Electromagnetic counterparts and r-process Tsvi Piran The Hebrew University Kenta Hotokezaka, Ehud Nakar Kyoto - Nov 2016

Outline

- 1. The Li-Paczynski Macronova (kilonova)
- 2. GRBs 060614/050709 and their Macronove
- 3. Plutonium
- 4. Dwarf Galaxies
- 5. The cocoon's macronova the strongest EM counterpart?
- 6. Limits on magnetars from radio flares
- 7. * The energy deposition rate
- 8. Conclusions

1. Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

*Also called Kilonova

1. Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

*Also called Kilono a Hektanova

1. Macronova* (Li & Paczynski 1997)

 Radioactive decay of the neutron rich matter.

Bohdan Paczynski

- Eradioactive $\approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$
- A weak short Supernova like event.

*Also called Kilono a Hektano a Decanova

Radioactive Decay* Korobkin + 13; Rosswog, Korobkin + 13

 After a second dE/dt∝t^{-1.3} (Freiburghaus+ 1999; Korobkin + 2013)

Photons escape from this region

The light curve depends on 1. mass 2. velocity 3. opacity

luminosity

Increase as we see a large fraction of the matter. Decrease due to radioactive decay time

Photons escape from this region

The light curve depends on 1. mass 2. velocity 3. opacity

luminosity

Increase as we see a large fraction of the matter. Decrease due to radioactive decay

S. Rosswog, ... Following Davies + 1994

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\dagger_{\text{max}} \propto \varkappa^{1/2}$ => longer $L_{\text{max}} \propto \varkappa^{-0.65}$ => weaker $T \propto \varkappa^{-0.4}$ => redder

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\dagger_{\text{max}} \propto \chi^{1/2}$ => longer $L_{\text{max}} \propto \chi^{-0.65}$ => weaker $T \propto \chi^{-0.4}$ => redder

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\bigstar t_{\text{max}} \propto \chi^{1/2} => \underline{\text{longer}}$ $\coprod L_{\text{max}} \propto \chi^{-0.65} => \text{ weaker}$ $\intercal \propto \chi^{-0.4} => \text{ redder}$

 $\varkappa = 10 \text{ cm}^2/\text{gm}$ $\texttt{t}_{max} \propto \varkappa^{1/2} => \underline{longer}$ $\texttt{L}_{max} \propto \varkappa^{-0.65} => \underline{weaker}$ $\texttt{T} \propto \varkappa^{-0.4} => \underline{redder}$

 $\approx \chi = 10 \text{ cm}^2/\text{gm}$ $\Rightarrow t_{max} \propto \chi^{1/2} => \underline{longer}$ $\Rightarrow L_{max} \propto \chi^{-0.65} => \underline{weaker}$ $\Rightarrow T \propto \chi^{-0.4} => \underline{redder}$ 10^{41}

10

1

days

uv or optical -> IR

GRB130603B @ 9 days AB (6.6 days at the source frame)

HST image (Tanvir + 13)

Macronova?

Tanvir + 13, Berger + 13

If correct

Confirmaiton of the GRB neutron star merger model (Eichler, Livio, TP & Schramm 1989).

Confirmation of the Li-Paczynski Macronova (Li-Paczynski 1997).

Confirmation that compact binary mergers are the source of heavy (A>130) r-process material: Gold, Silver, Platinum, Plotonium, Uranium etc...(Lattimer & Schramm, 75).

The rate of Short GRBs Macronova and r- process

About 1/3 of <u>Swift</u> short (<2sec) GRBs are Collapsars</p>

The rate of non-Collapsar short GRBs (sGRbs) is 4.1^{+2.3}-1.9 Gpc⁻³ yr⁻¹ (depending on the assumed minimal luminosity).

A LIGO detection rate of 3-100 per year (0.1-3 coinciding with a sGRB)*

A typical time delay of ~3 Gyr after SFR=> an initial separation of ~2 x 10¹¹ cm

But selection effects? Maybe consistent with $p(\tau) \sim 1/\tau$

With beaming of ~30 and mass ejection of 0.02 M_{sun} – compatible with R-process nucleosynthesis for A>110 elements.

GRB 060614

Need M~0.1M. => BH-NS ?

Yang et al., 2015

GRB 050709

Jin et al., 2016

Need M~0.05M. => BH-NS ?

Are Macronova Frequent?

There are 3 (6) possible (nearby) historical candidates with a good enough data

In 3/3 (3/6) there are possible Macronovae

R-Process

R-Process

R(z=0) [Myr⁻¹]

Can we break the yield - rate degeneracy?

