during the impact. We also analyze the wettability
between different Lennard-Jones atoms, and temperature dependence of a deposited nanoclusters.

At second, the motion of a free-standing graphene induced by nanocluster impact is investigated.
The graphene is bended by the incident nanocluster and a transverse deflection wave is observed. We
find that the time evolution of the deflection is semi-quantitatively described by the elastic beam the-
ory. The time evolution of the temperature profile of graphene is also measured, and we demonstrate
that the analysis based on the least dissipation principle well explains the result in the early stage of
impact.

At third, the oblique impacts of nanoclusters are studied by the MD simulation and theoretically.
In the MD simulations, we explore two models – Lennard-Jones clusters and particles with covalently
bonded atoms. In contrast to the case of macroscopic bodies, the standard definition of the normal
restitution coefficient yields negative values for oblique collisions of nanoclusters. We explain this
effect and propose a proper definition of the restitution coefficient which is always positive. We
develop a theory of an oblique impact based on continuum model of particles. A good agreement
between the macroscopic theory and simulations leads to the conclusion that macroscopic concepts of
elasticity, bulk viscosity and surface tension remain valid for nanoparticles of a few hundred atoms.
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Chapter 1

Introduction

1.1 Nanoscience and nanotechnology

In the last decade, science and technology of nanomaterials are explosively developed [1–3]. The pur-
pose of nanoscience and nanotechnology is to control nanoscale objects in order to innovate nanoscale
devices. Because the nanoscale objects are intermediate between single atoms and macroscopic mate-
rials, the properties of nanoscale objects are often peculiar [4] and many researchers investigate such
peculiar aspects of nanoscale objects, i.e. nanoclusters, graphene sheets, carbon nanotubes, etc.

1.2 Nanocluster

Nanocluster is an aggregate containing 10 - 106 atoms which are bonded by the interatomic forces
[5–7]. If the total charge of nanocluster is neutral, the nanocluster is calledneutral nanocluster. For
example, argon nanocluster is a typical neutral nanocluster, in which argon atoms are bonded by the
van der Waals interactions [8, 9]. On the other hand, gold nanocluster, in which constituent gold
atoms are bonded by metallic bonds and free electrons play an important role, is one of the most
studied metallic nanocluster [10–13]. Because nanoclusters are categorized by the species of atom
and the interatomic interaction [14–17], and each aspect of nanocluster is extremely different, we
restrict ourselves to the study of neutral nanoclusters such as argon nanocluster and silicon nanocluster.
Therefore, the effect of charge, which we describe in Sec.1.7, is ignored in this thesis.

The equilibrium states of neutral nanocluster are characterized by temperature and size [18–31].
Figure 1.1 exhibits the phase diagram of the Lennard-Jones nanocluster reprinted from Ref. [25].
In the case of extremely low temperature, we can see face centered cubic (FCC), decahedral, and
icosahedral structures. On the other hand, if the temperature is relatively high, we can see ”liquid”
nanocluster in spite of size [22, 25, 32]. Because the number of atoms in nanocluster is 106 at most,
the finite size effect plays an important role in the physics of nanoclusters. For example, thermal
fluctuation of each atom can influence the structure of nanocluster, and negative thermal capacity and
smooth jump of heat capacity (Fig.1.2) are found in the melting of nanoclusters [32–36]. The number
of atoms on surface of nanocluster is equally matched for the number of atoms inside the nanocluster.
Therefore, nanocluster has an extremely high reactivity and the van der Waals force is most important
to the interaction between two neutral nanoclusters [5,7].

In experiment, nanoclusters are made by cooling down a supersaturated vapor [6, 37–39]. There
are essentially two ways to cool down the supersaturated vapor: (i) employing an adiabatic expansion
through a nozzle into a high vacuum region, or (ii) mixing with a cold rare gas flow. Nanoclusters can
also be made by hitting a material with a laser pulse or an ion beam.

The nanoclusters produced in laboratory are detected by diffraction of electron beam [6, 37–39].
In this method, the fast electrons are scattered from the nanocluster and the diffraction rings around
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Figure 1.1: Phase diagram of the Lennard-Jones nanocluster reprinted from Ref. [25].

Figure 1.2: Heat capacityc(T) and the caloric curveU(T) of a positively charged sodium nanocluster
containing 192 atoms (Ref. [35]).
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(a) (b)

Figure 1.3: (a) A bright-field TEM micrograph of an 80nm radius Si nanosphere (Ref. [48]). (b) SEM
image of nanoparticle-coated silicon on a substrate (Ref. [49]).

the primary position of the electron beam is recorded. The interpretation of the diffraction profiles is
not straightforward, however, the size, structure, and temperature of nanoclusters can be detected by
this method.

1.3 Argon nanocluster

Argon nanocluster is one of the most studied nanoclusters and has been investigated experimentally
and numerically since the early 1980s [8, 9]. Because argon is a rare gas, it is a typical neutral
nanocluster. The equilibrium state of argon nanocluster depends on the size and temperature, and
the FCC, decahedral, and icosahedral structures are possible in the low temperature regime [22, 25,
32]. However, the glassy state of argon nanocluster, i.e.amorphous argon nanocluster, was found
in the electron diffraction experiment [40], and this result triggered many numerical simulations of
amorphous Lennard-Jones nanocluster [41–45]. From the results of this experiment, the amorphous
argon nanocluster is stable if the number of argon atoms is up toN = 800, however, if the number of
argon atoms becomes larger, the structure is changed to the multilayered icosahedron [40].

1.4 Silicon nanocluster

Silicon nanocluster is one of the most important nanocluster for practical purpose because of the
intense photoluminescence at room temperature [46–49]. There are many experiments to produce
neutral silicon nanoclusters by hitting a laser pulse to a bulk silicon. Silicon nanoclusters can also
be produced by injecting vapor-phase silicon into an hydrogenated thermal plasma [49]. In this case,
the surfaces of silicon nanoclusters, which are deposited on a substrate, are hydrogenated, and it is
expected that the surfaces of silicon nanoclusters are coated by hydrogen atoms during the free flight.
Figure 1.3 shows (a) a TEM image of an Si nanocluster [48] and (b) a SEM image of nanoparticle-
coated silicon nanocluster deposited on a substrate [49]. From the results of experiments and nu-
merical simulations, it is known that silicon nanocluster changes its shape from prolate structure to
spherical diamond structure around the number of constituent atomsN = 20 [46].

1.5 Nanocluster deposition on a surface

It is highly important to investigate the behavior of nanocluster depositions on a substrate for fabrica-
tion of high-quality films used in nanoscale electronic devices and photonic devices [50]. The ionized
cluster beam (ICB) technique makes it possible to control the translational kinetic energy of nanoclus-
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ter [51–53]. Therefore, there have been many experimental and theoretical studies of nanocluster
depositions on a substrate [54–61].

The outcome of nanocluster deposition is mainly influenced by the incident speed of nanocluster
[54, 55]. If the incident speed is extremely high, the cratering or implantation of the substrate is
observed [62–68]. On the other hand, if the incident speed is low enough, nanocluster is adsorbed
or rebounded on the substrate [69–72]. In this thesis, the incident speed is relatively low (0.01eV at
most), and the adsorption state of deposited nanocluster is mainly analyzed.

1.6 Collision of two nanoclusters

Collisions of two spherical particles are one of the most fundamental problem in physics, and it is
also important in chemistry, engineering, and many other fields [73–77]. The pioneering paper ”On
the contact of elastic solids” in 1882 by Hertz [78] analyzed contact mechanics of elastic bodies and
proposed the Hertzian distribution of contact pressure which acts on the contact area between colliding
two macroscopic spheres. Because the origin of the Hertzian contact pressure is only elasticity, contact
forces caused by the other effects, for example, the surface energy and viscoelasticity of macroscopic
spheres, are investigated by many researchers [79, 80]. Especially, the JKR theory for the adhesive
forces is well known [81], and it is applied to many fields of granular physics, astrophysics, etc.

Although there are much effort to understand the normal head-on collisions, the role of the tan-
gential forces parallel to the contact plane during oblique collisions are not well understood. Indeed,
the process is affected by the stick and slip motion, the rolling frictions and the effect of roughness
of particle’s surface, and the mechanism of the oblique impact has not been well explained theoreti-
cally [79,80].

Inelastic collisions, where a part of mechanical energy of colliding bodies transforms into heat,
are common in nature and industry. Avalanches, rapid granular flows of sand, powders or cereals
may be mentioned as pertinent examples [82, 83]. Moreover, inelastic collisions play an important
role in astrophysical objects, like planetary rings, dust clouds, etc. An important characteristic of
such collisions is the normal restitution coefficient e. The concept of a restitution coefficient, as a
basic one of the classical mechanics, has been introduced long ago by Newton; it addresses an impact
of macroscopic bodies. According to a standard definition, it is equal to the ratio of the normal
component of the rebound speed,g′ (prime states for the post-collision value), and the impact speed,
g

e= −g′ · n
g · n . (1.1)

The unit inter-center vectorn = r12/|r12| at thecollision instant(r12 = r1 − r2) specifies the impact
geometry. Since particles bounce in the direction, opposite to that of the impact,e is positive,e > 0,
and since the energy is lost in collisions,e is smaller than one, that is, 0≤ e ≤ 1. This is a common
statement in the majority of mechanical textbook, where it is also claimed thate is a material constant.
Recent experimental and theoretical studies show, however, that the concept of a restitution coefficient
is more complicated: First, it depends on an impact speed [84–87], second, it can exceed unity for a
special case of oblique collisions with elastoplastic plate [88–90], where the energy of normal motion
can increase at the expense of the energy of tangential motion [88–90].

The increasing interest to nanoparticles, inspired by its industrial significance, raises an important
question, to what extent the macroscopic concepts are applicable and whether they acquire new fea-
tures at a nanoscale. The collisions of nanoclusters has been studied in detail numerically [72,91–95].
It was observed that the surface effects, due to the direct inter-cluster van der Waals interactions, play a
crucial role: The majority of collisions of homogeneous clusters, built of the same atoms, lead to a fu-
sion of particles [91,92]; they do not fuse for high impact speeds, but disintegrate into pieces [91,92].
This complicates the analysis of restitutive collisions, which may be more easily performed for par-
ticles with a reduced adhesion. Among possible examples of such particles are clusters of covalently
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bonded atoms, especially when their surface is coated by atom of different sort, as for H- passivated
Si nanospheres [72]. These particles can rebound from a substrate, keeping their form after an impact
unaltered [72]. The bouncing nanoclusters demonstrate a surprising effect – the normal restitution
coefficient can exceed unity even for strictly head-on collisions [93].

1.7 Charge-up of nanocluster

The effect of charges in ionized nanocluster is also an important issue of experimental and theoretical
studies of nanocluster. Recent experimental technique of the FLASH free electron laser (FEL) is able
to ionize nanocluster by photo-absorption of atoms in nanocluster [96]. Because the energy of the
electron beam is much higher than the ionization potential (21.564eV, 8.152eV, and 13.598eV for an
argon atom, a silicon atom, and a hydrogen atom respectively), the nanocluster is charged up during
the irradiation process, and finally the Coulomb explosion occurs.

It is also possible to charge up nanoclusters by a collision. In this case, the kinetic energy of
incident nanoclusters must be higher than the ionization potential of atoms in nanocluster. In this
thesis, the incident speed of nanocluster is set on a low value (0.01eV at most), thus the effect of
charge-up is neglected. However, the influence of ionization on collision dynamics is highly important
as a future work.

1.8 Mechanics of graphene and carbon nanotube

Graphene is a two-dimensional atomic layer of carbon atoms packed into a honeycomb lattice. Be-
cause graphene can be wrapped up into fullerenes and rolled into carbon nanotubes, graphene is
the most fundamental nanoscale carbon material and such flexibility of graphene encourages many
researchers to investigate its mechanical properties [97–101]. Because graphene is a monolayer of
carbon atoms, its thickness can not be defined precisely in the sense of the continuum mechanics.
Therefore, the bending modulus

D =
dM
dκ
∼ Yh3 , (1.2)

whereM, κ, Y, andh are the bending moment, the bending curvature, Young’s modulus, and the
thickness of graphene, respectively, can not be defined precisely, too. However, the bending modulus
D can be measured experimentally by atomic force microscope (AFM) indentation, and different
physical origins ofD have been sought in experiments and numerical simulations [102–107]. There
are essentially two ways to define the thicknessh of graphene: (i)h = 0.34nm, which is the distance
between two carbon layers in graphite, and (ii)h � 0.34nm, which is an effective thickness mainly
proposed by the numerical simulations. Although there is an ambiguity in the definition ofh, graphene
is thought to be an extremely rigid plate withY = 1 ∼ 3TPa.

Carbon nanotube, on the other hand, is a quasi-one dimensional tube of carbon atoms. Many
experimental and numerical studies have clarified the super rigidity of carbon nanotube [108–111],
and it is a promising candidate for the next generation rigid fibers.

1.9 Quantum effect and the method of empirical potential

There are several methods for the numerical study of nanocluster. Thus, the choice of an appropriate
one depends on the size of nanocluster, the time scale, and the situation.

In the case that nanocluster contains only a few atoms, for example the number of atoms in nan-
ocluster is in the range of 2≤ N ≤ 10, the first principle calculation, i.e.ab initio calculation of
quantum mechanics or Hartree-Fock method, is used to take into account the quantum effects [112].
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In this method, all electron calculations are possible [113], however, this method becomes cumber-
some for larger size nanoclusters and the long time calculations are almost impossible.

The method based on density-functional theory [114–117] and quantum Monte Carlo simulation
[118,119] can be accurate calculations, if the correlation terms, which is treated under approximations,
are adequately calculated. Although the accuracy of approximations depends on the systems, these
methods can deal with one hundred atoms by the semi-quantum approach.

In the case that the number of atoms is lager and the time scale is longer, classical interaction
potentials, which are based on approximate quantum models, are necessary. These interaction poten-
tials, i.e. empirical potentials, contain parameters fitted by experimental results or the first principle
calculations. For example, the Lennard-Jones potential, which is a popular model for rare gases, con-
tains the short-range repulsive part arisen from the wave function overlap between interacting two
atoms, and the long-range attractive part arisen from the electric dipole polarization of two atoms (the
London dispersion force).

