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Potentials from  
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Before giving our results, however, there is an issue for baryon interactions in 
lattice QCD, which must be understood.

In this talk, I will explain the issue and give our understanding. 

As my talk will be more or less logical (though not difficult), 
please interrupt me if you get lost.

Some results: talk by Hatsuda on Wed.



Introduction 
What is an issue ?



Difficulties of two(multi)-baryon systems 
Two-nucleon propagator

GNN (t) = hN(t)N(t)N̄(0)N̄(0)i = Z0e
�E0t + Z1e

�E1t + · · · ! Z0e
�E0t, t ! 1

• (systematic errors) t can not be infinite. E↵ects of E1, E2, · · · .

• (statistical errors) GNN (t) is calculated by the Monte-Carlo average.

Signal

N = qqq (3 quarks)

Noise

hN(t)N̄(0)i ' e�mN tSingle-nucleon
q

h|N(t)N̄(0)|2i '
p
e�3m⇡t = e�

3
2m⇡t

A-nucleons hNA(t)N̄A(0)i ' e�AmN t
q

h|NA(t)N̄A(0)|2i ' e�A 3
2m⇡t



Signal-to-Noise ratio

SA(t)
NA(t)

=
�NA(t)N̄A(0)��
�|NA(t)N̄A(0)|2�

� exp
�
�A

�
mN � 3m�

2

�
t

�

becomes worse more baryons lighter pions larger time 

A (kind of) sign problem for fermion systems.

Only a few groups are working on two-baryon systems. 
Thus still premature.

A single baryon is well understood. Baryon masses



Lattice QCD methods for  two-baryons 

Direct method

�E = ENN � 2mN binding energy 

phase shift + finite volume formula
Lüscher, NPB354(1991)531

Potential method

“potential”

binding energy 

phase shift 

Both are theoretically equivalent, but 

(HALQCD method)

t��

+ Schrödinger equation

GNN (t) ⇠ e�ENN t

GNN (r, t) = hN(r, t)N(0, t)N̄(0)N̄(0)i

Details will be given later.



1S0
3S1

m⇡ ' 140 MeV

“di-neutron” “deuteron”

9

Two nucleaon systems at heavy pions

boundDirect method

Potential method

bound

unbound unbound

Nature unbound bound

interactions become stronger at heavier pions

interactions become weaker at heavier pions

Both must agree.  
We therefore have to identify sources of this discrepancy.



In this talk, I will show several evidences that some systematic uncertainties are 
not under control in the direct method while they are well controlled in the 
potential method.

Introduction 

Part 1. Direct method 

I. Mirage problem (Operator dependence) 

II. Sanity check  

Part 2. HALQCD potential method 

III. Strategy 

IV. Source dependence 

V. Anatomy of the direct method by the potential 

Summary



Part 1. Direct method



Extraction of energy shift

Plateau method

Energy shift �E ⌘ ENN � 2mN

O(2 GeV) O(2 GeV)O(10 MeV)

large cancellation 
0.5 % accuracy required

Ratio R(t) =
GNN (t)

GN (t)2
⇠ e��Et expect cancellation of both statistical 

and systematic errors 

Effective energy shift

�E(t) =
1
a

log
R(t)

R(t + a)
�� �E, t��
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FIG. 5: Same as Fig. 3 for 3He channel.
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We identify �E(t) as �E, if it becomes constant.

t=0.9-1.3 fm



Is the plateau method reliable ? 
Excitation energy

binding energy: very small

E1 � E0

finite volume effect for scattering state ' 1

mN

(2⇡)2

L2

• Excitation energy ~ binding energy or finite V effect  
 

 
 
 
 
 
 

 

 

 
Elastic 

       

 
Inelastic 

NNπ 

NN 

Physical Mπ 
L=8fm 

Mπ=0.5 GeV 
L=3fm 

Mπ=0.3 GeV 
L=6fm 

10-13 10-25 10-4 

(simple) 

System w/o Gap 

New Challenge for multi-body systems 
30 

(For both of Direct method / (old) HAL method) 

Challenges in multi-baryons on the lattice 

(very small) 

E1 � E0 ' 50 MeV at L = 4 fm

t � 1/(E1 � E0) ' 4 fm is needed to suppress excited states.