R(z=0) [Myr⁻¹]

Can we break the yield - rate degeneracy?

Radioactive Elements

Frequent events

Rare Events

High ²⁴⁴Pu at the early solar system =>

- ²⁴⁴Pu Radioactive decay time ~ 100 Myear
- A nearby event near solar system
- Mixing time < 150 Myr</p>
- Large fluctuations possible => Event rate is low
- Lack of Cu => 10 Myr < Mixing length
 </p>

Tissot + 16

²⁴⁴Pu (half life 81Myr)

The early solar system

Wallner + 14

Rare and "massive" events

R₀ [Myr⁻¹]

r-process material in Dwarf Galaxies (Beniamini+ 16a,b)

R₀ [Myr⁻¹

The Secret Signatures of GRB cocoons

Nakar & TP ApJ 16 in press

From Mizuta
The idea in a single picture

The Jet drills a hole in the star

Zhang, Woosley & MacFadyen 2004

Model 3P3, 8s

Internal Shocks

Jet breakout (Bromberg Nakar, TP, Sari 11 ApJ 2011)

 $t_b \approx 8 L_{51}^{-1/3} \theta_{10^o}^{4/3} R_{11}^{2/3} M_{10}^{1/3}$ s

The engine must be active until the jet's head breaks out!*

A prediction of the Collapsar model

Observed duration $T_{90} = T_e - T_B$ Break out Engine time time

A prediction of the Collapsar model

 $dN(T_{90})/dt$ Observed duration $T_{90} = T_e - T_B$ Break out Engine time time

T90

A prediction of the Collapsar model

 $dN(T_{90})/dt$ Observed duration $T_{90} = T_e - T_B$ Break out Engine **[**90 time time

A second look

A second look

A direct observational proof of the Collapsar model.

Short (Non-Collapsars)

Short (Non-Collapsars)

Swift Short (Non-Collapsars) GRBs

Swift Short (Non-Collapsars) GRBs

Swift Short (Non-Collapsars) GRBs

Short Swift GRBs with T₉₀>0.7sec are not "short"!

Egrb≈Eejecta≈Ec

Macronova + Radio flare

Cocoon's structure

3D simulation

4Msun, R*=4x10¹⁰cm. L_j =10⁵¹erg/s, θ =8° Using Pluto with high resolution Δ R=10⁷cm. Credit: Ore Gottlieb

3D simulation

4Msun, R*=4x10¹⁰cm. L_j =10⁵¹erg/s, θ =8° Using Pluto with high resolution Δ R=10⁷cm. Credit: Ore Gottlieb

2D simulation 110sec after breakout

4Msun, R*=4x10¹⁰cm. L_j =10⁵¹erg/s, θ =8° Using Pluto with high resolution Δ R=10⁷cm. Credit: Ore Gottlieb

The cocoons

Harrison, Goetlieb and Nakar in prep, 2016

Emission component

Newtonian Cocoon - cooling (photospheric) emission Newtonian cocoon - macronova Relativistic Jet cocoon - cooling (photospheric) emission Relativistic Jet cocoon – afterglow

The cocoons

Harrison, Goetlieb & Nakar in prep, 2016

Cocoon Dynamics

Rθ

Stellar Envelope

R $L=E_cc/R$

Partial Mixing

Harrison, Goetlieb and Nakar in prep, 2016

2D simulation 110sec after breakout

4M₀, R*=4x10¹⁰cm. L_j =10⁵¹erg/s, θ =8° Using Pluto with high resolution Δ R=10⁷cm. Credit: Ore Gottlieb

Short GRBs

From Hotokezaka & TP 2015

Nagakura et al. 2014; Murguia-Berthier et al. 2014, 2016

SGRB cocoon signatures

Rel. Cocoon cooling $E_c = 10^{50}$ + breakout radius of 10^{10} => $\sim 10^{41}$ erg/s $\sim 10,000$ K. optical magnitude of about -14. Rel. Cocoon Afterglow, scaling from the regular SGRB afterglow $\sim 10^{41} \text{ erg/s}$ optical magnitude of about -14. This is a wide angle signal 0.5 rad is stronger than typical SGRB orphan afterglow