In this thesis, because the number of atoms in nanocluster is ranged between a few hundreds and
a few thousands, the classical molecular dynamics simulations with empirical potentials are adopted.
Because we also use the Tersoff potential [120–125] and the Brenner potential [126–129] for the
calculations of carbon and silicon atoms, respectively, the details of them are described in Appendix
A and B.

1.10 The aim of this thesis

In this thesis, we show the results of the MD simulations of the collisions between nanoscale objects
such as (i) nanocluster depositions on a crystalline surface, (ii) nanocluster depositions on a free-
standing graphene, and (iii) oblique impacts of two nanoclusters. The aim of this thesis is to analyze
the mechanics of nanoscale objects with the help of the continuum model to explain the results of the
molecular dynamics simulations.

1.11 Organization of this thesis

This thesis is organized as follows: In Chapter 2, nanocluster depositions on a crystalline surface are
numerically investigated. To clarify the adsorption state of deposited nanocluster, the critical incident
speed, at which the deposited nanocluster forms a monolayer, is investigated. From the analysis based
on the energy conservation law, the critical incident speed is estimated. In addition, the boundary
shapes of adsorbed nanocluster are analyzed. We also analyze the influence of the interaction between
different species of atoms and temperature dependence of deposited nanoclusters [130]. In Chapter
3, nanocluster depositions on a free-standing graphene sheet are investigated. The deflection waves
propagating in the graphene sheet are observed, and the dynamic motion of the graphene is analyzed.
Employing the linear theory for elastic plate, the time development of the deflection wave is repro-
duced in the early stage of the impact. An anisotropic temperature profile of the graphene is also
observed, and such a profile is quantitatively explained by the least dissipation principle for an irre-
versible process [131]. In Chapter 4, oblique impacts of two nanoclusters are investigated. Because of
the reorientation of the contact surface and the finite contact time, the conventional restitution coeffi-
cient becomes negative when the incident angle is large enough. The modified form of the restitution
coefficient is introduced, which is always positive, and the macroscopic model for dissipative particles
well reproduces the results of the MD simulations [132]. In Chapter 5, all the results and conclusions
are summarized.
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Chapter 2

Depositions of a Lennard-Jones
nanocluster on a crystalline surface
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2.1 Introduction

A nanocluster containing 10− 10, 000 molecules exhibits intermediate properties between bulk ma-
terials and individual molecules. Recently, there has been growing interest in the physics of nan-
oclusters. [4–7,32] In particular, it is important to investigate the depositions of nanoclusters on solid
surfaces for the construction of high-quality films used in nanoscale electronic devices and photonic
devices. [50]

The ionized cluster beam (ICB) technique was developed by Yamada et al. [51, 52] The ICB
technique is used to produce atomic clusters by employing adiabatic expansion of condensed vapour
through a nozzle into a high-vacuum region. In the ICB technique, clusters are ionized by electron
impact and then accelerated toward a substrate. Because the ICB technique controls the translational
kinetic energy of the cluster, there have been many experimental and theoretical studies aimed at
understanding the effect of the incident velocities of the cluster on the outcome of impact. [59–61]

The outcome of such a cluster impact is largely affected by the incident velocity, as seen from
the phase diagrams in Refs. [54, 55] If the translational kinetic energy per atom becomes too large,
the cluster can damage the substrate, and the cluster can break into pieces after the impact. [62–68]
However, if the translational kinetic energy per atom is less than 100 eV, the cluster is adsorbed on
the surface or reflected by the surface. Awasthi et al. carried out molecular dynamics simulations for
collisions of Lennard-Jones clusters with weakly attractive surfaces. [70,71] They discovered that the
cluster rebounds when the translational kinetic energy of the cluster is larger than the adhesion energy.
Moreover, they clarified that a transition from adhesion to rebound occurs at the critical translational
kinetic energy. J̈arvi et al. carried out molecular dynamics simulations of low-energy deposition of
individual metal clusters on a (100) surface. [69] They revealed that the heat generated by the impact
partially or completely melts the deposited cluster. As a consequence, the atoms in the cluster are
rearranged and adjusted to the atomic structure of the substrate. They found the maximum size at
which single clusters align epitaxially on the substrate.

Recently, Kuninaka and Hayakawa have carried out molecular dynamics simulations of two iden-
tical colliding clusters and investigated impact phenomena of nanoclusters subject to thermal fluc-
tuations. [93] They found super-rebound events in which the restitution coefficient is larger than 1.
They confirmed the validity of the macroscopic quasi-static theory of cohesive collisions. [86] This
suggests that the research on nanoclusters is relevant even for the study for fine powders whose di-
ameters range from 100 nm to 1µm. [73, 74] They also revealed the mechanism responsible for the
super-rebound process, the normal rebound, and the merging.

Although early numerical studies assumed that the clusters are highly crystallised, we also need to
know the properties of amorphous clusters. Indeed, it is easy to form metastable amorphous clusters
in terms of the quench process from high-temperature liquids. [41–45,133]

The main purpose of our paper is to understand the behavior of the deposited amorphous Lennard-
Jones clusters on the crystalline surface at zero temperature. Here, we report on our molecular dynam-
ics simulation of the depositions with the small incident energies per atom, which lie in the so-called
soft-landing regime (0− 2 eV). In addition, we report on the wettability between different Lennard-
Jones atoms.

From the analysis of the final configurations of the deposited clusters, we find the existence of a
morphological phase transition from the hemi-spherical droplet to the monolayer film at the critical
incident speed. The multilayered adsorption state is described on the basis of the energy conservation
law. Furthermore, we find that there are some unstable modes of the boundary shape of the deposited
cluster.

This paper is organized as follows. Section 2 consists of three sections. In§2.1, we explain the
model of our numerical simulation. We explain our setup of cluster depositions in§2.2. In§2.3, we
explain how to analyze temperature dependence of deposited clusters numerically. Section 3 consists
of five sections. In§3.1, we show some time evolutions of impact processes. In§3.2, we explain
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Figure 2.1: A snapshot of our simulation of a nanocluster deposition. The incident cluster contains
300 atoms that are bounded by the Lennard-Jones potential. The substrate consists of a single layer
(120× 120) of atoms on a triangular lattice.

how the cluster size and cluster adsorption parameter depend on the incident speed after the impact.
In §3.3, we discuss the transition from partial wetting to perfect wetting of deposited clusters. In
§3.4, we explain the morphological change of the final configuration of adsorbed atoms in clusters.
In §3.5, we discuss the wettability between different Lennard-Jones atoms. In§3.6, we analyze the
temperature dependence of deposited Lennard-Jones nanoclusters on a crystalline surface. In§4, we
discuss our numerical results and summarize the conclusion.

2.2 Molecular dynamics simulation

2.2.1 Model

To investigate the nanocluster depositions on a substrate, we perform a molecular dynamics simula-
tion. Figure 2.1 displays a snapshot of our numerical simulation. Because we are interested in neutral
nanoclusters and substrates, the electrostatic interaction between atoms is not considered. We assume
that the potential energy of the interaction between two atoms can be described using the Lennard-
Jones (LJ) potential:

U(r i j ) = 4εαβ
{(σαβ

r i j

)12

−
(
σαβ

r i j

)6}
, (2.1)

where subscriptsα andβ specify the species of LJ atoms andr i j is the distance between two atoms
labeled byi and j. Here,εαβ andσαβ are, respectively, the strength of the interaction and diameter of
the repulsive core betweenα andβ atoms. Ifα , β, we adopt the cross parameters of the LJ potential
using the Lorentz-Berthelot rule as

σαβ =
(σα + σβ)

2
, εαβ =

√
εαεβ. (2.2)

We mainly investigate the case that the cluster and substrate are constructed using the same atoms, A.
Here, we borrow the values of LJ parameters and mass of a typical inert gas, argon. Therefore,εAA ,
σAA , and the mass of an A atommA are 1.65× 10−21 J, 3.405Å, and 6.63× 10−26 kg, respectively.
[134–136] On the other hand, to study the effect of the interaction energy between different atoms of
the cluster and substrate, we introduce a C atom as the constituent of the substrate in§3.5. We use
the values of LJ parameters and mass of carbon to the C atom, in whichεCC, σCC, and the mass of C
atommC are 3.86× 10−22 J, 3.354Å, and 1.99× 10−26 kg, respectively. [134–136] We should note
that the interaction energy between the cluster and substrate,εAC, is several times weaker thanεAA . In
the following, we omit the subscripts of the LJ parameters of the interaction between the A atoms and
we adopt simplified notationsε, σ. We also adoptmas the mass of an A atom. We useε, σ, andmas
the units of energy, length, and mass, respectively. Thus, the unit time is given byτ =

√
mσ2/ε.
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Figure 2.2: Illustration of an LJ cluster formation consisting of 300 A atoms. (a) Initial configuration
of atoms in the gas phase atT = 1.0ε. (b) A liquid cluster obtained from the quench intoT = 0.5ε.
(c) An amorphous cluster obtained from the quench intoT = 0.01ε.

We use a single-layer surface, which involves 120× 120 atoms on a triangular lattice as the
substrate with the periodic boundary condition. [137, 138] We set the lattice constant to 21/6σαα
(α = A,C) as the equilibrium distance between atoms. To avoid the destruction of the substrate,
each atom of the substrate is also tethered to its equilibrium position by an elastic spring. In actual im-
pacts of nanoclusters on substrates, the energy induced by an impact is relaxed to the internal motion
of the atoms of the bulk region of the substrate. To represent such energy relaxation, we simply intro-
duce the viscous force proportional to its velocity. The introduction of the viscous force has another
advantage to reduce the unrealistic boundary effects. Indeed, if we do not introduce the viscous force,
the acoustic wave would be transmitted across the boundary. The atom of the substrate atr i satisfies
the equation of motion

mα
d2r i

dt2
= −

∑
j

d
dr i

U(r i j ) − k(r i − req
i ) − λdr i

dt
, (2.3)

where
∑

j is a summation over the interacting pairsi and j, and req
i is its equilibrium position, and

mα (α = A,C) is the mass of an atom of the substrate. Because we consider the substrate as a rigid
surface, we use the spring constantk = 1.0× 103ε/σ2. We simply adopt the valueλ = 1.0

√
mε/σ for

the coefficient of viscosity.
We adopt the velocity Verlet method for numerical integration of the equation of motion for each

atom with the time stepdt = 1.0 × 10−3
√

mσ2/ε. To reduce computational costs, we introduce the
cutoff lengthσcut = 3.0σ to the LJ potential, and we adopt the periodic boundary conditions in the
horizontalxy directions and the free boundary condition in the verticalz direction. It should be noted
that the viscous force is evaluated as the value at the previous time step for the numerical integration
of Eq. (2.3).

2.2.2 Setup

We make an LJ cluster by the temperature quench [139] into the metastable phase of LJ fluid. [140]
We prepare 32, 108, 255, 300, 500, and 862 atoms in a periodic box and equilibrate at the temperature
T = 1.0ε with the number density 0.05σ−3 in the gas state (Fig. 2.2(a)). It should be noted that the unit
of the temperature becomesε, because we set the Boltzmann constant to be unity. To equilibrate the
gas at a specific temperature, we perform the velocity scaling untilτ = 2000σ

√
m/ε for the relaxation

to a local equilibrium state. We have confirmed the equilibration of the total energy in the initial
relaxation process, and we quench the gas toT = 0.5ε. After an equilibration, a weakly bounded
liquid cluster is formed (Fig. 2.2(b)) and is quenched toT = 0.01ε to make it rigid. This two-step
quenching is adopted to form one cluster from an initial gas state. Indeed, if we quench the system
into T = 0.01ε directly, many small clusters appear. After this equilibration, we obtain an amorphous
cluster (Fig. 2.2(c)). We place the amorphous cluster at 10σ above the substrate and give the cluster
the translational velocityVimp to make it collide against the substrate. It should be noted that the
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Figure 2.3: (Color online) A snapshot of our simulation of a deposition of a Lennard-Jones cluster.
The incident cluster contains 862 atoms which are bounded by the Lennard-Jones potential. The
substrate is a (111)-terminated fcc surface consists of 4 layers of 40× 40 triangular lattice of atoms.

amorphous cluster is metastable to maintain its shape within our observation time. The incident angle
of the cluster to the substrate normal is zero. The incident speed of the cluster ranges fromVimp = 0.1
to 5.0

√
ε/m.

2.2.3 Numerical analysis of temperature dependence

To analyze temperature dependence of deposited nanoclusters, we use a (111)-terminated fcc crys-
talline surface for the substrate. Figure 2.3 shows the setup of numerical simulation. The (111)-
terminated fcc surface consists of 4 layers of 40× 40 triangular lattice. We set the lattice constant
to 21/6σCC. To avoid the destruction of the substrate, each atom of the substrate is tethered to its
equilibrium position by an elastic spring. Thus the atom of the substrate atr i satisfies the equation of
motion

mC
d2r i

dt2
= −

∑
j

d
dr i

U(r i j ) − k(r i − req
i ), (2.4)

where
∑

j is a summation over the interacting pairsi and j, andreq
i is its equilibrium position. Because

we consider the substrate as a rigid surface, we use the spring constantk = 1.0× 102ε/σ2. We adopt
the velocity scaling method every 0.5τ to equilibrate the substrate at a specific temperature. The
temperature of the substrate is ranged fromT = 0.01ε to 0.4ε. We adopt the periodic boundary
conditions in the horizontalxydirections and the free boundary condition in the verticalz direction.

2.3 Results

2.3.1 Time evolution of impacts

Figures 2.4 and 2.5 display the time evolutions of the impact of the LJ cluster of 300 atoms on the
crystalline surface. Figures 2.4(a)–(d) represent the case ofVimp = 2.0

√
ε/m, and Figs. 2.5(a)–(d) are

the case ofVimp = 4.0
√
ε/m.