Observing the plateau guarantees the ground state saturation even when
t � 1/(E1 � E0) is NOT satisfied.

claimed by Y(I)KU(‘11,’12,’15), NPL(’12,’13,’15), CalLat(’15)



Examination of the statement
Mock-up data

R(t) = e��Et
�
1 + b e��Eelt + c e��Einelt

�

the lowest excitation energy of elastic scattering state

�Einel = 500 MeV the inelastic energy from heavy pions 

“TimeAdependent”$method$(HAL$QCD$poten=alĀoøþ¯Hò#y�ñap)�
!  Normalized(NN(correlator((R:correlator)(

(

(

(

(

(
×(

×(

!  “Time:dependent”(Schrodinger:like(equaAon(óC��

¼�

  

R(t, x) ≡ e2mN ⋅t 〈0 |T [N(x,t)N(y,t) ⋅J NN (t = 0)] | 0〉

= ak exp −tΔW (

k )( )ψ 

k (
x)


k
∑

 ΔW (

k ) ≡ 2 mN

2 +

k 2 − 2mN

 

− ∂
∂t
R(t, x) = ak

k
∑ ΔW (


k )exp −tΔW (


k )( )ψ 

k (
x)

= ak


k 2

mN

− ΔW (

k )2

4mN

⎛
⎝⎜

⎞
⎠⎟
exp −tΔW (


k )( )ψ 

k (
x)


k
∑

= ak
k
∑ H0 +U − 1

4mN

∂2

∂t 2
⎛
⎝⎜

⎞
⎠⎟
exp −tΔW (


k )( )ψ 

k (
x)

inelasAc(contribuAon((E(>(2mN(+(mpion)Ā
[ éþëøØt(ô%�ò9�

 
ΔW (


k ) =


k 2

mN

− ΔW (

k )2

4mN

 

1
4mN

∂2

∂t 2
− ∂
∂t

− H0
⎛
⎝⎜

⎞
⎠⎟
R(t, x) = d 3∫ ′x U(x, ′x )R(t, ′x )

 
H0 +U( )ψ 

k (
x) =


k 2

mN

ψ 
k (
x)

HAL(QCD(potenAal(U(saAsfies(

(

(

�

ground(state(saturaAonóT�ñãØ(
HAL(QCD(potenAalàoøüÿþÙ(

[N.Ishii(et(al.,PLB712(2012)437.]�

“TimeAdependent”$SchrodingerAlike$equa=on�

�Eel �
1
L2

c = 0.01 1% contamination

b = ±0.1

�Eel = 50 MeV at L � 4 fm

10 % contamination b = 0 for a comparison

@ m⇡ = 0.5 GeV, L = 4 fm (setup of YIKU2012)



b=0.1

b=-0.1

b=0



b=0.1

b=-0.1

b=0

Zoom + increasing errors and fluctuations



b=0.1

b=-0.1

b=0

Zoom + increasing errors and fluctuations
“plateau-like” structure at t ~ 1fm 

but they are fake 

t=8-10 fm 
necessary  

Can plateau identification avoid the S/N issue ? 
~ demonstration in direct method ~ 

• “Observation of plateau guarantees the G.S. saturation 
even when t >> 1/(E1-E0) is NOT satisfied” 
 

• Mock-up data 

Yamazaki et al. (’11,’12,’15), NPL (’12,’13,’15), CalLat(’15) 

Zoom + typical stat error 

It’s a Myth ! 
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even when t >> 1/(E1-E0) is NOT satisfied” 
 

• Mock-up data 
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Zoom + typical stat error 

It’s a Myth ! 

