## Neutrino-driven Mass Ejection from the Remnant of the Binary Neutron Star Merger

# **Sho Fujibayashi (Kyoto U)** Yuichiro Sekiguchi (Toho U), Kenta Kiuchi, Masaru Shibata (YITP)





## **Remnant of Binary NS merger**

(Shibat et al. 05, 06, Sekiguchi et al. 11, Hotokezaka et al. 13)



Nuclear EOSs that can support ~2M<sub>o</sub>NSs + Numerical relativity simulations for NS-NS mergers



Temporal formation of massive neutron star (MNS) is the likely path of the merger.

## **Neutrino-driven Mass Ejection**

#### $\bigcirc$ MNS phase : Large neutrino luminosity (~10<sup>53</sup> erg s<sup>-1</sup>)

GRB?

**MNS** 

We perform long-term, numerical relativity, neutrino radiation-hydrodynamics simulations for MNS-torus system in order to investigate the properties of v-driven outflow in MNS phase.

Heavy-element Synthesis? Can neutrinos power gamma-ray bursts?

Does v-driven outflow contributes to heavy-element synthesis via the r-process?

Details  $\rightarrow$  Please see my poster (I-7)!