The incident cluster moves toward the substrate with its translational speedVimp (Figs. 2.4(a) and
2.5(a)), and hits the substrate (Figs. 2.4(b) and 2.5(b)). After the hit, the cluster is only deformed to
be a hemi-sphere (Fig. 2.4(c)) for the small incident speed. If the incident speed is, however, larger
than a critical value, the deposited cluster is split into many pieces (Fig. 2.5(c)). After the impact, the
deposited cluster is adsorbed on the substrate and settles into the final configuration (Figs. 2.4(d) and
2.5(d)).

We observe that the impact process and final configuration depend strongly on the incident speed
Vimp. In the case ofVimp < 1.7

√
ε/m, no atoms can escape from the cluster during the impact. By

contrast, some atoms evaporate during the impact process forVimp ≥ 1.7
√
ε/m. If the incident speed

is relatively low, the final configuration is a hemi-sphere on the substrate, as in the case of a partial
wetting of a liquid droplet on a dry surface. The deformation becomes larger as the incident speed
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Figure 2.4: Time evolution of an impact of an LJ cluster of 300 atoms on the substrate, where the
incident speed isVimp = 2.0

√
ε/m. See the text for details.

Figure 2.5: Time evolution of an impact of an LJ cluster of 300 atoms on the substrate, where the
incident speed isVimp = 4.0

√
ε/m. See the text for details.

increases. AboveVimp = 3.3
√
ε/m, the deposited cluster is completely split into fragments, and the

absorbed atoms on the substrate form a monolayer coverage. AboveVimp = 4.5
√
ε/m, the deposited

cluster bursts into fragments, and the absorbed coverage is no longer characterized by one cluster.
At the moment of impact, the temperature of the deposited cluster increases because the initial

kinetic energy is transformed into internal motion. Then, the temperature decreases owing to the heat
conduction into the bulk region of the material through the contact area. [69, 141, 142] The config-
uration of the deposited cluster is changed into an energetically favorable position during cooling.
Furthermore, the atomic structure of the deposited cluster is adjusted to the substrate. Finally, the
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configuration is frozen because of the loss of heat.

2.3.2 Incident speed dependences of the scaled cluster size and cluster adsorption pa-
rameter

Figure 2.6: (a) A plot of the scaled cluster sizeξ and (b) a plot of the cluster adsorption parameterη

as functions of the incident speed for the cluster of 300 atoms.

 
 
 
 

 
 
 
 
 
 

Figure 2.7: (a) Plot of the scaled cluster sizeξ and (b) plot of the scaled cluster adsorption parameter
η as functions of the incident speed.

In our simulation, the main cluster is detected using the clustering algorithm. [143] Following
Allen and Tildesley, we adopt the critical atom separationrC = 1.6σ. After the cluster settles into the
final configuration, we representNcls as the number of atoms in the cluster. With the number of atoms
in the cluster before the impactN, we introduce the scaled cluster size:

ξ ≡ Ncls

N
. (2.5)

If ξ = 1, no atoms can escape from the cluster after the impact. On the other hand, ifξ < 1, some
atoms evaporate during the cluster impact.

Let us define an absorbed atom in the cluster if an atom atr in the cluster satisfies the relation
|r − rs| < rC, wherers is the position of its nearest neighbor constituent of the substrate. Using the
number of these adsorbed atomsNadh, we can introduce the cluster adsorption parameter:

η ≡ Nadh

Ncls
. (2.6)

If η < 1, the cluster is regarded as a multilayered adsorption. However, ifη = 1, the deposited cluster
is perfectly spread on the substrate, and it is a monolayered adsorption.
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Figures 2.6(a) and (b) plot the incident speed dependences ofξ andη for the cluster of 300 atoms.
We find thatξ equals 1 belowVimp = 1.7

√
ε/m, but it decreases aboveVimp = 1.7

√
ε/m. On the

other hand,η increases with the incident velocity belowVimp = 3.3
√
ε/m, but it is satisfied toη ' 1

aboveVimp = 3.3
√
ε/m. Figure 2.7(a) plots several results onξ for N = 255, 300, 500, and 862, while

Fig. 2.7(b) isη − η0 for N = 32,108,255, 300, 500, and 862, whereη0 is η at Vimp = 0. It seems that
η − η0 is independent of the size of clusters, whileξ exhibits weak size dependence.

How can we understand the behaviors in Figs. 2.6 and 2.7? During the impact, the temperature in
the cluster increases because the kinetic energy is transformed into internal motion. [69] We assume
that the energy flux to the substrateΦbulk during the impact is small, and the temperature becomes
maximumTmax when the speed of the center of mass of the cluster becomes zero. Thus, the energy
conservation law can be written as

1
2

mNV2
imp +

3
2

NT0 '
3
2

NTmax+ ∆S, (2.7)

whereT0 is the temperature of the cluster before the impact, and∆S is the change in the surface
energy. With the introduction of the surface tensionγ, the height of the deposited clusterh, the
contact radius of the deposited clusterR, and the ratioφ = h/R, ∆S is given by

∆S = γ(2πφR2 − 4πR2
0), (2.8)

whereR0 is the mean radius of the cluster before the impact. By introducing the mean area fraction
of the contact areaρadh= Nadh/πR2, ∆S can be rewritten as

∆S = γ

(
2Nadh

ρadh
− 4πR2

0

)
. (2.9)

From Eq. (2.7),Tmax satisfies

Tmax = T0 +
m
3

V2
imp −

2∆S
3N

. (2.10)

Because the binding energy per atom in the cluster is roughly equal toε, the evaporation takes place
at Tmax ' ε. In our simulation,T0 is much smaller thanTmax, and the last term on the right-hand side
of Eq. (2.10) is negligible for largeN. Thus, the evaporation is considered to take place nearVimp '√

3ε/m. In Figs. 2.6(a) and 2.7(a), the scaled cluster size becomesξ < 1 aboveVimp = 1.7
√
ε/m,

which is consistent with the above estimation. For the clusters with 32 and 108 atoms,ξ decreases
faster than the other cases. In such cases, we cannot ignore the last term on the right-hand side of
Eq. (2.10).

During the impact, an evaporated atom carries away the volume energyuV, which is the potential
energy per atom and the kinetic energy3

2Tmax from the cluster. We assume that the internal energy of
the deposited cluster decreases because of the energy flux to the bulk of the substrate. Therefore, after
the cluster settles into the final configuration, the energy conservation law can be written as

1
2

mNV2
imp +

3
2

NT0 = ∆S + Φbulk + (1− ξ)NĒ, (2.11)

whereĒ = 3
2Tmax− uV is the energy carried away by an evaporated atom. Here, (1− ξ)N represents

the number of evaporated atoms. If the incident kinetic energy is not large, the number of atoms in the
cluster is approximately preserved during the impact. Therefore, it is reasonable that the scaled cluster
size satisfiesξ ' 1. If we assumeφ ' 1, the energy conservation law (Eq. (2.11)) can be simplified as

η =
mρadh

4γ
V2

imp +
ρadh

2γ

4πγR2
0

N
− Φbulk

N
+

3
2

T0

 , (2.12)
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where we have used Eqs. (2.6) and (2.9).
We useρadh = 0.91, because the adsorbed atoms should match the hexagonal lattice on the sub-

strate. The mean radiusR0 of a cluster consisting ofN atoms satisfiesR0 = r0N1/3, where we use
r0 = 0.68σ as a fitting parameter. The solid line in Fig. 2.6(b) is the theoretical prediction (Eq. (2.12)),
where the surface tensionγ ' 3.5ε/σ2 and the energy flux per atomϕbulk = Φbulk/N ' 1.7ε are the
two other fitting parameters.

The second term on the right-hand side of Eq. (2.12) can be written as

η0(N) =
ρadh

2γ

(
4πr2

0γN−1/3 − ϕbulk +
3
2

T0

)
. (2.13)

It is interesting thatη − η0(N) is independent of the cluster size. Figure 2.7(b) plots our numerical
resultsη − η0(N) for η < 1, which support the validity of the theoretical prediction (solid line).

2.3.3 Transition from partial wetting to perfect wetting of the deposited cluster

Figure 2.8: (a) Plots of the heighth (filled circle) and contact radiusR (open square) and (b) a plot of
the contact angleθ as functions of the incident speed for the LJ cluster of 300 atoms.

Let us introduce the radius of the equimolar dividing surface (Gibbs Surface) [143]

R2 = − 1
ρadh

∫ ∞

0

dρ(r)
dr

r2dr (2.14)

as the contact radius of a deposited cluster, whereρ(r) is the area fraction of the contact area with
radial distance from the center of mass of the adsorbed atoms in the cluster. We also define the cluster
heighth aszmax− z0, wherezmax is the maximum vertical position in the atoms in the cluster, andz0 is
the minimum vertical position. Assuming a meniscus shape to the deposited cluster, we geometrically
calculate the contact angleθ.

Figure 2.8 displaysh, R, andθ for the deposited cluster consisting of 300 atoms as functions of the
incident speed. We observe that the cluster heighth decreases and the contact radiusR increases as the
incident speed increases. AboveVimp = 3.3

√
ε/m, the height and contact angle become zero, which

implies that the deposited cluster becomes a monolayer film and is perfectly wetting on the substrate.
In this regime, the monolayer film is spread further and its boundary is partially chipped. Therefore,
the contact radius decreases. The clusters consisting of 108,255,500, and 864 atoms are also perfectly
wetting on the substrate at critical incident velocities. However, it should be noted that the transition
from multilayer film to monolayer film is only the morphological change of the deposited cluster. In
the case of the cluster consisting of 32 atoms, the number of adsorbed atoms is too few to define the
wetting parametersh, R, andθ.
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Figure 2.9: Configurations of the adsorbed atoms in a deposited cluster of 300 atoms for each incident
speed.Vimp equals (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, (e) 2.5, (f) 3.0, (g) 3.5, and (h) 4.0

√
ε/m.

2.3.4 Morphology of the final configuration of the adsorbed atoms in the cluster

The boundary shape of the contact area depends strongly on the incident speed. To investigate the
morphology of the boundary shape, we define the radial distance of the boundaryr = f (ψ). Here,
r andψ are the usual radial and azimuthal coordinates. We take the origin to the center of mass
of the adsorbed atoms in the cluster. Moreover, we define a dimensionless variableg(ψ) for the
boundary [144] as

g(ψ) =
f (ψ) − R

R
. (2.15)

We also use its Fourier representationsg(ψ) =
∑

n gneinψ, with the integern = 0,±1,±2, · · · .

Figure 2.10: Three dimensional plot of|gn|2 of a deposited cluster of 300 atoms as the function of the
incident speed and the moden.

Figures 2.9(a)–(h) are the variety of the final horizontal configurations of the adsorbed atoms in
the cluster consisting of 300 atoms, and Fig.2.10 exhibits the variation in|gn|2 for each incident speed
and the moden. We find that there are three phases in the boundary shape. BelowVimp = 1.5

√
ε/m,

the boundary shape is grainy (Figs. 2.9(a), (b)), and|gn|2 has some peaks at higher modes. This may
be caused by the small number of adsorbed atoms. In the case of 1.5

√
ε/m < Vimp < 3.0

√
ε/m, the

deposited cluster is uniformly spread on the substrate (Figs. 2.9(c), (d), (e), (f)). Thus, peaks of|gn|2
vanish and their boundaries can be fitted by circles. In the case of 3.0

√
ε/m < Vimp < 4.0

√
ε/m, the

deposited cluster becomes a thin film or a monolayer film. In this regime, the boundary is partially
chipped (Figs. 2.9(g), (h)), where|gn|2 has intense peaks at some modes in our simulation. Above
Vimp = 4.0

√
ε/m, the deposited cluster bursts into fragments and the number of adsorbed atoms is too

few to defineR. Thus, we cannot defineg(ψ) in this regime.
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The thermal fluctuation of a circular geometry step is estimated as〈|gn|2〉 = T/2πβRn2 from the
equipartition of energy among thegn. [144,145] Here,β is the step edge stiffness. In our simulation,
the thermal fluctuation is estimated as〈|gn|2〉 ∼ 0.1, while the|gn|2 has peaks ranging from 1000 to
3000 aboveVimp = 3.0

√
ε/m. Therefore, these intensive peaks reflect on the growth of some unstable

modes ofgn during the spread of the deposited cluster on the substrate.

2.3.5 Wettability between different Lennard-Jones atoms

Figure 2.11: (a) Plots of the cluster adsorption parameterη and (b) plots of the contact angleθ as
functions of the incident speed for both A-C case (open square) and A-A case (filled circle).

To investigate the effect of the interaction energy on the outcome of impact, we also perform the
molecular dynamics simulation in which the LJ parameters of A and C are used for the atoms in the
cluster and the atoms of the substrate, respectively. Henceforth, we call this situation A-C case. The
Lorentz-Berthelot rule (Eq. (2.2)) is adopted to calculate the cross LJ parametersεAC andσAC. Other
simulation settings are the same as those described in§2.2.

Figure 2.11 shows the cluster adsorption parameterη and contact angleθ as functions of the
incident speed for the LJ cluster of 300 atoms. We also plot the data in the case of the LJ parameters
of the A-A case. We observe that the cluster adsorption parameterη remains low even if the impact
speed is high (Fig. 2.11(a)). We also stress that any A cluster does not become a monolayer film in
which θ becomes zero during the deposition onto a C surface. This is because the wetted state of the
argon cluster is unfavorable on the crystalline carbon surface, which results fromεAC < ε. Thus, it is
clear that not only the incident velocity, but also the choice of composites is important to determine
the final configuration of the deposited cluster.

2.3.6 Temperature dependence of a deposited Lennard-Jones nanocluster

Critical temperature

The cluster moves toward the substrate by the incident speedVimp = 2.0
√
ε/m and collides with the

surface. After the impact, the cluster is deformed and adsorbed on the surface, and the temperature of
the deposited cluster is relaxed to the surface temperature. We observe the system for 4000τ after the
temperature of the deposited cluster is relaxed.