It’s a Myth !

Observing the plateau guarantees the ground state saturation even when
t � 1/(E1 � E0) is NOT satisfied. claimed by Y(I)KU(‘11,’12,’15), NPL(’12,’13,’15), CalLat(’15)
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“Plateaux” at t ~ 1 fm 
but they are fake (Mirage)

Zoom + increasing errors and fluctuations
“plateau-like” structure at t ~ 1fm 

but they are fake 
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necessary  

Can plateau identification avoid the S/N issue ? 
~ demonstration in direct method ~ 

• “Observation of plateau guarantees the G.S. saturation 
even when t >> 1/(E1-E0) is NOT satisfied” 
 

• Mock-up data 

Yamazaki et al. (’11,’12,’15), NPL (’12,’13,’15), CalLat(’15) 

Zoom + typical stat error 

It’s a Myth ! 

It’s a Myth !

Observing the plateau guarantees the ground state saturation even when
t � 1/(E1 � E0) is NOT satisfied. claimed by Y(I)KU(‘11,’12,’15), NPL(’12,’13,’15), CalLat(’15)

The “looking for a plateau at small t” method does not work.



I. Mirage problem 
(Operator dependence)

- Manifestation of the problem I -

T. Iritani et al. (HAL QCD), JHEP1610(2016)101 (arXiv:1607.06371)



Source operator dependence of plateaux
Lattice Setup: Wall Source and Smeared Source
! ΞΞ interaction from both direct and HAL QCD methods

! CHECK 2 quark sources — mixture of excited states are different

wall source
standard of HAL QCD

smeared source
standard of direct method†

WALL SOURCE SMEARED SOURCE

SINK SINK

" setup — 2 + 1 improved Wilson + Iwasaki gauge†

• lattice spacing: a = 0.08995(40) fm, a−1 = 2.194(10) GeV
• lattice volume: 323 × 48, 403 × 48, 483 × 48, and 643 × 64

mπ = 0.51 GeV, mN = 1.32 GeV, mK = 0.62 GeV, mΞ = 1.46 GeV

† Yamazaki-Ishikawa-Kuramashi-Ukawa, arXiv:1207.4277. 7 / 16

quark wall source vs quark smeared source

�

y

q(y, t0)
�

y

e�B|x0�y|q(y, t0)

Lattice setup 2+1 flavor QCD

a = 0.09 fm (a�1 = 2.2 GeV)

m� = 0.51 GeV, mN = 1.32 GeV, mK = 0.62 GeV, m� = 1.46 GeV

same gauge configurations of YIKU 2012

b are different between the two. 



Energy shift of �� smaller statistical errors

��(1S0) ��(3S1)

smeared

smeared

wall

wall

• Not surprisingly, two sources disagree. 

• The potential danger becomes reality. 

• Plateau-like structures around t=1-1.5 fm are by no means trustable.  

• Both might agree at t > 18a, but errors are too large.

1.35 fm

1.35 fm
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Same problem also appears for NN

NN(1S0) NN(3S1)

wall

smear

smear

wall

With larger errors,  disagreement also exists.

In addition, we may have



Sink 2-baryon operator dependence of plateaux

�

�

x

y
source

sink

G��(t) =
�

x,y

g(|x� y|)��(x, t)�(y, t)J��(t0)�

J��(t0)

g(r) = 1 : standrad sink operator

g(r) = 1 + A exp(�Br) : generalized sink operator

The true plateau must NOT dependent on g(r).



Smeared source Wall source

• smeared source is very sensitive to g(r).  

• Sometimes deeper and more stable. 

• one can produce an arbitrary value (within a certain range) by g(r). 

• Wall source is insensitive to g(r).



• Dangers of fake plateaux exit in principle for the direct method. 

• Problem becomes manifest in the strong source/sink operator dependences 
of plateau values in YIKU 2012. 