Macronova cocoon signature

Heating due to radioactive decay

$$L_{MN} \sim 4 \times 10^{40} \ E_{49}^{0.325} \theta_{10}^{0.05} M_{ej,-2}^{0.025} \kappa_1^{-0.65} \frac{\dot{\epsilon}}{\dot{\epsilon}_0} \ \frac{\text{erg}}{\text{s}},$$

$$\dot{\epsilon}_0 = 10^{10} (t/day)^{-1.3} \ \text{erg/gr/s}.$$

$$T_{MN} \sim 11,000 \ E_{49}^{-0.04} \theta_{10}^{-0.24} M_{ej,-2}^{-0.12} \kappa_1^{-0.41} \left(\frac{\dot{\epsilon}}{\dot{\epsilon}_0}\right)^{1/4} \text{K}$$

Blue signal at around 0.5–1 day! Brighter or comparable to the classical Macronova

Summary

- Cocoons are the forgotten cousins in the GRB story. They carry a comparable amount of energy to the GRB and are wider than the GRBs.
- Short GRBs have their own cocoons whose signatures might be the best EM counterpart to

The radio - flare (Nakar & Piran 2011) Testing the Macronova interpretation

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.
The radio - flare (Nakar & Piran 2011) Testing the Macronova interpretation

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

The radio - flare (Nakar & Piran 2011) Testing the Macronova interpretation

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

The radio - flare (Nakar & Piran 2011) Testing the Macronova interpretation

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

> Supernova -> Supernova remnant GRB -> Afterglow Macronova -> Radio Flare

Search for the flare from GRB 130603B by the EVLA

Search for the flare from GRB 130603B by the EVLA

Search for the flare from GRB 130603B by the EVLA

Radio limits on Magnetars

Horesh + 16

Do GRBs need magnetars?

Quasars eject
 magnetic jets.

 SGRBs also have magnetic jets => Mangetars

 But quasars produce magnetic jets without magnetars

Where?

Prompt?Afterglow?

Is impossible to have both from the same magnetar?

If a magnetar did this

What did that?

If a magnetar did this

What did that?

Energy Generation Hotokezaka, Sari & TP + 16

N+n

GF

Ve

 $\boldsymbol{\mathcal{V}}$

N+p

$$\begin{split} t_f &= \frac{2\pi^3}{G_F^2} \frac{\hbar^7}{m_e^5 c^4} \approx 10^4 sec \\ \dot{E} &= \epsilon_e \frac{m_e c^2}{t_f} \left(\frac{t}{t_F}\right)^{-\alpha} \\ \frac{1}{\tau} &\propto \frac{d}{dE} \int d^3 p_e \int d^3 p_\nu \\ \swarrow & \swarrow \\ E^3 \text{ or } E^{3/2} \qquad E^3 \\ \text{Relativistic} \quad \frac{1}{\tau} &\propto E^5 \qquad \rightarrow \alpha = 6/5 \\ \text{Newtonian} \quad \frac{1}{\tau} &\propto E^{7/2} \qquad \rightarrow \alpha = 9/7 \end{split}$$

Efficiency Hotokezaka, Wajano +...TP 16; Barnes +

Photon losses: The ejecta becomes optically thin to gamma-rays long before it becomes optically thin to optical/IR photons => photon leakage during the macronova peak (Hotokezaka + 16)

Electron losses: Unlike previous believes not all the electrons energy is deposited (Barnes + 16)

Summary

The nIR flare that followed the short GRB 130603B could have been a Macronova. If so than:

✓ Short GRBs arise from mergers.
 ✓ Gold and other A>130 elemets are produced in mergers. (But large m_{ej}).

A radio flare may confirm this!
A second & third Macronovae suggest a BH-NS merger

²⁴⁴Pu suggests that R-process production is in rare events.

Cocoon produces a short bright macronovaWe wait for the sGRB-GW coincidence

Summary

The nIR flare that followed the short GRB 130603B could have been a Macronova. If so than:

✓ Short GRBs arise from mergers.
 ✓ Gold and other A>130 elemets are produced in mergers. (But large m_{ej}).

A radio flare may confirm this!
A second & third Macronovae suggest a BH-NS merger

²⁴⁴Pu suggests that R-process production is in rare events.

Cocoon produces a short bright macronovaWe wait for the sGRB-GW coincidence

Summary

The nIR flare that followed the short GRB 130603B could have been a Macronova. If so than:

✓ Short GRBs arise from mergers.
 ✓ Gold and other A>130 elemets are produced in mergers. (But large m_{ej}).

A radio flare may confirm this!
A second & third Macronovae suggest a BH-NS merger

²⁴⁴Pu suggests that R-process production is in rare events.

Cocoon produces a short bright macronovaWe wait for the sGRB-GW coincidence