To investigate the stabilities of the deposited clusters, we introduce the evaporation rate which is
defined by

1
τev
=
ρs

τν
, (2.16)

whereρs is the adatom area fraction and 1/τν is a probability per unit time for adatom to evaporate
from the surface [146]. Because the cluster is deposited on the surface in vacuum, the evaporation rate
1/τev equals zero if the deposited cluster is stable. From the results of our simulation, the evaporation
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[ε]

Figure 2.12: Plots of the adsorption parameterη of the deposited cluster as the functions of the tem-
perature forN = 108 ( open squares ), 255 ( filled squares ), 500 ( open circles ) and 862 ( filled circles
), respectively.

rate 1/τev equals zero if the temperature is below 0.3ε. By contrast, 1/τev is finite and the system is
not in a steady state if the temperature is larger than 0.3ε. Therefore, the deposited cluster is stable
only below the critical temperatureTC ≡ 0.3ε.

Adsorption parameter and morphology of the deposited cluster

Figure 2.12 displays the temperature dependence of the adsorption parameterη of the deposited clus-
ter. Each value in Fig. 2.12 is averaged over the last 2000τ time steps. The adsorption parameterη

is almost independent of the temperature and satisfiesη < 1 for T < TC. It can also be seen thatη
decreases as the cluster size increases.

Morphology of the deposited cluster

Figure 2.13 exhibits the snapshots of the deposited clusters in the steady state, and Fig. 2.14 displays
the temperature dependence of the scaled valueR3/N. Each value in Fig. 2.14 is averaged over the
last 2000τ time steps. It can be seen that the contact radiusR is almost constant for each cluster size,
and it seems that the morphology of the cluster does not depend on the temperature ifT < TC.

Structural properties of the deposited cluster

To investigate the structural properties of the deposited cluster, we measure the binding energy and the
orientational bond order parameter. The binding energyEb is defined by the potential energy per atom
in the cluster. The orientational bond order parameter is defined by a connecting pair of neighboring
atoms in the cluster. This parameter is related to the spherical harmonics function

Qlm ≡ Ylm (θ(r), φ(r)) , (2.17)

whereθ(r) andφ(r) are the polar and azimuthal angles of the bondr with respect to a fixed reference
frame. We also averageQlm over all bonds in the cluster as

Qlm =
1
Nb

∑
r

Qlm(r), (2.18)

whereNb is the total number of bonds. Finally, to make this parameter invariant with respect to
rotations of the reference frame, we introduce the second-order invariants as the orientational bond
order parameter

Ql ≡

√√√
4π

2l + 1

l∑
m=−l

|Qlm|2. (2.19)
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Figure 2.13: (Color online) Snapshots of the deposited cluster at equilibrium. The number of atoms
in the cluster is 500. The temperature of the cluster equals (a) 0.01ε, (b) 0.1ε, (c) 0.2ε and (d) 0.3ε,
respectively.

[ε]

Figure 2.14: Plots of the scaled contact radiusR3/N as the function of the temperature forN = 108 (
open squares ), 255 ( filled squares ), 500 ( open circles ) and 862 ( filled circles ), respectively.

[ε] [ε]

Figure 2.15: Plots of (a) the binding energyEb and (b) the orientational bond order parameterQ6 of
the deposited cluster as the functions of the temperature forN = 108 ( open squares ), 255 ( filled
squares ), 500 ( open circles ) and 862 ( filled circles ), respectively.
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It is known thatQl characterizes the dominant structure in the cluster [147–149].
Figures 2.15 (a) and (b) display the temperature dependence ofEb andQ6, respectively. In our

simulation, we find thatEb andQ6 are steady even if the temperatureT > TC. Each value in Fig. 2.15
is averaged over the last 2000τ time steps. It can be seen thatEb andQ6 increases as the temperature
increases belowTC. When the temperature becomes larger thanTC, Q6 decreases as the temperature
increases because of the evaporation.

2.4 Discussion and conclusions

In this paper, the incident kinetic energy per atom in the cluster is less than 2 eV. In this case, the
damage of the substrate due to the impact of a cluster can be ignored and we considered a single-layer
substrate. However, the effect of the interaction between the deposited cluster and the bulk of the
substrate is important. In general, the adsorption state is strongly affected by the surface temperature,
[150] but the substrate was assumed to be atT = 0 before the cluster impact in our simulation.
Therefore, the affect of the surface temperature is also important for future study. Moreover, we
performed simulation only for one deposition event of the cluster at each incident speed. Thus, we
should take an ensemble average of impact processes for future study.

In conclusion, we found that deposited LJ clusters consisting 32, 108, 255, 300, 500, and 862
atoms exhibit a transition from multilayered adsorption to monolayered adsorption at the critical in-
cident speed,Vimp = 3.3

√
ε/m. From our simulation, we clarified that the deposited clusters are

perfectly wetting on the substrate above the critical incident speed. Employing the energy conser-
vation law, we estimated the critical value of the incident speed at which the evaporation begins to
occur during the impact. The estimated critical value,Vimp = 1.7

√
ε/m, exhibits good agreement with

our simulation results ofξ. Using the energy conservation law, we also found that the scaled clus-
ter adsorption parameter is independent of the cluster size and is proportional toV2

imp. These results
exhibit good agreement with our simulation results. We performed the Fourier analysis ofg(ψ) and
found that some modes become unstable for 3.0

√
ε/m < Vimp < 4.0

√
ε/m. We also performed the

molecular dynamics simulation of the A-C case and we found that the A cluster does not become a
monolayer film on the C surface. Thus, we concluded that not only the incident speed, but also the
strength of the interaction between the cluster and the substrate is important to form a monolayer film
on a substrate. The deposited cluster is stable ifT < TC, but the evaporation occurs ifT > TC. The
morphology of deposited cluster is almost independent of the temperature forT < TC. The binding
energy of the deposited clusterEb increases as the temperature increases. The orientational bond order
parameterQ6 increases as the temperature increases forT < TC, but decreases forT > TC because of
the evaporation.
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Chapter 3

Depositions of an argon nanocluster on a
free-standing graphene sheet
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3.1 Introduction

Graphene is a two-dimensional ( 2D ) atomic layer of carbon atoms on a honeycomb lattice. Recent
remarkable experimental techniques have made it possible to observe the motion of a free-standing or
suspended graphene sheet [98, 100]. Because electrons in a graphene can travel sub-micrometer dis-
tances without scattering, the study of graphene is active to make nanoscale electronic devices [101].
Graphene can be wrapped up into fullerenes and rolled into carbon nanotubes, and thus it is the most
fundamental structure of nano-carbon materials [97]. Such flexibility of graphene encourages many
researchers to investigate its mechanical properties. A recent experiment has detected the mechani-
cal vibrations of suspended graphene sheets activated by radio frequency voltages, and has observed
vibration eigenmodes which are not predicted by the elastic beam theory [99]. In contrast to the elec-
trical activations of graphene, it is also possible to activate the motion of graphene by nanocluster
impact [151]. The nanocluster impact can generate high pressure in localized areas of graphene, and
it is an appropriate method to verify the elastic theory for the plate deflected by the concentrated force.
In addition, nanocluster impact is also important for manufacturing nanoscale electronic devices on a
substrate [50, 55, 69, 130, 142]. Therefore, it is necessaryto understand the motion of the graphene
induced by a collision with nanoclusterin order to verify the elastic theory and to aim to construct the
nanoscale electronic devices on a graphene sheet. However, there are a few studies which investigate
the time evolution of the local deformation of the graphene deflected by the nanocluster impact. In
this paper, we perform the molecular dynamics ( MD ) simulation to investigate the time evolution of
the deformation of a free-standing graphene sheet deflected by a collision with an argon nanocluster.
We find that analytic solutions of the elastic plate well reproduce the results of our MD simulation.
We also analyze the time evolution of the temperature profile of the graphene sheet.

The organization of this paper is as follows. In Section 3.2, we introduce our numerical model
of the nanocluster impact on a graphene sheet. Section 3.3 consists of three subsections. In Section
3.3.1, we show the time evolution of the deflection of the graphene. In Section 3.3.2, we analyze the
time evolution of the deflection. In Section 3.3.3, we analyze the heat-up of the graphene after the
impact. We discuss our results in Section 3.4 and conclude in Section 3.5.

3.2 Molecular dynamics simulation of the impact

Figure 3.1: (Color online) A snapshot of impact of an argon cluster on a free-standing graphene sheet.
The incident cluster contains 500 argon atoms. The graphene sheet contains 16032 carbon atoms on a
honeycomb lattice.

To study the dynamical motion of the graphene induced by a collision with an argon cluster, we
perform the MD simulation. We adopt the Lennard-Jones ( LJ ) potentialφ(u) = 4ε

[
(σ/u)12− (σ/u)6

]
for the interaction between two argon atoms with the distanceu between two argon atoms, where we
use the LJ parameters [152]ε = 1.03× 10−2 (eV) andσ = 0.340 (nm). We also adopt LJ potential
for the interaction between an argon atom and a carbon atom, where we use the cross parameters
of LJ potentialεint andσint, which are defined by the Lorentz-Berthelot rule asεint =

√
εε′ and

σint = (σ + σ′)/2, respectively. Here,ε′ = 2.40 × 10−3 (eV) andσ′ = 0.335 (nm) are the LJ
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parameters for carbon [153, 154]. Finally, we adopt the Brenner potential, which is widely used for
simulations of a graphene and a carbon nanotube, for the interaction between two carbon atoms [126].

Figure 3.1 displays a snapshot of our impact simulation. The graphene involves 16032 carbon
atoms on a honeycomb lattice. The bond length of the graphene is 0.142nm and the length of one edge
is approximately equal to 20nm. The carbon atoms on the edges parallel to thex-axis are arranged in
armchair geometries, and the carbon atoms on the edges parallel to they-axis are arranged in zigzag
geometries [155, 156]. The boundary conditions of the four edges of the graphene are free, and the
initial temperature of the graphene is 1.2K. The cluster containing 500 argon atoms is made from
argon gas by the temperature quench method [133, 157]. At first, we prepare 500 argon atoms in a
periodic box and equilibrate at 119.6K with the number density 1.27nm−3 in the gas state. We quench
the temperature to 59.8K. After an equilibration, a liquid-like argon cluster is formed. We further
quench the temperature to 1.2K to make it rigid, and an amorphous argon cluster is formed [130].
The center of mass of the amorphous argon cluster is placed at 5.1nm above the center of mass of the
graphene. The argon cluster is translated with the incident velocityV to collide with the graphene.
The incident angle of the argon cluster to the graphene normal is zero.

3.3 Results

3.3.1 Time evolution of the deflection

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.2: The time evolutions of the graphene sheet and argon nanocluster for the incident speed
V = 316 (m/s) (a)-(d), andV = 790 (m/s) (e)-(h), respectively.

Figures 3.2 (a)-(d) and (e)-(h) exhibit the time evolutions of the graphene sheet and argon nan-
ocluster forV = 316 (m/s) andV = 790 (m/s), respectively. Let us demonstrate the motion of the
graphene induced by the collision with the argon cluster in the case ofV = 316 (m/s). Figures 3.3
display the time evolution of the deflection of the grapheneζ as a function ofx andy coordinates. In
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this figures, we divide thexy plane into 32× 32 cells and average overz-components of the positions
of carbon atoms in the center-of-mass frame. We definet = 0 as the time at which the argon cluster
contacts the graphene sheet. At the impact, the circular region around the center of the graphene is
bended by the incident argon cluster ( Figs. 3.3 (a) ), and the transverse deflection wave is isotrop-
ically propagated in the graphene ( Figs. 3.3 (b) ). In the laboratory system, the graphene is moved
downward and immediately reaches the uniform motion along thez-axis with the speed 28.4m/s. Dur-
ing the impact, the incident argon cluster adsorbs on the graphene and does not rebound. Figures 3.4
display the time evolution ofζ for the incident speedV = 790 (m/s). At the impact, the circular region
around the center of the graphene is strongly bended by the incident argon cluster ( Figs. 3.4 (a) ),
and the transverse deflection wave is observed ( Figs. 3.4 (b) ). During the impact, the incident argon
cluster bursts into fragments and some fragments are scattered and the rest of fragments adsorb on the
graphene. We have also examined the cases ofV = 158, 474, and 632 (m/s), and the bending forma-
tion and the propagation of transverse deflection wave are also observed. In all cases, the deflection
wave in the graphene passes through the boundary without reflection, and the graphene ripples after
the impact. We have never observed any defect formations in the graphene sheet.

Figure 3.3: The deflection of the graphene sheetζ at (a) 2.2 ps and (b) 2.8 ps after the initial hitting.
The incident cluster contains 500 argon atoms, and the incident speed is 316m/s.

Figure 3.4: The deflection of the graphene sheetζ at (a) 2.2 ps and (b) 2.8 ps. The incident cluster
contains 500 argon atoms, and the incident speed is 790m/s.

3.3.2 Analysis of the deflection

Equation of motion

To analyze the result of our simulation, we examine the linear theory of the elasticity in description of
the deflection of the graphene [158, 159]. Because the elastic properties of a 2D hexagonal structure
are isotropic [158], we ignore the anisotropic properties of the graphene sheet. Thus, the equation of
motion for the deflection is given by

ρζ̈(r, t) +
h3E

12(1− µ2)
∆2ζ(r, t) = p(r, t) , (3.1)
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Here, ρ = 7.59 × 10−7 (kg/m2) is the mass per unit area of the graphene, andζ̈(r, t) represents
∂2ζ(r, t)/∂t2. Because graphene is a single atomic layer of carbon, its thicknessh is sometimes set to
be the diameter of a carbon atom, 0.335nm. However, Yakobsonet al. indicated thath = 0.066 (nm)
should be used in their simulation of single-walled carbon nanotubes [108]. We still do not have any
consensus on the proper value ofh [102–105,110]. Thus, to avoid ambiguous definition of the thick-
ness, we use the thickness and the elastic moduli which are directly obtained from the analysis of the
Brenner potential. Following Ref. 26, we use the thickness, Young’s modulus, and Poisson’s ratio as
h = 0.0874 (nm),E = 2.69 (TPa), andµ = 0.412, respectively. The right hand side of Eq. (3.1) is the
external pressure due to the argon cluster impact. Because the deflection is symmetric with respect to
thez-axis, we assume thatζ andp depend on timet and the distance from thez-axisr.