• Are there any symptoms in other results ? 

• Study of source dependences requires additional simulations. 

• need simpler and easier check  Nucleons are more complicated than mesons because…

§ Noise issue 
[ Signal diminishes at large tE relative to noise

§ Excited-state contamination
[Nearby excited state: Roper(1440)

§ Hard to extrapolate in pion mass
[ Δ resonance	nearby;	multiple	expansions,	poor	convergence…	
[ Less an issue in the physical pion-mass era 

§ Requires larger volume and higher statistics 
[ Ensembles are not always generated with nucleons in mind
[High-statistics: large measurement has 65k samples

The Trouble with Nucleons

Huey-Wen Lin — Symmetry Tests in Nuclei and Atoms

proceed with caution

Nucleons are more complicated than mesons because…
§ Noise issue 
[ Signal diminishes at large tE relative to noise

§ Excited-state contamination
[Nearby excited state: Roper(1440)

§ Hard to extrapolate in pion mass
[ Δ resonance	nearby;	multiple	expansions,	poor	convergence…	
[ Less an issue in the physical pion-mass era 

§ Requires larger volume and higher statistics 
[ Ensembles are not always generated with nucleons in mind
[High-statistics: large measurement has 65k samples

The Trouble with Nucleons

Huey-Wen Lin — Symmetry Tests in Nuclei and Atoms

proceed with caution

More alligators, 
proceed with caution.



II. Sanity check
- Manifestation of the problem II -

S. Aoki, T. Doi, T. Iritani, PoS(Lattice2016) 109 (aiXiv:1610:09763)



Finite volume formula Lüscher, NPB354(1991)531

Direct method
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FIG. 9: Same as Fig. 3 for 1S0 channel.
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FIG. 10: m2
π dependence of ∆E∞ for 3S1 channel. Closed(open and cross) symbol denote the

2+1/3 flavor(quenched) result. The results of Refs. [2, 3] and this work are extrapolated values in

the infinite volume limit. Experimental result (star) is also presented for comparison.
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�
E

1/L3

YIKU2012

�E = 2
q
k2 +m2

N � 2mN , q =
kL

2⇡

k cot �(k) =
1

⇡L

X

~n2Z3

1

~n2 � q2

�(k):scattering phase shift

unbound bound

Effective Range Expansion (ERE) k cot �(k) =
1

a
+

1

2

rk2 + · · ·

intercept

slo
pe



ERE at physical pion mass

Instead, a behavior shown below 
indicates the problem in lattice 
QCD data.

1/a ' �1, r ' �1

“Sanity Check”



YIKU2012

singular behaviors 

Yamazaki et al.  PRD86(2012)074514
m⇡ = 0.51 GeV, L = 2.9� 5.8 fm

smeared

smeared

�ENN (1S0) = �7.4(1.3)(0.6) MeV �ENN (3S1) = �11.5(1.1)(0.6) MeV

ERE? ERE?

�E is almost independent on L, while it is shallow bound state.

“Not Sanity”



Conclusion of part 1
The direct method gives no reliable result for two(or more)-baryon 
systems so far, since systematic errors due to contaminations from 
excited (elastic) states are not under control.

Check Table for NN 

src-dep 
check 

sink-dep 
check 

Overall 
Verdict 

False 

Y
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20
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P
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Y
K

U
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plateau 
check 

Y
IK

U
 

20
15

  

single baryon double  baryon 

Effective Range 
expansion check 

mirage 
plateau 
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False 

Not 
checked 

Not 
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P
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20
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N

P
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20

15
 

Not 
checked 

Not 
checked 

Not 
checked 

Not 
checked 

Not 
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Not 
checked 
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Part 2. HALQCD potential method



III. Strategy

Aoki, Hatsuda & Ishii, PTP123(2010)89.



Elastic scattering NN → NN NN → NN + others

Nambu-Bethe-Salpeter (NBS) wave function

�k(r) = �0|N(x + r, 0)N(x, 0)|NN, Wk� energy Wk = 2
�

k2 + m2
N

interaction 
range

no interaction
r = |r|!1

�k(r) �
�

l,m

Cl
sin(kr � l�/2 + �l(k))

kr
Yml(�r)

�l(k)
scattering phase shift = 

phase of the S-matrix by unitarity in QCD.

QCD eigenstate



Non-local but energy-independent, defined from the NBS wave function

[�k �H0] �k(x) =
�

d3y U(x,y)�k(y) ϵk =
k2

2µ
H0 =

−∇2

2µ

Vk(x) =
[�k �H0]�k(x)

�k(x)
U(x,y)

By construction

potential U(x,y) is faithful to QCD phase shift �l(k).

Potential

Note however that U(x,y) is not unique.



Derivative (velocity) expansion U(x,y) = V (x,r)�3(x� y)

V (x,∇) = V0(r) + Vσ(r)(σ1 · σ2) + VT (r)S12 + VLS(r)L · S + O(∇2)
LO LO LO NLO NNLO

tensor operator S12 =
3
r2

(σ1 · x)(σ2 · x) − (σ1 · σ2)

spins

Several �k(x) are available.

At LO we simply obtain
VLO(x) =

[�k �H0]�k(x)
�k(x)

phase shifts and binding energy below inelastic threshold

Note truncation of the derivative expansion introduces some systematics.

We can determine V (x,�) order by order.



NBS wave function

4-pt Correlation function

It is now clear that there is no unique definition for the NN potential. Ref. [18, 24, 25], however,
criticized that the NBS wave function is not ”the correct wave function for two nucleons” and that its
relation to the correct wave function is given by

ϕW (r) = ZNN(|r|)⟨0|T{N0(x + r, 0)N0(x, 0)}|2N, W, s1, s2⟩ + · · · (23)

where N0(x, t) is ”a free-field nucleon operator” and the ellipses denotes ”additional contributions from
the tower of states of the same global quantum numbers”. Thus ⟨0|T{N0(x+r, 0)N0(x, 0)}|2N,W, s1, s2⟩
is considered to be ”the correct wave function”. In this claim it is not clear what is ”a free-field nucleon
operator” in the interacting quantum field theory such as QCD. An asymptotic in or out field operator
may be a candidate. If the asymptotic field is used for N0, however, the potential defined from the
wave function identically vanishes for all r by construction. To be more fundamental, a concept of
”the correct wave function” is doubtful. If some wave function were ”correct”, the potential would be
uniquely defined from it. This clearly contradicts the fact discussed above that the potential is not an
observable and therefore is not unique. This argument shows that the criticism of Ref. [18, 24, 25] is
flawed.

3 Lattice formulation

In this section, we discuss the extraction of the NBS wave function from lattice QCD simulations. For
this purpose, we consider the correlation function on the lattice defined by

F (r, t − t0) = ⟨0|T{N(x + r, t)N(x, t)}J (t0)|0⟩ (24)

where J (t0) is the source operator which creates two nucleon state and its explicit form will be considered
later. By inserting the complete set and considering the baryon number conservation, we have

F (r, t − t0) = ⟨0|T{N(x + r, t)N(x, t)}
∑

n,s1,s2

|2N, Wn, s1, s2⟩⟨2N, Wn, s1, s2|J (t0)|0⟩

=
∑

n,s1,s2

An,s1,s2ϕ
Wn(r)e−Wn(t−t0), An,s1,s2 = ⟨2N,Wn, s1, s2|J (0)|0⟩. (25)

For a large time separation that (t − t0) → ∞, we have

lim
(t−t0)→∞

F (r, t − t0) = A0ϕ
W0(r)e−W0(t−t0) + O(e−Wn̸=0(t−t0)) (26)

where W0 is assumed to be the lowest energy of NN states. Since the source dependent term A0 is just
a multiplicative constant to the NBS wave function ϕW0(r), the potential defined from ϕW0(r) in our
procedure is manifestly source-independent. Therefore the statement that the potential in this scheme
is ”source-dependent” in Ref. [26] is clearly wrong.