Figure 3.5: (Color online) The MD simulation results of the mean deflection of the graphene ( open
circle ) which are averaged over the azimuthal coordinate, and the solutions of the equation of motion,
i.e. Eqs. (3.6) ( red solid line ) and (3.9) ( green broken line ) at (a) 2.2 ps and (b) 2.8 ps. The incident
cluster contains 500 argon atoms, and the incident speed is 316m/s. The magnitude of the impulse is
1.96× 10−10N · ps.

Hertzian contact pressure

Although the external pressure changes during the impact, we simply assume thatp(r, t) is an impul-
sive pressure with the distribution of the Hertzian contact stress. Thus, we may assume

p(r, t) = − 3F

2πa2

√
1−

( r
a

)2
Θ(a− r)δ(t) , (3.2)

whereF anda are the impulse and the contact radius of the incident argon cluster [158]

a =

[
3FR

4

{
1− µ2

E
+

1− µ′2
E′

}]1/3

, (3.3)

respectively. Here,δ(t) is Dirac’s delta function, andΘ(a − r) is the Heaviside function which is
defined asΘ(a− r) = 1 for r < a andΘ(a− r) = 0 for r > a. The mean radius, Young’s modulus, and
Poisson’s ratio of the argon cluster areR = 1.6 (nm),E′ = 3.69 (GPa), andµ′ = 0.396, respectively,
which are estimated from our another MD simulation [160, 161]. In addition, we assume that the
contact area of radiusa moves downward with the speedV at the impact. Thus, the initial conditions
of the deflection areζ(r, 0) = 0 andζ̇(r, 0) = −VΘ(a − r). Because we consider the behaviors in the
vicinity of the center of the graphene, we solve Eq. (3.1) as if the graphene sheet is infinitely large.
The Fourier transform and the Laplace transform of Eq. (3.1) yield

ζ̂k(s) = −
H(k)

s2 + Dk4
, (3.4)
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whereD ≡ h3E/12ρ(1− µ2). Here, we introduce the function

H(k) ≡ 3F
ρ

sin(ak) − akcos(ak)
(ak)3

+ 2πaV
J1(ak)

k
, (3.5)

whereJn(x) is the Bessel function for an integern. Here, we represent the Laplace transform and the
Fourier transform aŝζk(s) ≡

∫ ∞
0
ζk(t)e−stdt andζk(t) ≡

∫ ∞
−∞ dkζ(r, t)e−ik·x, respectively. The inverse

Laplace transform and the inverse Fourier transform of Eq. (3.4) yield

ζ(r, t) = −
∫ ∞

0
H(k)J0(kr)

sin(
√

Dk2t)
√

Dk
dk . (3.6)

A flat punch pressure

If we adopt a flat punch impulsive pressure

p(r, t) = − F

πa2
Θ(a− r)δ(t) (3.7)

instead of Eq. (3.2), the Fourier transform and the Laplace transform of Eq. (3.1) yield

ζ̂k(s) = −
2H0J1(ak)

ak
1

s2 + Dk4
, (3.8)

where we introduce the constantH0 ≡ ρ−1F + πa2V. In this case, the solution of Eq. (3.8) is

ζ(r, t) = −2H0

a

∫ ∞

0
J0(kr)J1(ak)

sin(
√

Dk2t)
√

Dk2
dk . (3.9)

Figures 3.5 display the time evolution of the deflectionζ(r, t) in the case ofV = 316 (m/s). In
this figures, the open circles are our MD simulation results which are averaged over the azimuthal
coordinate. The red solid and green broken lines represent Eqs. (3.6) and (3.9), respectively. Here, we
useF = 1.96× 10−10 (N · ps) for both Eq. (3.6) and Eq. (3.9). We have also examined the deflection
of the graphene in the case ofV = 158 (m/s), and we find that the time evolution ofζ(r, t) is well
described by Eqs. (3.6) and (3.9) withF = 1.25×10−10 (N · ps). However, in the cases ofV = 474, 632
and 790 (m/s), Eqs. (3.6) and (3.9) are no longer applicable because the incident argon cluster bursts
into many fragments which collide with the graphene, and the distribution of the external pressure can
neither be approximated by the Hertzian contact stress nor a flat punch pressure.

3.3.3 Analysis of the heat-up

To study heat up of the graphene, we introduce the local temperature. We divide the graphene into
64× 64 cells along thex- andy-axes and define the temperature of thej-th cell as

T j =
m

3kBN j

N j∑
i=1

(
vi − u j

)2
, (3.10)

wherekB and m = 1.99 × 10−26 (kg) are the Boltzmann constant and the mass of carbon atom,
respectively. In Eq. (3.10),N j , vi andu j are the number of carbon atoms in thej-th cell, the velocity
of the i-th carbon atom which is in thej-th cell and the mean velocity of thej-th cell, respectively.
The mean velocity of thej-th cell is defined as

u j =
1
N j

N j∑
i=1

vi . (3.11)
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Figure 3.6: The temperature profile of the graphene sheetT(x, y) at (a) 2.2 ps and (b) 2.8 ps after the
initial hitting. The incident cluster contains 500 argon atoms, and the incident speed is 316m/s.

In order to take a sample average ofT j , we rotate the nanocluster around the line before the impact,
where we use the different angle for each sample. Here, the line is parallel to thez-axis and intersects
at the center of mass of the nanocluster. If we project the 64× 64 cells to thexy plane, Eq. (3.10)
approximately represents the temperature profileT(x, y). Figures. 3.6 display the time evolution of
T(x, y) which is averaged over 20 samples in the case ofV = 316 (m/s). Although the thermal
conductivity of a 2D hexagonal structure is isotropic [162], the results ofT(x, y) are anisotropic.

Let us explain the anisotropic profile ofT(x, y). The nanocluster collides with the graphene in the
vicinity of the center of mass of the graphene (X,Y). By the impact, the vicinity of (X,Y) is heated
up and the heat currentq flows from (X,Y) to the edge of the graphene. Then,q is symmetrical with
respect to (X,Y), and we adopt (X,Y) for the origin. In such an irreversible process, thanks to the least
dissipation principle, the rate of the entropy production

D = −
∫

A
κ−1q2dA (3.12)

is expected to be minimum, whereA andκ are the area of the graphene and the heat conductivity
per unit area of the graphene, respectively [163]. If we assume thatκ is a constant, the variation
δD = 0 leads∇ · q = 0 [163]. Therefore, from Fourier’s law of heat conduction, the deviation of the
temperatureδT = T(x, y)−T0 satisfies Laplace’s equation∆δT = 0. Here,T0 is the temperature of the
graphene before the impact. BecauseδT is finite at (X,Y), the general solution of Laplace’s equation
is

δT(r, θ) = const. +
∞∑

n=1

rnan cos(nθ + φ) (3.13)

in the polar coordinate, wherean andφ are the integral constants [164]. Becauseq is symmetrical
with respect to (X,Y), the integern satisfies cos(n(θ + π) + φ) = cos(nθ + φ) and sin(n(θ + π) + φ) =
sin(nθ + φ). Thus,n should be even. Therefore,δT(r, θ) is distributed around (X,Y) as

δT(r, θ) = const. +
∞∑

m=1

r2ma2m cos(2mθ + φ) . (3.14)

In Fig. 3.6 (a), the heated region can be seen as a quadrupole distribution around (X,Y) which is
the case ofm = 1 in Eq. (3.14). On the other hand, in Fig. 3.6 (b), the heated region is no longer
distributed as Eq. (3.14). In this case, it seems that the least dissipation principle is no longer correct,
and it is necessary to solve the heat equation with the boundary conditions correctly.
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3.4 Discussion

Although Eqs. (3.6) and (3.9) seem to well describe the results of our MD simulation, the solution does
not satisfy the boundary conditions, and these are not applicable except for the case that deformations
are localized in the vicinity of the center of the graphene sheet, i.e. immediately after the impact.
Note that it is difficult to obtain an analytic solution of Eq. (3.1) which satisfies the completely free
boundary conditions [165,166]. If we simply estimate the magnitude of the impulse from the change
in momentum of the incident argon cluster,F = 3.59 × 10−10 (N · ps) which is about two times
larger than the fitted value in Figs. 3.5. However, the value is over-estimated, because the loading
force can change during the impact and the dissipative force plays important role for the collision of
clusters [87,93]. In the case ofV ≥ 400 (m/s), the impact processes are further complicated by many
fragments of the argon cluster, and Eqs. (3.6) and (3.9) are no longer correct. Therefore, it is necessary
to improve the functional form ofp(r, t). Note that if we useh = 0.335 (nm) in Eqs. (3.6) and (3.9),
the wave propagates much faster than the actual propagation observed in our MD simulation. Thus,
the thinner thicknessh = 0.0874 (nm) is more appropriate. The analysis based on the least dissipation
principle reproduces our simulation result of the temperature profile in the early stage of impact.
However, in order to describe the time evolution of the temperature profile, it is necessary to solve the
heat equation with appropriate boundary conditions.

3.5 Conclusion

In conclusion, we perform the molecular dynamics simulation of the graphene sheet induced by a
collision with an argon nanocluster, and the bending formation and the propagation of transverse
deflection wave are observed. We find that the linear theory of the elasticity well explains the time
evolution of the deflection of the graphene, where the deflection is represented by using the analytic
expressions Eqs. (3.6) and (3.9). In addition, we conclude from the analysis of the motion of the
graphene that the actual thickness is much thinner than the diameter of a carbon atom. We also
analyze the time evolution of the temperature profile, and find that the analysis based on the least
dissipation principle reproduces our simulation result in the early stage of impact. We believe that the
predictions of the bending formation and propagation of transverse deflection wave are necessary for
the construction of the nanoscale electronic devices on a graphene sheet.
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Chapter 4

Negative normal restitution coefficient for
nanocluster collisions
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4.1 Introduction

Inelastic collisions, where a part of mechanical energy of colliding bodies transforms into heat, are
common in nature and industry. Avalanches, rapid granular flows of sand, powders or cereals may
be mentioned as pertinent examples [82, 83]. Moreover, inelastic collisions define basic properties
of astrophysical objects, like planetary rings, dust clouds, etc. An important characteristic of such
collisions is the so-called normal restitution coefficient e. According to a standard definition, it is
equal to the ratio of the normal component of the rebound speed,g′ (prime states for the post-collision
value), and the impact speed,g

e= −g′ · n
g · n . (4.1)

The unit inter-center vectorn = r12/|r12| at thecollision instant(r12 = r1 − r2) specifies the impact
geometry. Since particles bounce in the direction, opposite to that of the impact,e is positive,e > 0,
and since the energy is lost in collisions,e is smaller than one, that is, 0≤ e ≤ 1. This is a common
statement in the majority of mechanical textbook, where it is also claimed thate is a material constant.
Recent experimental and theoretical studies show, however, that the concept of a restitution coefficient
is more complicated: First, it depends on an impact speed [84–87], second, it can exceed unity for a
special case of oblique collisions with elastoplastic plate [88–90], where the energy of normal motion
can increase at the expense of the energy of tangential motion [88–90]. Still, it is believed thate ≤ 1
for a true head-on collision.

The concept of a restitution coefficient, as a basic one of the classical mechanics, has been intro-
duced long ago by Newton; it addresses an impact of macroscopic bodies. The increasing interest to
nanoparticles, inspired by its industrial significance, raises an important question, to what extent the
macroscopic concepts are applicable and whether they acquire new features at a nanoscale. The colli-
sions of nanoclusters has been studied in detail numerically [72,91–95]. It was observed that the sur-
face effects, due to the direct inter-cluster van der Waals interactions, play a crucial role: The majority
of collisions of homogeneous clusters, built of the same atoms, lead to a fusion of particles [91, 92];
they do not fuse for high impact speeds, but disintegrate into pieces [91, 92]. This complicates the
analysis of restitutive collisions, which may be more easily performed for particles with a reduced
adhesion. Among possible examples of such particles are clusters of covalently bonded atoms, espe-
cially when their surface is coated by atom of different sort, as for H- passivated Si nanospheres [72].
These particles can rebound from a substrate, keeping their form after an impact unaltered [72]. The
bouncing nanoclusters demonstrate a surprising effect – the normal restitution coefficient can exceed
unity even for strictly head-on collisions [93].

In this Letter we investigate the oblique impact of nanoclusters with the reduces adhesion by
means of Molecular Dynamics (MD) and theoretically, using concepts of continuum mechanics. Un-
expectedly, we have found that the normal restitution coefficient, as defined by Eq. (4.1), acquires for
large incident angles negative values,e < 0. We explain this effect by the reorientation of the con-
tact plane during an impact and quantify it. Moreover, we propose a modified definition ofe, which
preserves its initial physical meaning and yields always positive values. To describe the collision of
nanoclusters we develop a continuum theory. Surprisingly, the macroscopic approach quantitatively
agrees with MD even at nanoscale.

4.2 MD simulations

We study two models - a simplified model (A), which mimics interactions of nanoclusters with the
reduced adhesion and realistic model (B) for interaction of nanoclusters with covalently bonded atoms
– H-passivated Si nanospheres. For the model A, which is less computationally expensive, we adopt
the Lennard-Jones ( LJ ) potentialφ(r) = 4ε

[
(σLJ/r)12− (σLJ/r)6

]
for the interaction between two
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(a) (b)

Figure 4.1: Si nanocluster (a) before hydrogen passivated and (b) after hydrogen passivated and its
surface. Red and blue particles represent Si and H atoms, respectively.