In this extraction of the wave function, the ground state saturation for the correlation function F in
eq. (26) is important. In principle, one can achieve this by taking a large t − t0. In practice, however,
F becomes very noisy at large t − t0, so that the extraction of ϕW0 becomes difficult at large t − t0.
Therefore it is crucial to find the region of t where the ground state saturation is approximately satisfied
while the signal is still reasonably good. The choice of the source operator becomes important to have
such a good t-region.
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where W0 is assumed to be the lowest energy of NN states. Since the source dependent term A0 is just
a multiplicative constant to the NBS wave function ϕW0(r), the potential defined from ϕW0(r) in our
procedure is manifestly source-independent. Therefore the statement that the potential in this scheme
is ”source-dependent” in Ref. [26] is clearly wrong.

In this extraction of the wave function, the ground state saturation for the correlation function F in
eq. (26) is important. In principle, one can achieve this by taking a large t − t0. In practice, however,
F becomes very noisy at large t − t0, so that the extraction of ϕW0 becomes difficult at large t − t0.
Therefore it is crucial to find the region of t where the ground state saturation is approximately satisfied
while the signal is still reasonably good. The choice of the source operator becomes important to have
such a good t-region.
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complete set for NN
+ · · ·

Extraction of potential 
can be calculated in lattice QCD

'W
s1,s2(r) = h0|T{N(x+ r, 0)N(x, 0)}|2N,W, s1, s2i

R(r, t) � F (r, t)/G2
N (t) =

�

n

An�Wne��Wnt

Normalized 4-pt function

Z
dyU(x,y)'W0(y) = (EW0 �H0)'

W0(x)

Z
dyU(x,y)'W1(y) = (EW1 �H0)'

W1(x)

a sum of many NBS wave functions

· · ·

controlled by the same U



∆Wn = Wn − 2mN =
k2

n

mN
− (∆Wn)2

4mN

− ∂

∂t
R(r, t) =

{
H0 + U − 1

4mN

∂2

∂t2

}
R(r, t)
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Time-dependent method

�
k2

n

mN
�H0

�
�Wn(r) = U · �Wn(r)

space corr.time corr. time corr.

R(r, t) =
X

n

An'
Wn(r)e��Wnt
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}
R(r, t) =

∫
d3r′ U(r, r′)R(r′, t) = VC(r)R(r, t) + · · ·

1st 2nd 3rd
3rd term(relativistic correction) is 
negligible. 

This method overcomes the previous 
difficulties in the direct method, using 
both space and time correlations.
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excited state contributions become 
bigger in the larger volume

�E � 1
L2
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“TimeAdependent”$SchrodingerAlike$equa=on�

time-dependent HAL QCD method 
makes this difficulty milder

�E � m�

remaining t-dependence of the potential

1. Inelastic contributions (including excited states of one baryon)

2. Higher order terms in the derivative expansion

R(r, t) = F (r, t)/GN (t)2



Ishii et al. (HALQCD), PLB712(2012) 437.2+1 flavor QCD a=0.09fm, L=2.9fm
m� � 700 MeV

NN potential
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Qualitative features of NN potential 
are reproduced.

It has a reasonable shape. The strength is 
weaker due to the heavier quark mass.

No dineutron at heavier pion mass.



IV. Source dependence of potentials

T. Iritani, Talk at Lat2016, arXiv1610.09779[hep-lat]



NBS wave function ��(1S0)HAL: Wave Function and ΞΞ(1S0) Potential Vc(r⃗)
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HAL: Wave Function and ΞΞ(1S0) Potential Vc(r⃗)
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HAL: Potential of ΞΞ(1S0) Smeared Src. vs Wall Src.