Figure 4.2: (Color online) Initial (left) and final stage (right) of the nanocluster collision. The initial
relative velocity isv12(0) = V and the incident angle isγ. The unit normaln specifies the orientation
of the contact plane. For largeγ a noticeable reorientation of this plane is observed. Here the collision
of H-passivated Si nanospheres (model B) is shown.

atoms in the same cluster and the modified LJ potentialφint(r) = 4ε
[
(σLJ/r)12− c(σLJ/r)6

]
for the

interaction between atoms in two different clusters. Here the cohesive parameterc = 0.2 controls the
adhesive force [93–95] between clusters, whileε, σLJ, andr are, respectively, the depth of potential
well, the diameter of the repulsive core, and the distance between two atoms. The nanoclusters of
N = 500 atoms were prepared by the two step temperature quench to obtain a rigid amorphous
particle [130]. The radius of nanoclusterd/2 was defined as the maximum distance between the
center of mass of the nanocluster and the atom on the surface, so we findd = 10.46σLJ. For the
model B we adopt the Tersoff potential [120–125] for the covalent Si-Si, Si-H, and H-H bondings.
The Si nanospheres, containing 2905 Si atoms arranged in a diamond structure (Fig.4.1 (a)), are fully
coated by 852 H atoms (Fig.4.1 (b)). The diameter of Si nanosphere is aboutd = 4.8 nm.

We fix the modulus of the relative inter-cluster velocityv1(0) − v2(0) = v12(0) = V and set it
to V = 1.0

√
ε/m and 1850 m/s for the model A and B, respectively. We vary the incident angleγ

betweenn andV (see Fig. 4.2), so that the normal impact velocity,Vn = V cosγ is changed. The
nanoclusters do not rotate before an impact and have zero angular velocities,ω1(0) = ω2(0) = 0. To
make an ensemble average, we randomly turn one of the clusters around the axis, passing through
its center and perpendicular to the contact plane. Due to rough atomic surfaces of the clusters, this
results in varying contact configurations at each impact. Hence, for every incident angleγ we perform
averaging over 100 collisions with different contact conditions for model A and over 10 collisions
for model B. The clusters’ deformation during an impact is quantified by the normal displacement,
ξn(t) = d − |r12(t)| = d − r12(t). We define the beginning of a collision att = 0 and the end att = tc
through the conditions,ξn(0) = ξn(tc) = 0.
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Figure 4.3: Dependence on the incident angleγ of the normal restitution coefficientse, and ẽ ac-
cording to the standard definitions (4.4) and modified definition (4.5). Open circles and squares are
respectively the MD results foreandẽ, while dashed and solid lines correspond to theoretical predic-
tions. Upper panel refers to the model A and lower panel – to the model B. Note that the coefficientẽ
is always positive.

(a) (b) (c)

Figure 4.4: Colliding two H-passivated Si nanoclusters, (a) before collision, (b) during collision and
(c) after collision, respectively. Gray broken line is the contact line in thexy plane, and the arrow
represents the moving direction. The incident angle isγ = 1.1 and the normal restitution coefficiente
is negative.
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Figure 4.5: The three dimensional plot of the trajectory ofn(t) from t = 0 to t = tc.

Simulation results for the normal restitution coefficient for the models A and B are shown in Fig.
4.3 (upper and lower panel respectively). As it is seen from the figure, the restitution coefficient
e, defined by Eq. (4.1) becomes negative for large incident anglesγ. Figure 4.4 shows the time
development of colliding two nanoclusters for the model B with the incident angleγ = 1.1. Such
unusual behavior ofeat nanoscales may be understood if we notice that the orientation of the contact
plane, characterized by the unit vectorn(t) = r12(t)/r12(t), significantly alters during the collision,
Fig.4.2. (Figure 4.5 is the three dimensional plot of the trajectory ofn(t) from t = 0 to t = tc.) This is
quantified by the angleα between the initial and final orientations ofn(t),

cosα = n(0) · n(tc) . (4.2)

The dependence ofα on the incident angleγ is shown in Fig. 4.6. Ifα is large, the normal restitution
coefficients becomes negative, Fig. 4.3.

4.3 Modified definition of e

To analyze this effect, consider the relative velocity of particles at their contact,

g = v12+
d
2

[n × ω12] = −ξ̇nn + r12ṅ +
d
2

[n × ω12] , (4.3)

whereω12 ≡ ω1 + ω2 and we usev12 = ṙ12 with r12 = n(d − ξn). In the standard definition of
e and theoretical studies of an oblique impact [167],n is taken at the collision instant, that is, its
reorientation during the impact is ignored. In experiments, the normaln is also determined only
once, at the beginning of an impact [168, 169],n = n(0). Neglecting angular velocities (note that
ω1/2(0) = 0) we find for the restitution coefficient:

e= −g(tc) · n(0)
g(0) · n(0)

=

∣∣∣∣∣∣ ξ̇n(tc)

ξ̇n(0)

∣∣∣∣∣∣ cosα − dsinα α̇
V cosγ

, (4.4)

where we take into account thatg(0) · n(0) = −ξ̇n(0) = −V cosγ < 0, that r12(tc) = d and that
ξ̇n(tc) < 0. For head-on collisions, whenγ → 0 andα → 0 (see Fig. 4.6) the second term in the r.h.s.
of Eq. (4.4) is negligible ande is positive. For oblique impactsγ andα are large and the second term
prevails, yielding a negativee.
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Figure 4.6: Dependence of the angular displacementα = arcos [n(0) · n(tc)] of the unit normaln,
Eq. (4.2), on the incident angleγ. Open squares and circles are the MD results for the model A and B,
respectively. Solid and broken lines are the corresponding theoretical predictions,α =

∫ tc
0
Ω(t)dt (see

text for detail).

Hence, the negative restitution coefficient is a consequence of a significant reorientation of a con-
tact plane during a collision. For hard particles with a small collision duration the reorientation ofn
is small and may be neglected [167]; this usually holds true for macroscopic bodies. In the case of
nanoclusters, however, the duration of their impacttc is relatively large and the reorientation of the
contact plane is significant.

As it follows from the Eq. (4.4), the standard definition ofe characterizes not only the normal
motion alongn(t) (the first term in the r.h.s. of Eq. (4.4)), but also the change of the normaln(t) (the
second term in the r.h.s. of Eq. (4.4)). Therefore, it is worth to define the restitution coefficient, which
describes pure normal motion. The respective modification of the standard definition reads:

ẽ= −g(tc) · n(tc)
g(0) · n(0)

=

∣∣∣∣∣∣ ξ̇n(tc)

ξ̇n(0)

∣∣∣∣∣∣ . (4.5)

Here we use Eq. (4.3) fort = tc and take into account thatṅ · n = 0 for a unit vectorn. Note, that
the modified restitution coefficientẽ is always positive, Fig. 4.3. It can be also seen from Fig. 4.3 that
the magnitude of ˜e for an oblique impact (for largeγ) is significantly larger than that for a head-on
collision. In what follows we explain the observed behaviors ofe and ẽ using a simple theoretical
model, based on continuum mechanics approach.

4.4 Theory of an oblique impact

Consider a non-inertial frame, rotating with the angular velocityΩ, perpendicularn, so thatṅ =
Ω × n. To compute the normal force acting between two nanoclusters we apply the impact theory for
macroscopic viscoelastic adhesive spheres [86,87]. It contains the JKR force [81], which accounts for
elastic interactions via the Herzian forceFH and for adhesive interactions via the Boussinesq force
FB,

FH − FB =
4a3

Dd
−

√
6πσ
D

a3/2 . (4.6)
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It also contains the dissipative force [87],

FD = ȧη

12a2

Dd
− 3

2

√
6πσ
D

a1/2

 . (4.7)

Here,a is the contact radius of the colliding nanoclusters, related to the normal displacementξn as

ξn =
4a2

d
−

√
8πσDa

3
, (4.8)

andD = (3/2)(1− ν2)/Y is the elastic constant with the Young modulusY and the Poisson ratioν.
From the independent numerical simulations we estimateY = 88.3ε/σ3

LJ andν = 0.396 for model
A, andY = 283 GPa andν = 0.166 for model B [161]. The surface tensionσ may be expressed via
Hamaker constantAH and the equilibrium distance between atoms at the interfacez0 asσ ' AH/24πz2

0.
We obtainσ = 0.0246ε/σ2

LJ and 0.046 N/m for the models A and B, respectively. The dissipative
constantη, which accounts for the viscoelasticity of the particles’ material [86] is used here as a fitting
parameter. In the present simulations a good agreement is obtained by choosingη = 0.65σLJ

√
m/ε

and 1.62 fs for models A and B, respectively.
In the non-inertial frame, the inertial force must be also taken into account. Its normal component

reads [170],
FI = 2µv12 · ṅ(t) − µx12|ṅ(t)|2 , (4.9)

whereµ = Nm/2 is the reduced mass of the nanoclusters. If we again neglect the angular velocities
of particles in the collision (sinceω1/2(0) = 0), that is, if we assume that the two clusters at a contact
move together as a solid dumbbell, we can exploit the conservation of the angular momentum in the
form,

µr2
12Ω = µV sinγ d , (4.10)

where we take into account thatn ·Ω = 0. This yieldsΩ(t) = V sinγ d/r2
12(t) and the inertial force,

FI =
µV2d2

r3
12

sin2 γ . (4.11)

Combining Eqs. (4.6) – (4.11) we obtain the equation of motion forξn:

µ
d′2

dt2
ξn + FH − FB + FD +

µV2d2

(d − ξn)3
sin2 γ = 0 , (4.12)

whered′/dt denotes the time derivative in the non-inertial frame. Solving Eq. (4.12) forξn(t), we
obtainẽ as it follows from Eq. (4.5). Taking into account that ˙α = Ω(tc) we obtain from Eq. (4.4) the
relation between the standard and modified restitution coefficients,

e= ẽcosα − tanγ sinα . (4.13)

The last equation together with the relationα =
∫ tc
0
Ω(t)dt may be used to compute the standard

coefficient e. The theoretical predictions for the coefficientse and ẽ are shown on the upper and
lower panels of Fig. 4.3 respectively. The agreement between our theory, which has only one fitting
parameter, and MD simulations is rather good. We find that the restitution coefficient of H-passivated
Si nanospheres is well reproduced by our macroscopic theory for the incident speed between 20 m/s
and 2405 m/s. If, however, the speed exceeds 2500 m/s, the nanospheres melt and fuse upon collisions
and the theory fails to describe the impact.

Figure 4.7 exhibits time development ofξn. Upper and lower panels refer to the Model A and B,
respectively. Open circles are the results of the MD simulation averaged over 100 samples and 10
samples for the Model A and B, respectively. Here, the incident angles areγ = 0.05 andγ = 1.25 for
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the Model A and B, respectively. The solid lines are the solutions of the equation of motion Eq.(4.12).
However, it should be noted that, in the case of the Model A, Eq.(4.12) is scaled by the LJ parameters
and its form does not change even if the lengthL and timeτ are rescaled toλL andλτ, respectively.
Therefore, in Fig.4.7, we rescaled the length and time units of the theoretical curve for the Model A
asλσLJ andλσLJ

√
m/ε with λ = 0.5.

We wish to stress that our theoretical model, developed for nanoclusters, may be relevant for
oblique collisions of macroscopic bodies, provided the re-orientation of the contact plane during the
impact is not negligible. Relevance of the theory for collisions in wet granular systems is also expected
[171,172].

4.5 Conclusion

We perform a detailed study of the oblique impact of nanoclusters by means of Molecular Dynamics
and theoretically. In simulations we use two models, a simplified one, based on the Lennard-Jones
potential with a cohesive parameter and a realistic model for nanoclusters with covalently bonded
atoms. We detect unexpected behavior of the normal restitution coefficiente, which becomes negative
for large incident angles and explain this effect by the reorientation of the contact plane in the course
of collision. We propose a modified definition of the restitution coefficient, ẽ, which describes only
the normal motion of particles, independently of their relative reorientation, and is always positive.
A simple relation betweene and ẽ, that may be helpful for experiments is reported. We develop a
theoretical model for an oblique impact, based on the continuum mechanics description of colliding
particles, and demonstrate that theoretical predictions agree well with simulation results. Hence,
we conclude that the macroscopic concepts of elasticity, surface tension and bulk viscosity are well
applicable for nano-objects of a few hundreds atoms.
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Figure 4.7: Time development ofξn. Upper and lower panels refer to the Model A and B, respectively.
Open circles are the results of the MD simulation averaged over 100 samples and 10 samples for the
Model A and B, respectively. Here, the incident angles areγ = 0.05 andγ = 1.25 for the Model A
and B, respectively. The solid lines are the theoretical predictions, however, we rescaled the length
and time units of the theoretical curve for the Model A asλσLJ andλσLJ

√
m/ε with λ = 0.5.
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Chapter 5

Summary

In Chapter 2, we find that deposited LJ nanoclusters consisting 32, 108, 255, 300, 500 and 862 atoms
exhibit a transition from multilayered adsorption to monolayered adsorption at the critical incident
speed,Vimp = 3.3

√
ε/m. From our simulation, we clarify that the deposited nanoclusters are perfectly

wetting on the substrate above the critical incident speed. Employing the energy conservation law, we
estimate the critical value of the incident speed at which the evaporation begins to occur during the
impact. The estimated critical value,Vimp = 1.7

√
ε/m, exhibits good agreement with our simulation

results. We also find that the scaled adsorption parameter is independent of the cluster size and is
proportional to the square of the incident speed. These results also exhibit good agreement with
the MD simulation results. We perform the Fourier analysis of the boundary shape of the adsorbed
nanocluster and find that some modes becomes unstable for 3.0

√
ε/m < Vimp < 4.0

√
ε/m. We also

perform the MD simulation of A-C case and we find that the A cluster does not become a monolayer
film on the C surface. Thus, we conclude that not only the incident speed, but also the strength
of the interaction between the cluster and the substrate is important to form a monolayer film on
a substrate. We also investigate the temperature dependence of deposited LJ nanoclusters and find
that nanoclusters are stable if the temperatureT < TC but the evaporation occurs ifT > TC. The
morphology is almost independent of the temperature, and the binding energy and the orientational
bond order parameterQ6 increases as the temperature increases.

In Chapter 3, we perform the molecular dynamics simulation of the graphene sheet induced by
a collision with an argon nanocluster, and the bending formation and the propagation of transverse
deflection wave are observed. We find that the linear theory of the elasticity well explains the time
evolution of the deflection of the graphene. In addition, we conclude that the actual thickness is much
thinner than the diameter of a carbon atom from the analysis of the motion of the graphene. We also
analyze the time evolution of the temperature profile, and find that the analysis based on the least
dissipation principle reproduces our simulation result in the early stage of the impact.