NBS wavefunction: Rsmear(r, t) or Rwall(r, t)

Vc(r) =
1

4m

(∂2/∂t2)R(r, t)

R(r, t)
− (∂/∂t)R(r, t)

R(r, t)
− H0R(r, t)

R(r, t)

10 / 16

HAL: Potential of ΞΞ(1S0) Smeared Src. vs Wall Src.

wall src. — good convergence

smeared src. — t-dep.

smeared src. −→ wall src. for large t

10 / 16

Wall src. is stable. Smeared src. -> wall src. for large t. 



Analysis w/LO+ NLO potential
Rwall, Rsmeared

The difference between wall/smeared reflects physics.

Smeared data contain much more excited states. more sensitive to NLO

New method to extract NLO potential !

pr
eli
mi
na
ry

pr
eli
mi
na
ry



 Potentials relevant at low energy

Potential from wall src. 
is reliable at low energy.

U(r, r0) = Ve↵(r)�(r� r0)

U(r, r0) =
⇥
VLO(r) + V 0

NLOr2
⇤
�(r� r0)

(wall)

(wall & smeared)
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Ve↵(r) ' VLO(r)

V 0
NLO is relevant for high energy states.

Good convergence of the derivative expansion at low energy.



V. Anatomy of the direct method 
by the potential

T. Iritani, Talk at Lat2016, arXiv1610.09779[hep-lat]



potential

Luscher’s method with HAL QCD potential
time-dependent HAL QCD method potential V (r⃗)

! 基底状態への収束不要
! quark source 非依存

Lüscher’s method
! quark source に依存する 偽の plateau の問題 — large tが必要
! effective mass plot からエネルギー・シフト∆EL の測定は困難

Lüscher from HAL QCD

solve [H0 + V ]ψ = ∆Eψ in finite box L3
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Wavefunction and Eigenfunctions
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calc. 50 low-lying eigenmodes

we find 5 A1 states / 50 modes
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cf. mπ = 0.51 GeV 17 / 21
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Wavefunction and Eigenfunctions
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NBS wave function

10% contamination of 
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Rapprox.(t) '
X

n

bne
��Ent



This explains “two plateaux”

Reconstruction of fake plateaux
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This explains “two plateaux”

Reconstruction of fake plateaux

We need t � 10 fm ( t/a � 100)
to see an agreement btw two sources
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Direct method projected to an eigenstate
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With the projection, even smeared src. gives 
the correct energy shift for the ground state  
at relatively short time.

We can also get the energy shift for the 1st 
excited state !
Errors are larger for the wall src., which 
has less contamination of the 1st excited 
state.

All analyses are consistent !

eigenstate



Summary



• The direct method suffers difficulties from the contamination of excited 
elastic states for two(or more)-baryon systems. 

• No trustable results so far. 

• Need new ideas. 

• The HALQCD potential method overcomes these difficulties.  

• by the time-dependent method 

• gives reliable results 

NN interactions become weaker at heavier pion masses. 
No dineutron and deuteron exist there. 

Do not be misled.

Please encourage your lattice colleagues 
to work on the potential method.



Potentials at physical pion

K-computer [10PFlops]�
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Strong attraction Vicinity of bound/unbound (~ unitary limit) 

2+1 flavor QCD, m� � 145 MeV, a � 0.085 fm, L � 8 fm

The most strange dibaryon ?

S. Gongyo
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Qualitatively similar tail to one pion exchange potential (OPEP)

reduction of errors is definitely needed.

T. Doi



N⌅ potentials

K. Sasaki
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N⌅(I = 0,3 S1) N⌅� ⇤⌃(I = 1,1 S0) N⌅� ⇤⌃� ⌃⌃(I = 1,3 S1)

Is the interaction net attractive ?

cf. Talk by Tamura on Wed.

Stay tuned !