In Chapter 4, we perform a detailed study of the oblique impact of nanoclusters by means of
Molecular Dynamics and theoretically. In simulations, we use two models, a simplified one, based
on the LJ potential with a cohesive parameter and a realistic model for nanoclusters with covalently
bonded atoms. We detect unexpected behavior of the normal restitution coefficiente, which becomes
negative for large incident angles and explain this effect by the reorientation of the contact plane
in the course of collision. We propose a modified definition of the restitution coefficient, ẽ, which
describes only the normal motion of particles, independently of their relative reorientation, and is
always positive. A simple relation betweene andẽ, that may be helpful for experiments is reported.
We develop a theoretical model for an oblique impact, based on the continuum mechanics description
of colliding particles, and demonstrate that theoretical predictions agree well with simulation results.
Hence, we conclude that the macroscopic concepts of elasticity, surface tension and bulk viscosity are
well applicable for nano-objects of a few hundreds atoms.
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Appendix A

Tersoff potential

The Tersoff potential is a bond-order potential used for the covalent bonding between two carbon
(C) atoms or two silicon (Si) atoms [120–123]. Motaet. al. calculated the material parameters of the
Tersoff potential to use the potential for silicon nitride and silicon hydride [124,125]. In this appendix,
we explain how to use the Tersoff potential for the covalent bondings Si-Si, Si-H and H-H in the MD
simulation.

A.1 Explicit form of the Tersoff potential

Interaction energy between atomsi and j is introduced as a sum of repulsive and attractive terms

Vi j = fC(r i j )
[
fR(r i j ) + bi j fA(r i j )

]
, (A.1)

wherer i j is the distance between atomsi and j. In Eq.(A.1), fR and fA represent the repulsive and
attractive interactions in the functional forms of Morse potential

fR(r i j ) = Aαβe
−λαβr i j , (A.2)

fA(r i j ) = −Bαβe
−µαβr i j , (A.3)

and fC is a cutoff function which decrease smoothly to zero between two distancesRαβ andSαβ

fC(r i j ) =


1 , r i j < Rαβ
1
2

{
1+ cos

π(r i j−Rαβ)
Sαβ−Rαβ

}
, Rαβ < r i j < Sαβ

0 , Sαβ < r i j

(A.4)

where the subscriptsα andβ represent the species of atomsi and j, respectively.
In Eq.(A.1),bi j represents the three body interaction of a triplet of three atomsi, j, andk which

are arranged as Fig.A.1. The functional form ofbi j is

bi j = χαβ
(
1+ βnα

α ζ
nα
i j

)− 1
2nα , (A.5)

ζi j =
∑
k,i, j

fC(r ik)g(θi jk) , (A.6)

g(θi jk) = 1+

(
cα
dα

)2

− c2
α

d2
α + (hα − cosθi jk)2

, (A.7)

whereθi jk is the angle betweeni j andik bonds, andχαβ is defined as

χSiSi = χHH = 1.0 , (A.8)

χSiH = 0.78 . (A.9)
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Figure A.1: The configuration of three atomsi, j, andk.

Table A.1: The list of material parameters for the Tersoff potential.

Si H

A (eV) 1.8308× 103 86.7120
B (eV) 4.7118× 102 43.5310
R (Å) 2.70 0.80
S (Å) 3.00 1.00
λ (Å−1) 2.4799 3.7879
µ (Å−1) 1.7322 1.9800
β 1.1000× 10−6 4.0000
n 7.8734× 10−1 1.00
c 1.0039× 105 0.00
d 1.6217× 101 1.00
h −5.9825× 10−1 1.00

The parameters in Eqs.(A.2)-(A.4) are defined as

Aαβ =
√

AαAβ , (A.10)

Bαβ =
√

BαBβ , (A.11)

Rαβ =
√

RαRβ , (A.12)

Sαβ =
√

SαSβ , (A.13)

λαβ =
λα + λβ

2
, (A.14)

µαβ =
µα + µβ

2
, (A.15)

(A.16)

where the material parametersAα, Bα, Rα, Sα, λα, µα, βα, nα, cα, dα, andhα for silicon and hydrogen
atoms (α = Si,H) are listed in Table A.1.

A.2 Forces between interacting three atoms

The bond-order coefficientbi j is generally asymmetry abouti and j, i.e. bi j , b ji . However, Tersoff
assumed in his article thatbi j andb ji can be replaced by

b∗i j =
bi j + b ji

2
. (A.17)

Let us introduce the positions of atomsi, j, andk asr i , r j , andr k, respectively. The forces acted
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on the atomsi, j, andk are

Fi = −
∂Vi j

∂r i
= −

[(
fR+ b∗i j fA

) ∂ fC
∂r i j
+

(
∂ fR
∂r i j
+ b∗i j

∂ fA
∂r i j

)
fC

]
r i j

r i j
− fC fA

∂b∗i j
∂r i

, (A.18)

F j = −
∂Vi j

∂r j
=

[(
fR+ b∗i j fA

) ∂ fC
∂r i j
+

(
∂ fR
∂r i j
+ b∗i j

∂ fA
∂r i j

)
fC

]
r i j

r i j
− fC fA

∂b∗i j
∂r j

, (A.19)

Fk = −
∂Vi j

∂r k
= − fC fA

∂b∗i j
∂r k

, (A.20)

respectively, wherer i j ≡ r i − r j . In Eqs.(A.18)-(A.20), the derivatives offR(r i j ) and fA(r i j ) are

∂ fR(r i j )

∂r i j
= −λαβAe−λαβr i j , (A.21)

∂ fA(r i j )

∂r i j
= µαβBe−µαβr i j , (A.22)

respectively. The derivatives of the cutoff function fC(r i j ) is

∂ fC(r i j )

∂r i j
=


0 , r i j < Rαβ

− π
2(Sαβ−Rαβ) sin

π(r i j−Rαβ)
Sαβ−Rαβ

, Rαβ < r i j < Sαβ

0 . Sαβ < r i j

(A.23)

From Eq.(A.17),
∂b∗i j
∂r i
=

1
2

(
∂bi j

∂r i
+
∂b ji

∂r i

)
, (A.24)

where
∂bi j

∂r i
= −

bi jβ
nα
α ζ

nα−1
i j

2(1+ βnα
α ζ

nα
i j )

∂ζi j

∂r i
. (A.25)

The derivatives ofζi j are

∂ζi j

∂r i
=

∑
k,i, j

[
g(θi jk)

∂ fC(r ik)
∂r ik

r ik

r ik
+ fC(r ik)

∂g(θi jk)

∂r i

]
, (A.26)

∂ζi j

∂r j
=

∑
k,i, j

fC(r ik)
∂g(θi jk)

∂r j
, (A.27)

∂ζi j

∂r k
= −g(θi jk)

∂ fC(r ik)
∂r ik

r ik

r ik
+ fC(r ik)

∂g(θi jk)

∂r k
, (A.28)

and we can find that

∂g(θi jk)

∂r i
=

dg(θi jk)

d(cosθi jk)

∂ cosθi jk

∂r i
=

2c2
α(cosθi jk − hα)[

d2
α + (hα − cosθi jk)2

]2 ∂ cosθi jk

∂r i
. (A.29)

Because

cosθi jk =
r2
i j + r2

ik − r2
jk

2r i j r ik
, (A.30)
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Eq.(A.29) can be calculated by using the following derivatives

∂ cosθi jk

∂r i
=

(
1
r ik
−

cosθi jk

r i j

)
r i j

r i j
+

(
1
r i j
−

cosθi jk

r ik

)
r ik

r ik
, (A.31)

∂ cosθi jk

∂r j
=

cosθi jk

r i j

r i j

r i j
− 1

r i j

r ik

r ik
, (A.32)

∂ cosθi jk

∂r k
=

cosθi jk

r ik

r ik

r ik
− 1

r ik

r i j

r i j
. (A.33)
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Appendix B

Brenner potential

The Brenner potential is also a bond-order potential used for the covalent bonding between two carbon
(C) atoms [126–129]. In this appendix, we follow Ref. [126] and explain how to use the Brenner
potential for the covalent bondings C-C in the MD simulation.

B.1 Explicit form of the Brenner potential

Interaction energy between atomsi and j is introduced as a sum of repulsive and attractive terms

Vi j = fC(r i j )
[
fR(r i j ) + bi j fA(r i j )

]
, (B.1)

wherer i j is the distance between atomsi and j. In Eq.(B.1), fR and fA represent the repulsive and
attractive interactions in the functional forms of Morse potential

fR(r i j ) =
A

β − 1
e−λ
√

2β(r i j−re) , (B.2)

fA(r i j ) = − βA
β − 1

e−λ
√

2/β(r i j−re) , (B.3)

and fC is a cutoff function which decrease smoothly to zero between two distancesR andS

fC(r i j ) =


1, r i j < R
1
2

{
1+ cos

(
π(r i j−R)

S−R

)}
, R< r i j < S

0. S < r i j

(B.4)

In Eq.(B.1),bi j represents the three body interaction of a triplet of three atomsi, j, andk which
are also arranged as Fig.A.1. The functional form ofbi j is

bi j =

1+∑
k,i, j

fC(r ik)g(θi jk)


−δ

, (B.5)

g(θi jk) = α0

[
1+

( c
d

)2
− c2

d2 + (1+ cosθi jk)2

]
, (B.6)

whereθi jk is the angle betweeni j andik bonds. The material parameters are listed in Table B.1, and
we also replacebi j andb ji by

b∗i j =
bi j + b ji

2
. (B.7)
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B.2 Forces between interacting three atoms

Let us introduce the positions of atomsi, j, andk asr i , r j , andr k, respectively. The forces acted on
the atomsi, j, andk are

Fi = −
∂Vi j

∂r i
= −

[(
fR+ b∗i j fA

) ∂ fC
∂r i j
+

(
∂ fR
∂r i j
+ b∗i j

∂ fA
∂r i j

)
fC

]
r i j

r i j
− fC fA

∂b∗i j
∂r i

, (B.8)

F j = −
∂Vi j

∂r j
=

[(
fR+ b∗i j fA

) ∂ fC
∂r i j
+

(
∂ fR
∂r i j
+ b∗i j

∂ fA
∂r i j

)
fC

]
r i j

r i j
− fC fA

∂b∗i j
∂r j

, (B.9)

Fk = −
∂Vi j

∂r k
= − fC fA

∂b∗i j
∂r k

, (B.10)

respectively, wherer i j ≡ r i − r j . In Eqs.(B.8)-(B.10), the derivatives offR(r i j ) and fA(r i j ) are

∂ fR(r i j )

∂r i j
= −Be−λ

√
2β(r i j−re) , (B.11)

∂ fA(r i j )

∂r i j
= Be−λ

√
2/β(r i j−re) , (B.12)

where we introducedB ≡ λ
√

2βA/ (β − 1). The derivatives of the cutoff function fC(r i j ) is

∂ fC(r i j )

∂r i j
=


0 , r i j < R

− π
2(S−R) sin

π(r i j−R)
S−R , R< r i j < S

0 . S < r i j

(B.13)

From Eq.(B.7),
∂b∗i j
∂r i
=

1
2

(
∂bi j

∂r i
+
∂b ji

∂r i

)
, (B.14)

where
∂bi j

∂r i
= −

bi jδ

1+ ζi j

∂ζi j

∂r i
. (B.15)

In Eq.(B.15), we introducedζi j ≡
∑

k,i, j fC(r ik)g(θi jk). The derivatives ofζi j are

∂ζi j

∂r i
=

∑
k,i, j

[
g(θi jk)

∂ fC(r ik)
∂r ik

r ik

r ik
+ fC(r ik)

∂g(θi jk)

∂r i

]
, (B.16)

∂ζi j

∂r j
=

∑
k,i, j

fC(r ik)
∂g(θi jk)

∂r j
, (B.17)

∂ζi j

∂r k
= −g(θi jk)

∂ fC(r ik)
∂r ik

r ik

r ik
+ fC(r ik)

∂g(θi jk)

∂r k
, (B.18)

and we can find that

∂g(θi jk)

∂r i
=

dg(θi jk)

d(cosθi jk)

∂ cosθi jk

∂r i
=

2α0c2(1+ cosθi jk)[
d2 + (1+ cosθi jk)2

]2 ∂ cosθi jk

∂r i
, (B.19)

which can be calculated by using Eqs.(A.31)-(A.33).
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Table B.1: The list of material parameters for the Brenner potential.

A(eV) 6.325 β 1.29
re(Å) 1.315 δ 0.80469
R(Å) 1.7 α0 0.011304
S(Å) 2.0 c 19.0
λ(Å−1) 1.5 d 2.5
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Appendix C

Spin effect on the restitution coefficient of
nanocluster

In this appendix, we derive the equation of motion Eq.(4.12) underspin-lessapproximation. We also
explain how to calculate the angular displacementα and derive Eqs.(4.4), (4.5) and (4.13). Finally,
we discuss the spin effect on the restitution coefficient of nanocluster.

C.1 Spin-lessapproximation

In the inertial frame, the angular momentum of the system is divided into two parts as

L = µr12(n × v12) + I1ω1 + I2ω2

≡ Lorbital + L spin , (C.1)

where we introduce the orbital partLorbital ≡ µr12(n × v12) and the spin partL spin ≡ I1ω1 + I2ω2 of
the angular momentum. In Eq.(C.1),µ andn are the reduced mass of cluster 1 and 2, and the normal
vector projected from the center of mass (CM) of cluster 1 to the CM of cluster 2, respectively.r12

andv12 are the distance between the CM of cluster 1 and the CM of cluster 2, and the translational
relative velocity, respectively.Iα andωα are the moment of inertia and the angular velocity of cluster
α. We assume that the rotation of cluster 1 and 2 occurs in thexy plane. This means that the angular
momentum of the system only has thez-component. Thus,L = (0,0, Lz), Lorbital = (0, 0, Lorbital

z ) and
L spin = (0,0, Lspin

z ). If we introduce the angular velocity ofn asΩ = (0,0, θ̇), we can find that

[n × v12]z = r12θ̇ . (C.2)

Therefore, the orbital part ofL becomes

Lorbital
z = µr2

12θ̇ . (C.3)

Before the collision, the cluster 1 moves to the cluster 2 with the incident velocityv12(0) = (0,−V, 0),
the angular velocitiesω1 = ω2 = 0, and the incident angleγ. Thus, the angular momentum of the
system before the collision is

L = µr12[n(0)× v12(0)]

= −µVdsinγez , (C.4)

hereez is the unit vector projected to thez-axis. From the conservation law of the angular momentum
of the system,

Lz = −µVdsinγ . (C.5)
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Therefore, from Eqs.(C.1), (C.3) and (C.5), the angular velocityθ̇ becomes

θ̇ =
Lz− Lspin

z

µr2
12

= −µVdsinγ + Lspin
z

µr2
12

. (C.6)

In the non-inertial frame, the equation of motion is

µ
d′

dt
v′n = Fn + FI , (C.7)

whered′/dt represents the time derivative in the non-inertial frame, andv′n = d′r12/dt. The normal
forceFn acts between the CM of cluster 1 and the CM of cluster 2, and the inertial force for the normal
motionFI is given by

FI = 2µv12 · ṅ(t) − µr12|ṅ(t)|2 . (C.8)

Because|ṅ| = |Ω × n| = θ̇ and

v12 · ṅ = v12 · [Ω × n]

= Ω · [n × v12]

= r12θ̇
2 , (C.9)

we find
FI = 2µr12θ̇

2 − µr12θ̇
2 = µr12θ̇

2 . (C.10)

Thus, Eq. (C.7) becomes

µ
d′

dt
v′n = Fn + µr12θ̇

2 . (C.11)

If we neglectLspin
z in Eq. (C.6), which we callspin-lessapproximation, the angular velocity ofn is

given by

θ̇ = −Vd

r2
12

sinγ . (C.12)

Because the normal compression is defined asξn = d − r12, i.e. d′v′n/dt = −d′2ξn/dt2, and we adopt
the model for dissipative particles, i.e.Fn = FH − FB + FD, Eq.(C.11) gives the equation of motion
of ξn

µ
d′2

dt2
ξn + FH − FB + FD +

µV2d2

(d − ξn)3
sin2 γ = 0 , (C.13)

which is Eq.(4.12) in Chap.4.

C.2 Angular displacementα

Because oḟn = Ω × n, we can find the time evolution ofn(t) = (nx,ny, nz) by solving the following
equations.

ṅx = −θ̇ny =
Vd

r2
12

sinγny , (C.14)

ṅy = θ̇nx = −
Vd

r2
12

sinγnx , (C.15)

ṅz = 0 . (C.16)
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Here, the time evolution ofr12 = d − ξn is found by solving Eq.(C.13). Therefore, the angular
displacementα

cosα = n(0) · n(tc) (C.17)

can be calculated and the results are displayed in Fig.4.6.

C.3 Derivations of Eqs.(4.4), (4.5) and (4.13)

The inner products ofg(0), g(tc) andn(0) are

g(0) · n(0) = −ξ̇n(0) , (C.18)

g(tc) · n(0) = −ξ̇n(tc) (n(tc) · n(0)) + d (ṅ(tc) · n(0)) . (C.19)

The angular displacement at timet is

cosα(t) = n(0) · n(t) , (C.20)

and the time derivative ofα(t) is

−α̇(t) sinα(t) = n(0) · ṅ(t) . (C.21)

Then, the restitution coefficient in the inertial frame is

e = −g(tc) · n(0)
g(0) · n(0)

= − ξ̇n(tc)

ξ̇n(0)
cosα − dsinαα̇(tc)

ξ̇n(0)
, (C.22)

where we omit the argument ofα(tc) ≡ α. Becausėξn(tc)/ξ̇n(0) is always negative anḋξn(0) = V cosγ,
Eq.(C.22) is rewritten as

e=

∣∣∣∣∣∣ ξ̇n(tc)

ξ̇n(0)

∣∣∣∣∣∣ cosα − dsinαα̇(tc)
V cosγ

, (C.23)

which is Eq.(4.4) in Chap.4. In the same way,

ẽ= −g(tc) · n(tc)
g(0) · n(0)

=

∣∣∣∣∣∣ ξ̇n(tc)

ξ̇n(0)

∣∣∣∣∣∣ , (C.24)

which is Eq.(4.5) in Chap.4. Because ˙α(t) = −θ̇ = Vdsinγ/r2
12,

α̇(tc) =
V sinγ

d
. (C.25)

From Eqs. (C.23)-(C.25),

e = ẽcosα − dsinα
V cosγ

V sinγ
d

= ẽcosα − tanγ sinα , (C.26)

which is Eq.(4.13) in Chap.4.

C.4 Spin effect on the restitution coefficient

If we use thespin-lessapproximation, the dissipative constants areη = 0.65σ
√

m/ε and 1.62 fs for
models A and B, respectively. Figure C.1 displays the results of the restitution coefficient ẽ under
thespin-lessapproximation and the results of ˜e with Lspin

z which is measured in the MD simulation.
Upper and lower panels refer to the model A and B, respectively. When the MD simulation result
of Lspin

z is introduced, ˜e for the model A is almost same with the result ofspin-lessapproximation.
However,ẽ for the model B becomes larger than the case ofspin-lessapproximation.
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Figure C.1: The results of the restitution coefficient ẽ under thespin-lessapproximation (red solid
lines) and the results of ˜e with Lspin

z which is measured in the MD simulation (green broken lines).
Upper and lower panels refer to the model A and B, respectively.
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Appendix D

Elastic modulus and surface tension of a
nanocluster

D.1 Elastic modulus

If an elastic body is deformed, the variation of free energy per unit volume is represented as

∆F =
K
2

u2
ll + λ

(
uik −

1
3
δikull

)2

, (D.1)

whereuik, K andλ are the strain tensor, the compressibility and the shear rate, respectively. In this
section, we explain how to measure Young’s modulusY and the Poisson ratioν of nanocluster, which
are related toK andλ by

Y =
9λK

3K + λ
, (D.2)

ν =
1
2

3K − 2λ
3K + λ

, (D.3)

respectively.

D.1.1 Isotropic compression

To measure the compressibilityK of nanocluster, we consider isotropic compression. At first, we put
the center of mass of nanocluster onto the origin. If we give the displacement (ux,uy, uz) = (ax, ay,az)
to each atom in nanocluster with the deformation ratea, the components of the strain tensor are given
by

uxx =
∂ux

∂x
= a , (D.4)

uyy =
∂uy

∂y
= a , (D.5)

uzz =
∂uz

∂z
= a , (D.6)

anduik = 0 (i , k), respectively. In this case,

u2
ll =

(
uxx+ uyy+ uzz

)2
= 9a2 , (D.7)(

uik −
1
3
δikull

)2

= 0 , (D.8)
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where we useδll = 3. Therefore, from Eq. (D.1), the compressibilityK of nanocluster is given by

K =
2∆F

9a2
. (D.9)

If we assume the deformation of nanocluster is taken place adiabatically, the variation of free
energy equals the variation of internal energy∆E, which is the change of the potential energy of
nanocluster. In Chap.4, we measure∆E in another MD simulation and findK of nanocluster from
K = 2∆E/9a2.

D.1.2 Shearing deformation

To measure the shear rateλ of nanocluster, we consider shear deformation. We also put the center of
mass of nanocluster onto the origin and give the displacement (ux, uy, uz) = (ay, 0, 0) to each atom in
nanocluster with the deformation ratea. In this case, the components of strain tensoruxy anduyx are
given by

uxy = uyx =
1
2

(
∂ux

∂y
+
∂uy

∂x

)
=

a
2
, (D.10)

and other components are zero. Thus,

u2
ll = 0 , (D.11)(

uik −
1
3
δikull

)2

=
a2

2
. (D.12)

Therefore, from Eq.(D.1), the shear rateλ of nanocluster is given by

λ =
2∆F

a2
. (D.13)

In Chap.4, we also assume the deformation is adiabatic. Then, we measure∆E in another MD
simulation and findλ of nanocluster fromλ = 2∆E/a2.

In the same way, we also give the displacements (ux, uy, uz) = (az,0,0), (ux,uy,uz) = (0,az, 0),
(ux, uy, uz) = (0,ax,0), (ux,uy, uz) = (0, 0, ax) and (ux, uy, uz) = (0,0,ay) to nanocluster, and measure
λ from λ = 2∆E/a2. Finally, we determineλ as the averaged value of these six measurements.

D.2 Surface tension

D.2.1 Model of interacting two spheres

The surface tensionσ is defined as

σ =
E(leq)

2
, (D.14)

whereE and leq are the interaction energy and the equilibrium distance between two nanoclusters,
respectively. The interaction energy is represented by

E = ρ2
∫

V1

dr1

∫
V2

dr2φ12 , (D.15)

whereVα (α = 1, 2) is the volume of nanoclusterα, andφ12 is the interatomic two body potential. In
Eq.(D.15), we assume the number density of atoms in nanoclusterρ is constant.
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Figure D.1: The red solid, the green broken, and the blue broken lines are respectively the interaction
energyE, the repulsive energyErep, and the attractive energyEatt as the functions of the distancel.
Here, the radius of the interacting two nanocluster is 5.23σLJ.

In the case ofModel Ain Chap.4, the interatomic potentialφ12 is the modified LJ potential with
the cohesive parameterC = 0.2. The repulsive and attractive parts ofφ12(r) = φrep(r) + φatt(r) are

φrep(r) = 4ε
(
σLJ

r

)12
, (D.16)

φatt(r) = −4εC
(
σLJ

r

)6
, (D.17)

respectively. Thus, the interaction energyE = Erep+ Eatt is represented by

Erep = 4ρ2εσ12
LJ

∫
V1

dr1

∫
V2

dr2
1

r12
, (D.18)

Eatt = −4ρ2εσ6
LJC

∫
V1

dr1

∫
V2

dr2
1

r6
. (D.19)

If we assume the interacting two nanoclusters are spheres with radiiR1 andR2, Eqs.(D.18) and (D.19)
can be integrated by the method of Ref. [173], and we find

Erep =
π2εσ12

LJC

540D

∫ D+R2

D−R2

dr

[
r + 9R1

(r + R1)9
− r − 9R1

(r − R1)9

]
, (D.20)

Eatt = −
2π2ρ2εσ6

LJC

3

[
2R1R2

D2 − (R1 + R2)2
+

2R1R2

D2 − (R1 − R2)2
+ ln

D2 − (R1 + R2)2

D2 − (R1 − R2)2

]
, (D.21)

whereD ≡ R1+R2+l andl is the distance between two surfaces of nanocluster (see Fig.D.1). Although
Eq.(D.20) can be integrated analytically, the result is too complicated to write this appendix. In our
MD simulation, the radius of nanocluster isR1 = R2 = 5.23σLJ.

Figure D.1 shows the results of the interaction energyE, the repulsive energyErep and the at-
tractive energyEatt as the functions of the distancel, respectively. From this result, the equilibrium
distance isleq = 2.1σLJ and the surface tensionσ is estimated as

σ =
E(leq)

2
' 0.54287ε/σ2

LJ . (D.22)

Because Eq.(D.15) is represented by the two body interatomic potentialφ12, we can not use
Eq.(D.15) in the case of H-passivated Si nanoclusters (Model B in Chap.4) where we use the Ter-
soff potential with the three body interaction terms.
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D.2.2 Model of compressed two spheres

If we follow the JKR theory [81], the surface tensionσ is defined as

σ =
E(ξn)
2πa2

, (D.23)

whereE(ξn), ξn anda are the interaction energy, the normal compression and the contact radius of
colliding two nanoclusters, respectively. IfD0/R� 1, whereD0 = 2 · 21/6σLJ andR is the radius of
nanocluster, Eq.(D.23) can be reduced to

σ =
AH

24πD2
0

, (D.24)

whereAH is the Hamaker constant.
In the case ofModel Ain Chap.4, we can find

AH = 4π2Cρ2εσ6
LJ , (D.25)

and calculate the surface tensionσ analytically. However, in the case ofModel Bin Chap.4, we can
not calculateAH analytically. Therefore, we measureE(ξn) anda by another MD simulation and find
σ of H-passivated Si nanocluster from Eq.(D.23).
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Moscow, 1986).

[153] D. D. Do and H. D. Do, Adsorpt. Sci. Technol.21 (2003), 389.

[154] A. Wongkoblap, D. D. Do, and D. Nicholson, Phys. Chem. Chem. Phys.10 (2008), 1106.

[155] V. B. Shenoy, C. D. Reddy, A. Ramasubramaniam, and Y. W. Zhang, Phys. Rev. Lett.101
(2008), 245501.

[156] C. D. Reddy, A. Ramasubramaniam, V. B. Shenoy, and Y. W. Zhang, Appl. Phys. Lett.94
(2009), 101904.

[157] K. Yasuoka and M. Matsumoto, J. Chem. Phys.109(1998), 8451.

[158] L. D. Landau and E. M. Lifshitz,Theory of Elasticity3rd ed (Oxford, New York, 1986).

[159] S. Timoshenko and S. W. Krieger,Theory of Plates and Shells2nd ed. (McGraw-Hill, New
York, 1959).

[160] H. Kuninaka and H. Hayakawa, J. Phys. Soc. Japan75 (2006), 074001.

[161] H. Kuninaka and H. Hayakawa, Prog. Theor. Phys. Suppl.178(2009), 157.

67



[162] H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids2nd ed (Oxford University Press,
Amen House, London E. C. 4, 1959).

[163] V. L. Berdichevsky,Variational Principles of Continuum Mechanicsvol 1 (Springer Heidelberg
Dordrecht London New York, 2009).

[164] K. F. Riley, M. P. Hobson, and S. J. Bence,Mathematical Methods for Physics and Engineering
3rd ed (Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 2006).

[165] A. W. Leissa, J. Sound and Vibration31 (1973), 257.

[166] P. S. Frederiksen, J. Sound and Vibration186(1995), 743.

[167] T. Schwager, V. Becker, and T. Pöschel, Eur. Phys. J. E27 (2008), 107.
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